Monthly Archives: August 2016

NativeBees | Nebraska Extension: Acreage Insights …

Posted: August 23, 2016 at 8:44 pm

March - Native Bees

Barb Ogg, University of Nebraska - Extension Educator, shares her knowledge and expertise on insects that often are pest problems. This month, with help from Mary Jane Frogge and Soni Cochran, UNL Extension, she describes an insect that we shouldn't consider a pest.

Encouraging Native Bee Pollinators

In the US, about 4,000 species of native bee pollinators have been identified. Because most of these bees do not live in a hive or colony, they often are overlooked. These bees collect pollen from flowering plants to feed their offspring and, in doing so, pollinate the plants they visit. They are more important pollinators today than ever before.

Native bees range in size from about 1/8- to more than 1-inch long. Coloration varies from dark brown or black to metallic green or blue; they may have stripes of red, white, orange, or yellow. Their names often reflect their nest building behaviors: plasterer bees, leafcutter bees, mason bees, digger bees, and carpenter bees.

Lifestyles. Bees can be divided into two groups by their lifestyles: solitary or social. The stereotypical image of a bee is one living in a hive, but only a few species of bees are social. Social bees share a nest and divide the work of building the nest, caring for the offspring, and foraging for pollen and nectar. The primary social bees are the honey bee (not native to the US) and the bumble bees (about 45 species in the US).

In contrast, most native pollinating bees - nearly 4,000 species in the U.S. - are solitary nesting bees. Each female creates and provisions her own nest, without cooperation with other bees. Although they may nest together in large numbers, the bees are only sharing a good nesting site. The photo to the left is of a leaf cutter bee that emerged from a stack of brood cells that were brought to the Lancaster County extension office last summer. The bee is about the same width as the brood cells. Females that emerge will find a deep hole about the width of their body, form a brood cell with a cut leaf circle and pack the cell with a pollen ball. After she lays an egg on the pollen ball, she seals off each cell and makes a new one.

Solitary bees are either stingless or very unlikely to sting.

Life Cycles Solitary bees. The life cycle of a solitary bee consists of four stages: egg, larva, pupa and adult. Adult bees build a brood cell, then collect pollen and form a pollen ball. The female lays an egg on the pollen ball and seals off the cell. The egg, which resembles a tiny white sausage, incubates for 1-3 weeks, then hatches into a white, soft-bodied, grub-like larva. The larva feeds on the pollen ball left in the cell by the mother bee. After feeding and growing quickly, the larva changes into a pupa. Within the pupal stage - which may last many months - the larva transforms into its adult bee form. When the adult bee emerges, it is ready to feed, mate, and continue the cycle.

About 30 percent of native bee species are wood-nesters. These species use the soft pithy centers of twigs or reeds, or holes in wood tunneled by wood-boring beetles. In the case of carpenter bees, the bees themselves create the tunnel in wood. Some other bee species tunnel into soft, above-ground rotting logs and stumps.

The other 70% of native bees nest underground. These bees tunnel into the soil and create small chambers - brood cells - under the surface.

Social bees. Bumble bees are important pollinators and are only native bees which are truly social. They live in colonies, share the work, and have overlapping generations throughout the spring, summer, and fall. However, unlike the non-native honey bee - which survives through the winter - the bumble bee colony is seasonal. At the end of the summer only the fertilized queens survive to hibernate through the winter. In the spring, she does not use the nest she grew up in, but searches for a new nest.

Bumble bees usually nest in the soil - an abandoned rodent burrow is a favorite location. The queen creates the first few brood cells out of wax she produces, and then provisions these cells with pollen and nectar and lays eggs. Bumble bees differ from solitary bees when feeding their larvae. They provide food gradually, adding it to the brood cells as the larvae need it - called progressive provisioning - rather than leaving all the food in the cell before laying the egg. In addition, bumble bees make a small amount of honey, just enough to feed the colony for a few days during bad weather.

It takes about a month for the queen to raise the first brood. When they emerge, these bees become workers - foraging and tending the growing number of brood cells. The queen will continue to lay eggs, so the colony will grow steadily through the summer. At the end of summer, new queens and drones will emerge and mate. As temperatures drop, the old bees, including the old queen, will die, leaving only the new, mated queens to overwinter.

Increase Pollinators in Your Landscape.

Pollinators require somewhere to nest and flowers from which to gather nectar and pollen. Three things you can do to enhance pollinators in your garden are: provide a range of native flowering plants that bloom throughout the growing season, create nest sites for native bees, and avoid using pesticides.

Plants for Food.

You can increase the number of pollinators in your area with a few simple additions to your landscape. Native plants are the best source of food for native pollinators, because plants and their pollinators have co-evolved, but many varieties of garden plants are also good.

Plant flowers in groups or mass plantings to increase pollination efficiency. Consider the bloom season to provide food from early spring to late fall. Many herbs and annuals, although not native, are very good for pollinators. Mint, dill, oregano, chives, and parsley are a few herbs you can plant. Zinnia, cosmos, and sunflowers are excellent annual flowers that attract bees and butterflies. Even weeds like common milkweed can be a source of food for pollinators. Consider plants that are suitable for the larval stages of pollinators, like butterflies. Here's a table of plants to consider for attracting native bees to your Nebraska acreage.

Wood-Nesting and Cavity Nesting Bees.

Nesting blocks. You can make a bee block by drilling nesting holes between 3/32" and 3/8" in diameter, at approximate 3/4" centers, into the side of a block of preservative-free lumber. A variety of hole sizes will attract different-sized pollinators. The holes must be very smooth inside and closed at one end. The height of the nest block isn't terribly important - 8" or more is good - but the depth of the holes is. Holes less than 1/4" diameter should be about 3 - 4" deep. Holes 1/4" or larger should be 5 - 6" deep. Nesting blocks should be placed in the landscape early to make sure it is there when the bee needs it. If you have a bee-filled block from last year, don't clean it out until after the bees have emerged. You might want to add a second clean block for this year's brood, leaving the old one until all the bees are emerged.

Logs and snags. Get some logs or old stumps and place them in sunny areas. Those with beetle tunnels are ideal. Plant a few upright, like dead trees to ensure some deadwood habitat stays dry. On the southeast side of each log, drill a range of holes, as outlined above.

Stem or tube bundles. Some plants, like bamboo and reeds have naturally hollow stems. Cut the stems into 6-8" lengths. Be careful to cut the stems close to a stem not to create a tube with one end closed. Fifteen to twenty stem pieces tied into a bundle with all the stem ends closed on the same end makes a good nest. You can also make a wooden frame to hold as many stems as you fit inside.

Nest Location. The location of the nest is important. Nests should be placed in a sheltered location to protect them against severe weather, with the entrance holes facing east or southeast to get morning sun. Any height will work, but 3-6 feet is convenient. With stem bundles, make sure the stems are horizontal. Place them on a building, fence, stake, or in a tree. Make sure you fix them firmly so they don't shake in the wind.

Ground Nesting Bees. If you have a large acreage you may be able to provide bare or patchy soil for ground-nesting bees. Simply clear the vegetation from some small patches of level or sloping ground and gently compact the soil surface. A south-facing slope is good. Different ground conditions - from sloping banks to flat ground - will draw different bee species.

Water. A clean reliable source of water is essential for pollinators. Water features such as bird baths and small ponds provide drinking and bathing opportunities for pollinators. Water sources should be shallow or have sloping sides so pollinators can easily approach the water without drowning.

No Pesticides. To protect pollinators, pesticide use must be avoided. This can be difficult for gardeners who have well manicured landscapes. Here are some tips to help you ease into a pesticide-free environment. * For natural pest control provide a diverse garden habitat with a variety of plant sizes, heights and types to encourage beneficial insects. * Lower expectations and accept a little bit of pest activity. * Remove garden pests by hand.

Sources: The Xerces Society, a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat.

Read more here:
NativeBees | Nebraska Extension: Acreage Insights ...

Posted in Nebraska Stem Cells | Comments Off on NativeBees | Nebraska Extension: Acreage Insights …

Louisiana (Stem Cell) – what-when-how

Posted: August 23, 2016 at 8:43 pm

The state of Louisiana encourages the biotechnology industry, including adult stem cell research for economic development and scientific innovation. Growth in biotechnology and biomedicine for translating basic research into medical therapies is possible through appropriate legislation and funding, as well as strong collaborative networks for scientific research for industrial, academic, and clinical institutions throughout the state.

The Louisiana Alliance for Biotechnology provides networking opportunities between academic and commercial researchers to encourage economic growth and the transfer of basic research into commercially viable products. The Biomedi-cal Research Foundation of Northwest Louisiana promotes regional scientific growth and development in coordination with Louisiana State University Medical Center in Shreveport.

The foundation operates the Biomedical Research Institute and a Positron Emission Tomography Imaging Center for diagnosis and research in various fields, including immunology, neurological and cardiovascular cellular communication, signal transduction, and neu-rosciences. The foundations clinical application is performed by the Center for Biotechnology Innovation with a focus on research in energy, photonics, biogenetics, orthopedics, and medical informatics. The foundation is also developing a research and technology park called the International Technology Center to focus on biomedical healthcare delivery and biotechnology. This effort brings together nine of the academic institutions in north Louisiana

Louisiana is the only U.S. state to specifically prohibit research on human embryos.

The Louisiana Gene Therapy Research Consortium was established in 2000 with funds given by the state of Louisiana for enhancing economic growth and innovation by attracting researchers, building research laboratories, and producing gene and cell therapies to be used in human clinical trials.

At present, no federal legislation in the United States is in place to regulate stem cell research (except by executive order to not allow federal funding for generation of new embryonic stem cell lines and limiting research on embryonic stem cell lines); this leaves each state responsible for determining policy and funding for stem cell research. Louisiana is the only state to specifically prohibit research on human embryos and restricts human embryonic stem cell research.

For expansion of the biotech industry in Louisiana, the division of economic development has set up three centers within the state, in Baton Rouge, New Orleans, and Davenport, to provide financial assistance with a small business investment company fund, business development services, and wet laboratory incubator space. Their financial support has allowed the creation of a Good Manufacturing Practice Laboratory for stem cell research and funding for the Louisiana Cancer Research Centers of New Orleans and for the Gene Therapy Research Consortium. They also work with start-up companies to bring to the marketplace the application of research from Louisiana universities.

Pennington Biomedical Research Center at Louisiana State University in Baton Rouge provides research laboratories and inpatient and outpatient medical clinics. The center opened in 1988 with funds provided by a philanthropic gift from C. B. Doc Pennington in 1980. The center is home to eight basic research laboratories, three clinical research units, 19 core service laboratories, and conference space.

The centers researchers specialize in a variety of disciplines including molecular biology, genom-ics and proteomics, and biochemistry. Though dedicated to nutrition and its related health issues, the centers research foci include tissue and organ regeneration postinjury/damage, characterization and biological mechanisms including formation of adult stem cells and adipose tissue, and the epigen-etic basis for human diseases of obesity, hypertension, and adult-onset diabetes.

Tulane University, in addition to providing education, is also a research university with active studies in biotechnology including vaccine and drug development, pain-control therapies, and gene therapy. Basic research is translated into clinical therapy and commercial products by the Office of Technology Development. In 2000 the university formed the Tulane Center for Gene Therapy with the goal of developing therapeutic treatment for a variety of human diseases, using adult stem cells through autologous donation and then turning them into therapy for osteoporosis, osteoarthritis, Parkinsons disease, spinal cord injury, stroke, and Alzheimers disease. The center also provides career development and community education, encouraging dialogue on social, legal, and ethical issues related to gene therapy. Funding for the center is provided through grant funding from national, state, and private sources, including the National Institutes of Health, the Louisiana Gene Therapy Research Consortium, Tulane University Health Sciences Center, Healthcare Company, and private foundations.

In addition to research, the center is a stem cell provider of human adult stem cells, rat stem cells, and mouse stem cells for researchers internationally, with a signed Tulane University Materials Transfer Agreement and handling fee. The center isolates, expands, and characterizes the stem cells in the laboratory and provides protocols for expansion as well as information on the cells.

The Louisiana State University is a public institution of higher learning, with majors in the physical sciences and with schools of medicine in New Orleans and Shreveport. The main campus of the university system is located in Baton Rouge, with campuses throughout the state. Research on stem cells includes survival of stem cells after freezing and their capability to proliferate and differentiate, developing technology in engineering stem cells in sheets or three-dimensional structures for transplant, and working with the Pennington Center to develop protocols for the cryopreser-vation of human adipose adult stem cells. Clinical research through the Gene Therapy Program at the Health Sciences Center at the School of Medicine in New Orleans includes translating the basic science of genetic involvement in disease into clinical therapy to prevent or treat some cancers or to restore function to diseased tissues or organs.

Go here to see the original:
Louisiana (Stem Cell) - what-when-how

Posted in Louisiana Stem Cells | Comments Off on Louisiana (Stem Cell) – what-when-how

Molecular imaging of stem cells | StemBook

Posted: August 23, 2016 at 8:42 pm

References Adonai, N. Nguyen, K.N. Walsh, J. Iyer, M. Toyokuni, T. Phelps, M.E. McCarthy, T. McCarthy, D.W. Gambhir, S.S. (2002). Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99, 30303035. Abstract Article Alvarez-Maya, I. Navarro-Quiroga, I. Meraz-Rios, M.A. Aceves, J. Martinez-Fong, D. (2001). In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor. Mol Med 7, 186192. Abstract Anversa, P. Leri, A. Kajstura, J. (2006). Cardiac regeneration. J Am Coll Cardiol 47, 17691776. Abstract Article Arbab, A.S. Bashaw, L.A. Miller, B.R. Jordan, E.K. Bulte, J.W. Frank, J.A. (2003). Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76, 11231130. Abstract Article Askenasy, N. Zorina, T. Farkas, D.L. Shalit, I. (2002). Transplanted hematopoietic cells seed in clusters in recipient bone marrow in vivo. Stem Cells 20, 301310. Abstract Article Baizabal, J.M. Furlan-Magaril, M. Santa-Olalla, J. Covarrubias, L. (2003). Neural stem cells in development and regenerative medicine. Arch Med Res 34, 572588. Abstract Article Bengel, F.M. Anton, M. Richter, T. Simoes, M.V. Haubner, R. Henke, J. Erhardt, W. Reder, S. Lehner, T. Brandau, W. et al. (2003). Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 108, 21272133. Abstract Article Bengel, F.M. Schachinger, V. Dimmeler, S. (2005). Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 32(Suppl 2), S404416. Article Bindslev, L. Haack-Sorensen, M. Bisgaard, K. Kragh, L. Mortensen, S. Hesse, B. Kjaer, A. Kastrup, J. (2006). Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33, 11711177. Abstract Article

Bloor, C.M. White, F.C. Roth, D.M. (1992). The pig as a model of myocardial ischemia and gradual coronary artery occlusion. In Swine as models in biomedical research. Swindle, M. M. Moody, D. C. Phillips, L. D. Ames, Iowa: Iowa State University Press; , 163175.

Kutschka, I. Chen, I.Y. Kofidis, T. Arai, T. von Degenfeld, G. Sheikh, A.Y. Hendry, S.L. Pearl, J. Hoyt, G. Sista, R. et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114, I167173.

Kutschka, I. Kofidis, T. Chen, I.Y. von Degenfeld, G. Zwierzchoniewska, M. Hoyt, G. Arai, T. Lebl, D. R. Hendry, S. L. Sheikh, A. Y. et al. (2006). Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114, I174180.

Li, Z. Wu, J.C. Sheikh, A.Y. Kraft, D. Cao, F. Xie, X. Patel, M. Gambhir, S.S. Robbins, R.C. Cooke, J.P. Wu, J.C. (2007). Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116, I4654.

Wang, F. Dennis, J. E. Awadallah, A. Solchaga, L. A. Molter, J. Kuang, Y. Salem, N. Lin, Y. Tian, H. Kolthammer, J. A. et al. (2008). Transcriptional Profiling of Human Mesenchymal Stem Cells Transduced with Reporter Genes for Imaging. Physiol Genomics.

Continue reading here:
Molecular imaging of stem cells | StemBook

Posted in Iowa Stem Cells | Comments Off on Molecular imaging of stem cells | StemBook

Biotechnology Conferences | CPD Events| Biotechnology …

Posted: August 23, 2016 at 8:41 pm

Frontiers in Biotechnology

Biotechnology is an innovative science in which living systems and organisms are used to develop new and useful products, ranging from healthcare products to seeds. The field of Biotechnology is growing rapidly making tremendous impacts in Medical/Health Care, Food & Agriculture. The Global Biotechnology industry is in the growth phase of its economic life cycle. Over the five years to 2014, revenue and industry value added (IVA) growth have outpaced world GDP growth. The Frontiers in Biotechnology track will cover current technological aspects that aim at obtaining products with scientific, industrial, health and agricultural applications, from organisms with increasing levels of complexity from bacteria, yeast, plants, animal cells and virus. With the lectures and demonstrations on stem cell therapy, Embryo transfer technology, next generation sequencing, Drug discovery, biotechnology in food and dairy, etc... The participants are expected to acquire knowledge in techniques and methodologies used in Biotechnology.

Pharmaceutical Biotechnology

Pharmaceutical Biotechnology is the science that covers all technologies required for producing, manufacturing and registration of biological drugs.Pharmaceutical Biotechnologyis an increasingly important area of science and technology. It contributes in design and delivery of new therapeutic drugs,diagnosticagents for medical tests, and in gene therapy for correcting the medical symptoms of hereditary diseases. The Pharmaceutical Biotechnology is widely spread, ranging from many ethical issues to changes inhealthcarepracticesand a significant contribution to the development of national economy.Biopharmaceuticalsconsists of large biological molecules which areproteins. They target the underlying mechanisms and pathways of a disease or ailment; it is a relatively young industry. They can deal with targets in humans that are not accessible withtraditional medicines.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Medical Biotechnology

Medicine is by means of biotechnology techniques so much in diagnosing and treating dissimilar diseases. It also gives opportunity for the population to defend themselves from hazardous diseases. The pasture of biotechnology, genetic engineering, has introduced techniques like gene therapy, recombinant DNA technologyand polymerase chain retort which employ genes and DNA molecules to make adiagnosis diseasesand put in new and strong genes in the body which put back the injured cells. There are some applications of biotechnology which are live their part in the turf of medicine and giving good results.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & Biotech Patent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Molecular Biotechnology

Molecular biotechnology is the use of laboratory techniques to study and modify nucleic acids and proteins for applications in areas such as human and animal health, agriculture, and the environment.Molecular biotechnologyresults from the convergence of many areas of research, such as molecular biology, microbiology, biochemistry, immunology, genetics, and cell biology. It is an exciting field fueled by the ability to transfer genetic information between organisms with the goal of understanding important biological processes or creating a useful product.

Related Conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th-14th 2016, Boston, MA, USA;BIO Investor Forum, October 20-21, 2015, San Francisco, USA;BIO Latin America Conference, October 14-16, 2015, Rio de Janeiro, Brazil;Bio Pharm America 20158th Annual International Partnering Conference, September 15-17, 2015, Boston, MA, USA.

Environmental Biotechnology

The biotechnology is applied and used to study the natural environment. Environmental biotechnology could also imply that one try to harness biological process for commercial uses and exploitation. It is "the development, use and regulation of biological systems for remediation of contaminated environment and forenvironment-friendly processes(green manufacturing technologies and sustainable development). Environmental biotechnology can simply be described as "the optimal use of nature, in the form of plants, animals, bacteria, fungi and algae, to producerenewable energy, food and nutrients in a synergistic integrated cycle of profit making processes where the waste of each process becomes the feedstock for another process".

Related Conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands

Animal Biotechnology

It improves the food we eat - meat, milk and eggs. Biotechnology can improve an animals impact on the environment. Animalbiotechnologyis the use of science and engineering to modify living organisms. The goal is to make products, to improve animals and to developmicroorganismsfor specific agricultural uses. It enhances the ability to detect, treat and prevent diseases, include creating transgenic animals (animals with one or more genes introduced by human intervention), using gene knock out technology to make animals with a specific inactivated gene and producing nearly identical animals by somatic cell nuclear transfer (or cloning).

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Agricultural Biotechnology

Biotechnology is being used to address problems in all areas of agricultural production and processing. This includesplant breedingto raise and stabilize yields; to improve resistance to pests, diseases and abiotic stresses such as drought and cold; and to enhance the nutritional content of foods. Modern agricultural biotechnology improves crops in more targeted ways. The best known technique is genetic modification, but the term agricultural biotechnology (or green biotechnology) also covers such techniques asMarker Assisted Breeding, which increases the effectiveness of conventional breeding.

Related Conferences

3rd GlobalFood Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 - 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 - 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Industrial Biotechnology

Industrial biotechnology is the application of biotechnology for industrial purposes, includingindustrial fermentation. The practice of using cells such as micro-organisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles andbiofuels. Industrial Biotechnology offers a premier forum bridging basic research and R&D with later-stage commercialization for sustainable bio based industrial and environmental applications.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Microbial Biotechnology

Microorganisms have been exploited for their specific biochemical and physiological properties from the earliest times for baking, brewing, and food preservation and more recently for producingantibiotics, solvents, amino acids, feed supplements, and chemical feedstuffs. Over time, there has been continuous selection by scientists of special strains ofmicroorganisms, based on their efficiency to perform a desired function. Progress, however, has been slow, often difficult to explain, and hard to repeat. Recent developments inmolecular biologyand genetic engineering could provide novel solutions to long-standing problems. Over the past decade, scientists have developed the techniques to move a gene from one organism to another, based on discoveries of how cells store, duplicate, and transfer genetic information.

Related conferences

3rdGlobal Food Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 - 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 - 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Food Biotechnology

Food processing is a process by which non-palatable and easily perishable raw materials are converted to edible and potable foods and beverages, which have a longer shelf life. Biotechnology helps in improving the edibility, texture, and storage of the food; in preventing the attack of the food, mainly dairy, by the virus like bacteriophage producing antimicrobial effect to destroy the unwanted microorganisms in food that cause toxicity to prevent the formation and degradation of other toxins andanti-nutritionalelements present naturally in food.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress 2016, May 11th-14th 2016, Boston, MA, USA;BIO Investor Forum, October 20-21, 2015, San Francisco, USA;BIO Latin America Conference, October 14-16, 2015, Rio de Janeiro, Brazil;Bio Pharm America 20158th Annual International Partnering Conference, September 15-17, 2015, Boston, MA, USA.

Genetic Engineering and Biotechnology

One kind of biotechnology is gene technology, sometimes called 'genetic engineering' or'genetic modification', where the genetic material of living things is deliberately altered to enhance or remove a particular trait and allow the organism to perform new functions. Genes within a species can be modified, or genes can be moved from one species to another. Genetic engineering has applications inmedicine, research, agriculture and can be used on a wide range of plants, animals and microorganisms. It resulted in a series of medical products. The first two commercially prepared products from recombinant DNA technology were insulin andhuman growth hormone, both of which were cultured in the E. coli bacteria.

The field of molecular biology overlaps with biology and chemistry and in particular, genetics and biochemistry. A key area of molecular biology concerns understanding how various cellular systems interact in terms of the way DNA, RNA and protein synthesis function.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Biotechnology Investor & partnering Forum

The Biotech Investor & Partnering Forum is one of the unique conclave focused on the management and economics of biotechnology which became so important as the field is growing on a fast paced. From agriculture and environment sectors to pharmaceutical and healthcare products and services, the industries and institutions emerging from the biotech revolution Bio-Based Economy represent one of the largest and most steadily growing building blocks of the Global economy. The social impact is overwhelming, generating tremendous progress in quality of life but also difficult issues that needs responsible management based on consumer & bio-industry perspective, solid ethical principles, growing intellectual property rights complexity, long drug development times, Bio security, unusual market structures and highly unpredictable outcomes are just some of the challenges facing biotechnology management today.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 - 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Nano Biotechnology

Nano biotechnology, bio nanotechnology, and Nano biology are terms that refer to the intersection of nanotechnology and biology. Bio nanotechnology and Nano biotechnology serve as blanket terms for various related technologies. The most important objectives that are frequently found inNano biologyinvolve applying Nano tools to relevantmedical/biologicalproblems and refining these applications. Developing new tools, such as peptide Nano sheets, for medical and biological purposes is another primary objective in nanotechnology.

Related Conferences

8thWorldMedicalNanotechnologyCongress& Expo during June 9-11, Dallas, USA; 6thGlobal Experts Meeting and Expo onNanomaterialsand Nanotechnology, April 21-23, 2016 ,Dubai, UAE; 12thNanotechnologyProductsExpo, Nov 10-12, 2016 at Melbourne, Australia; 5thInternationalConference onNanotekand Expo, November 16-18, 2015 at San Antonio, USA; 11thInternational Conference and Expo onNano scienceandMolecular Nanotechnology, September 26-28 2016, London, UK; 18thInternational Conference onNanotechnologyand Biotechnology, February 4 - 5, 2016 in Melbourne, Australia; 16thInternational Conference onNanotechnology, August 22-25, 2016 in Sendai, Japan; International Conference onNano scienceand Nanotechnology, 7-11 Feb 2016 in Canberra, Australia; 18thInternational Conference onNano scienceand Nanotechnology, February 15 - 16, 2016 in Istanbul, Turkey; InternationalNanotechnologyConference& Expo, April 4-6, 2016 in Baltimore, USA.

Animal biotechnology

Animal biotechnology is a branch of biotechnology in which molecular biology techniques are used to genetically engineer animals in order to improve their suitability for pharmaceutical, agricultural or industrial applications. Many animals also help by serving as models of disease. If an animal gets a disease that's similar to humans, we can use that animal to test treatments. Animals are often used to help us understand how new drugs will work and whether or not they'll be safe for humans and effective in treating disease.

Related conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;BIO IPCC Conference, Cary, North Carolina, USA; World Congress onIndustrial Biotechnology, April 17-20, 2016, San Diego, CA; 6thBio based Chemicals: Commercialization & Partnering, November 16-17, 2015, San Francisco, CA, USA; The European Forum forIndustrial Biotechnology and Bio economy, 27-29 October 2015, Brussels, Belgium; 4thBiotechnology World Congress, February 15th-18th, 2016, Dubai, United Arab Emirates; International Conference on Advances inBioprocess Engineering and Technology, 20th to 22nd January 2016,Kolkata, India; GlobalBiotechnology Congress2016, May 11th - 14th 2016, Boston, MA, USA

Biotechnology Applications

Biotechnology has application in four major industrial areas, including health care (medical), crop production and agriculture, nonfood (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses. AppliedMicrobiologyand Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins, applied genetics and molecular biotechnology,genomicsand proteomics, applied microbial and cell physiology, environmental biotechnology, process and products and more.

Related conferences

3rd GlobalFood Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 - 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 - 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Biotechnology Companies & Market Analysis

From agriculture to environmental science, biotechnology plays an important role in improving industry standards, services, and developing new products. Biotechnology involves the spectrum of life science-based research companies working ontransformative technologiesfor a wide range of industries. While agriculture, material science and environmental science are major areas of research, the largest impact is made in the field medicine. As a large player in the research and development of pharmaceuticals, the role ofbiotechnologyin the healthcare field is undeniable. From genetically analysis and manipulation to the formation of new drugs, many biotech firms are transforming into pharmaceutical and biopharmaceutical leaders.

Related conferences

10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok; 11thEuroBiotechnologyCongress, November 7-9, 2016 Alicante, Spain; 11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 13thBiotechnologyCongress, November 28-30, 2016 San Francisco, USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, UAE;BioInternational Convention, June 6-9, 2016 | San Francisco, CA;BiotechJapan, May 11-13, 2016, Tokyo, Japan;NANO BIOEXPO 2016, Jan. 27 - 29, 2016, Tokyo, Japan;ArabLabExpo2016, March 20-23, Dubai; 14thInternational exhibition for laboratory technology,chemical analysis, biotechnology and diagnostics, 12-14 Apr 2016, Moscow, Russia

Biotechnology Capital & Grants

Every new business needs some startup capital, for research, product development and production, permits and licensing and other overhead costs, in addition to what is needed to pay your staff, if you have any. Biotechnology products arise from successfulbiotechcompanies. These companies are built by talented individuals in possession of a scientific breakthrough that is translated into a product or service idea, which is ultimately brought into commercialization. At the heart of this effort is the biotech entrepreneur, who forms the company with a vision they believe will benefit the lives and health of countless individuals. Entrepreneurs start biotechnology companies for various reasons, but creatingrevolutionary productsand tools that impact the lives of potentially millions of people is one of the fundamental reasons why all entrepreneurs start biotechnology companies.

10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok; 11thEuroBiotechnologyCongress, November 7-9, 2016 Alicante, Spain; 11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 13thBiotechnologyCongress, November 28-30, 2016 San Francisco, USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, UAE;BioInternational Convention, June 6-9, 2016 | San Francisco, CA;BiotechJapan, May 11-13, 2016, Tokyo, Japan;NANO BIOEXPO 2016, Jan. 27 - 29, 2016, Tokyo, Japan;ArabLabExpo2016, March 20-23, Dubai; 14thInternational exhibition for laboratory technology,chemical analysis, biotechnology and diagnostics, 12-14 Apr 2016, Moscow, Russia

Scope and Importance

From the simple facts of brewing beer and baking bread has emerged a field now known asBiotechnology. Over the ages the meaning of the word biotechnology has evolved along with our growing technical knowledge. Biotechnology began by using cultured microorganisms to create a variety of food and drinks, despite in early practitioners not even knowing the existence of microbial world. Today, biotechnology is still defined as many application of living organisms or bioprocesses to create new products. Although the underlying idea is unchanged, the use of genetic engineering and other modern scientific techniques has revolutionized the area.

The field of genetics, molecular biology, microbiology, and biochemistry are merging their respective discoveries into the expanding applied field of biotechnology, and advances are occurring at a record pace. Traditional biotechnology goes back thousands of years.

Modern biotechnology applies not only modern genetics but also advances in other sciences. However, there is a third revolution that is just emergingnanotechnology. The development of techniques to visualize and manipulate atoms individually or in small clusters is opening the way to an ever-finer analysis of living systems. Nanoscale techniques are now beginning to play significant roles in many area of biotechnology.

This raises the question of what exactly defines biotechnology. To this there is no real answer. Today, the application of modern genetics or other equivalent modern technology is usually seen as application of modern genetics or equivalent modern technology is usually seen as necessary for a process to count as biotechnology. Thus, the definition of biotechnology has become partly a matter of fashion. Therefore, to classical terms, (modern) biotechnology as resulting in a broaden manner from the merger of classical biotechnology with modern genetics, molecular biology, computer technology, and nanotechnology.

Biotech Congress 2017covers mostly all the allied areas of biotechnology which embraces both the basic sciences, technology and as well as its applications in research, industry and academia. This conference will promote global networking between researchers, institutions, investors, industries, policy makers and students. The conference varied topics in biotechnology like healthcare, environmental, animal, plant, marine, genetic engineering, industrial aspects, food science and bio process.

Through this conference we can get all the relevant information regarding how we can use the advances in the biotechnology for building a better tomorrow by reducing the environmental impacts.

Why Italy?

Rome is the capital of Italy; it is also the countrys largest and most populated comune and fourth-most populous city in the European Union. The Metropolitan City of Rome has a population of 4.3 million residents. The city is located in the central-western portion of the Italian Peninsula, within Lazio (Latium), along the shores of Tiber River. Vatican City is an independent country within the city boundaries of Rome, the only existing example of a country within a city: for this reason Rome has been often defined as capital of two states. Roman mythology dates the founding of Rome at only around 753 BC; the site has been inhabited for much longer, making it one of the oldest continuously occupied cities in Europe. It is referred to as Roma Aeterna (The Eternal City) and Caput Mundi (Capital of the World), two central notions in ancient Roman culture. One of the most important city, Rome, was founded in 753 B.C. by Romulus.

The Apennine Mountains form its backbone and stretch from north to south, with the Tiber River cutting through them in central Italy. Along the northern border, the Alps serve as a natural boundary. The three major bodies of water surrounding Italy are the Adriatic Sea, the Ionian Sea, and the Mediterranean Sea. Ancient Rome is characterized by the seven hills and the Tiber River. The Tiber River flows from the Apennine Mountain, to the Tyrrhenian Sea.

Rome is a sprawling, cosmopolitan city with nearly 3,000 years of globally influential art, architecture and culture on display. In 2005, the city received 19.5 million global visitors, up of 22.1% from 2001. Rome ranked in 2014 as the 14thmos-visited city in the world, 3rd most visited in the European Union, and the most popular tourist attraction in Italy. Its historic center is listed by UNESCO as a World Heritage Site. Monuments and museums such as the Vatican Museums and the Colosseum are among the worlds most visited tourist destinations with both locations receiving millions of tourists a year. Rome hosted the 1960 Summer Olympics and is the seat of United Nations Food and Agriculture Organization (FAO).Rome is the city with the most monuments in the world.

The weather is fantastic in Rome in June, when the average temperature starts off at around 20C and gradually climbs up to 23C-24C as the month progresses.

Congress Highlights:

Biotech Congress 2017 emphasizes on:

Target Audience

CEO, Directors, Vice Presidents, Co-directors, Biotechnologists, Academicians, Biostatistician, Biotechnologists, Clinical Laboratory Scientist, Clinical Metabolomics Data Analyst, Clinicians, Commissioner of Health, Community health workers, CROs, Directors, Environmental Scientists, Food Scientists, Genetic Engineers, Health Economist, Health officials, Healthcare Analyst, Manager of Quality Assurance and Evaluation, Market Access Manager, Marketing Intelligence Associate, Master/PhD students, Medical professionals, Microbiologists, Pharmaceutical Scientists, Physicians, Plant Scientists, Postdoctoral Fellows, Public Health Officer, Public Health Policy Analyst, Research Associates, Research Coordinator, Research Data Analyst, Research Intern, Researchers and faculty, Scientific and Medical Information Assistant, Scientists, Food, Environmental & Plant Scientists, Clinicians, Professors, Health care industrialists, Post Doctorate Fellows, Brand Manufacturers of Consumer Products/ Managers, Pharmaceutical Scientists, Students.

Focusing areas to get more participations & Exhibitions

Why to attend?

Biotech Congress is a remarkable event which brings together a unique and international mix of Biotechnology Researchers, Industrial Biotechnologists, leading Universities and Research Institutions making the congress a perfect platform to share experience, foster collaboration across Industry and Academia, and evaluate emerging technologies across the globe.

Biotechnology in Europe

Only in March a market analysis by British researchers at the University of Cambridge had calculated a market potential of three billion euros for Europe.At present, such Crowd Investing platforms only have a market share of 6.5%, however, the growth forecasts are good. The biotech industry in Europe spends nearly $7.32 billion in R&D and $23.2 billion in revenue. Around 20% of the total marketed medicines, and as much as 50% of all drugs that are in the pipeline, are all healthcare biotech products. The European biotech industry provides employment to approximately 95,000 people. Biotechnology sector makes a substantial contribution to the fundamental EU policy objectives, such as job creation, economic growth, ageing society, public health, environmental protection and sustainable development.

Biotechnology in Italy

The Italian Biotechnology Report by Ernst&Young and Assobiotec, in cooperation with Farmindustria and Italian Trade Promotion Agency, shows that the Italian biotech companies are able to compete outstandingly on the international market, managing to grow despite continuing difficulties in the economic situation. With 394 companies, of which 248 pure biotech, Italy is third in Europe after Germany and the United Kingdom, for the number of pure biotech companies, with a growth trend (+2,5%) in clear contrast with that of the countries that occupy the top ranking positions. With 206 companies operating in the health-care field, the red biotech is the prevalent sector. Looking at the other sectors, 43 green biotech, 34 white biotech, 61 GPET (Genomics, Proteomics and Enabling Technologies) and 50 multi core companies are operating in Italy. 77% of the companies are small (less than 50 employees) and micro (less than 10 employees) enterprises, mainly located in Science and Technology Parks or Incubators. Total revenues in the biotech field amount to 7 billion Euros (+4%). Investments in R&D amount to 1,8 billion Euros (+8%), equal to 25% of total revenues. Italian biotech revenues contributes to 0,7% of GDP and the sector is being considered more and more often as a meta-sector, able to create value and employment and with significant effects on various fields, ranging from textiles to detergents, cosmetics, polymers, paper and animal feed, from paints to food, from treatment of waste to leather treatment, and many others. The future trends of Italian red biotech are connected to a further specialization in oncology, neurology and infectious diseases and to new achievements in the fields of Advanced Therapies and personalized medicine. The analysis of the Italian biotech pipeline shows 319 products for therapeutic use, of which 80 in the preclinical phase, 43 in Phase I, 98 in Phase II and 98 in Phase III. Plant genomics and traceability, preservation and safety of foods, as well as bioremediation and biomasses, are the most promising applications in the green & white fields.

The rest is here:
Biotechnology Conferences | CPD Events| Biotechnology ...

Posted in Biotechnology | Comments Off on Biotechnology Conferences | CPD Events| Biotechnology …

stem cell – Medical News Today

Posted: August 23, 2016 at 8:40 pm

knowledge center home stem cell research all about stem cells what are stem cells?

Stem cells are a class of undifferentiated cells that are able to differentiate into specialized cell types. Commonly, stem cells come from two main sources:

Both types are generally characterized by their potency, or potential to differentiate into different cell types (such as skin, muscle, bone, etc.).

Adult or somatic stem cells exist throughout the body after embryonic development and are found inside of different types of tissue. These stem cells have been found in tissues such as the brain, bone marrow, blood, blood vessels, skeletal muscles, skin, and the liver. They remain in a quiescent or non-dividing state for years until activated by disease or tissue injury.

Adult stem cells can divide or self-renew indefinitely, enabling them to generate a range of cell types from the originating organ or even regenerate the entire original organ. It is generally thought that adult stem cells are limited in their ability to differentiate based on their tissue of origin, but there is some evidence to suggest that they can differentiate to become other cell types.

Embryonic stem cells are derived from a four- or five-day-old human embryo that is in the blastocyst phase of development. The embryos are usually extras that have been created in IVF (in vitro fertilization) clinics where several eggs are fertilized in a test tube, but only one is implanted into a woman.

Sexual reproduction begins when a male's sperm fertilizes a female's ovum (egg) to form a single cell called a zygote. The single zygote cell then begins a series of divisions, forming 2, 4, 8, 16 cells, etc. After four to six days - before implantation in the uterus - this mass of cells is called a blastocyst. The blastocyst consists of an inner cell mass (embryoblast) and an outer cell mass (trophoblast). The outer cell mass becomes part of the placenta, and the inner cell mass is the group of cells that will differentiate to become all the structures of an adult organism. This latter mass is the source of embryonic stem cells - totipotent cells (cells with total potential to develop into any cell in the body).

In a normal pregnancy, the blastocyst stage continues until implantation of the embryo in the uterus, at which point the embryo is referred to as a fetus. This usually occurs by the end of the 10th week of gestation after all major organs of the body have been created.

However, when extracting embryonic stem cells, the blastocyst stage signals when to isolate stem cells by placing the "inner cell mass" of the blastocyst into a culture dish containing a nutrient-rich broth. Lacking the necessary stimulation to differentiate, they begin to divide and replicate while maintaining their ability to become any cell type in the human body. Eventually, these undifferentiated cells can be stimulated to create specialized cells.

Stem cells are either extracted from adult tissue or from a dividing zygote in a culture dish. Once extracted, scientists place the cells in a controlled culture that prohibits them from further specializing or differentiating but usually allows them to divide and replicate. The process of growing large numbers of embryonic stem cells has been easier than growing large numbers of adult stem cells, but progress is being made for both cell types.

Once stem cells have been allowed to divide and propagate in a controlled culture, the collection of healthy, dividing, and undifferentiated cells is called a stem cell line. These stem cell lines are subsequently managed and shared among researchers. Once under control, the stem cells can be stimulated to specialize as directed by a researcher - a process known as directed differentiation. Embryonic stem cells are able to differentiate into more cell types than adult stem cells.

Stem cells are categorized by their potential to differentiate into other types of cells. Embryonic stem cells are the most potent since they must become every type of cell in the body. The full classification includes:

Embryonic stem cells are considered pluripotent instead of totipotent because they do not have the ability to become part of the extra-embryonic membranes or the placenta.

A video on how stem cells work and develop.

Although there is not complete agreement among scientists of how to identify stem cells, most tests are based on making sure that stem cells are undifferentiated and capable of self-renewal. Tests are often conducted in the laboratory to check for these properties.

One way to identify stem cells in a lab, and the standard procedure for testing bone marrow or hematopoietic stem cell (HSC), is by transplanting one cell to save an individual without HSCs. If the stem cell produces new blood and immune cells, it demonstrates its potency.

Clonogenic assays (a laboratory procedure) can also be employed in vitro to test whether single cells can differentiate and self-renew. Researchers may also inspect cells under a microscope to see if they are healthy and undifferentiated or they may examine chromosomes.

To test whether human embryonic stem cells are pluripotent, scientists allow the cells to differentiate spontaneously in cell culture, manipulate the cells so they will differentiate to form specific cell types, or inject the cells into an immunosuppressed mouse to test for the formation of a teratoma (a benign tumor containing a mixture of differentiated cells).

Scientists and researchers are interested in stem cells for several reasons. Although stem cells do not serve any one function, many have the capacity to serve any function after they are instructed to specialize. Every cell in the body, for example, is derived from first few stem cells formed in the early stages of embryological development. Therefore, stem cells extracted from embryos can be induced to become any desired cell type. This property makes stem cells powerful enough to regenerate damaged tissue under the right conditions.

Tissue regeneration is probably the most important possible application of stem cell research. Currently, organs must be donated and transplanted, but the demand for organs far exceeds supply. Stem cells could potentially be used to grow a particular type of tissue or organ if directed to differentiate in a certain way. Stem cells that lie just beneath the skin, for example, have been used to engineer new skin tissue that can be grafted on to burn victims.

A team of researchers from Massachusetts General Hospital reported in PNAS Early Edition (July 2013 issue) that they were able to create blood vessels in laboratory mice using human stem cells.

The scientists extracted vascular precursor cells derived from human-induced pluripotent stem cells from one group of adults with type 1 diabetes as well as from another group of healthy adults. They were then implanted onto the surface of the brains of the mice.

Within two weeks of implanting the stem cells, networks of blood-perfused vessels had been formed - they lasted for 280 days. These new blood vessels were as good as the adjacent natural ones.

The authors explained that using stem cells to repair or regenerate blood vessels could eventually help treat human patients with cardiovascular and vascular diseases.

Additionally, replacement cells and tissues may be used to treat brain disease such as Parkinson's and Alzheimer's by replenishing damaged tissue, bringing back the specialized brain cells that keep unneeded muscles from moving. Embryonic stem cells have recently been directed to differentiate into these types of cells, and so treatments are promising.

Healthy heart cells developed in a laboratory may one day be transplanted into patients with heart disease, repopulating the heart with healthy tissue. Similarly, people with type I diabetes may receive pancreatic cells to replace the insulin-producing cells that have been lost or destroyed by the patient's own immune system. The only current therapy is a pancreatic transplant, and it is unlikely to occur due to a small supply of pancreases available for transplant.

Adult hematopoietic stem cells found in blood and bone marrow have been used for years to treat diseases such as leukemia, sickle cell anemia, and other immunodeficiencies. These cells are capable of producing all blood cell types, such as red blood cells that carry oxygen to white blood cells that fight disease. Difficulties arise in the extraction of these cells through the use of invasive bone marrow transplants. However hematopoietic stem cells have also been found in the umbilical cord and placenta. This has led some scientists to call for an umbilical cord blood bank to make these powerful cells more easily obtainable and to decrease the chances of a body's rejecting therapy.

Another reason why stem cell research is being pursued is to develop new drugs. Scientists could measure a drug's effect on healthy, normal tissue by testing the drug on tissue grown from stem cells rather than testing the drug on human volunteers.

The debates surrounding stem cell research primarily are driven by methods concerning embryonic stem cell research. It was only in 1998 that researchers from the University of Wisconsin-Madison extracted the first human embryonic stem cells that were able to be kept alive in the laboratory. The main critique of this research is that it required the destruction of a human blastocyst. That is, a fertilized egg was not given the chance to develop into a fully-developed human.

The core of this debate - similar to debates about abortion, for example - centers on the question, "When does life begin?" Many assert that life begins at conception, when the egg is fertilized. It is often argued that the embryo deserves the same status as any other full grown human. Therefore, destroying it (removing the blastocyst to extract stem cells) is akin to murder. Others, in contrast, have identified different points in gestational development that mark the beginning of life - after the development of certain organs or after a certain time period.

People also take issue with the creation of chimeras. A chimera is an organism that has both human and animal cells or tissues. Often in stem cell research, human cells are inserted into animals (like mice or rats) and allowed to develop. This creates the opportunity for researchers to see what happens when stem cells are implanted. Many people, however, object to the creation of an organism that is "part human".

The stem cell debate has risen to the highest level of courts in several countries. Production of embryonic stem cell lines is illegal in Austria, Denmark, France, Germany, and Ireland, but permitted in Finland, Greece, the Netherlands, Sweden, and the UK. In the United States, it is not illegal to work with or create embryonic stem cell lines. However, the debate in the US is about funding, and it is in fact illegal for federal funds to be used to research stem cell lines that were created after August 2001.

Medical News Today is a leading resource for the latest headlines on stem cell research. So, check out our stem cell research news section. You can also sign up to our weekly or daily newsletters to ensure that you stay up-to-date with the latest news.

This stem cells information section was written by Peter Crosta for Medical News Today in September 2008 and was last updated on 19 July 2013. The contents may not be re-produced in any way without the permission of Medical News Today.

Disclaimer: This informational section on Medical News Today is regularly reviewed and updated, and provided for general information purposes only. The materials contained within this guide do not constitute medical or pharmaceutical advice, which should be sought from qualified medical and pharmaceutical advisers.

Please note that although you may feel free to cite and quote this article, it may not be re-produced in full without the permission of Medical News Today. For further details, please view our full terms of use

MediLexicon International Ltd

Read the original:
stem cell - Medical News Today

Posted in Cell Therapy | Comments Off on stem cell – Medical News Today

Diabetes – Better Health Channel

Posted: August 23, 2016 at 8:40 pm

Diabetes is a chronic condition in which the levels of glucose (sugar) in the blood are too high. Blood glucose levels are normally regulated by the hormone insulin, which is made by the pancreas. Diabetes occurs when there is a problem with this hormone and how it works in the body.

Around 5.1 per cent of Australians aged 18 years or older have diabetes. The risk of diabetes increases with age, from 2.8 per cent in people aged 35 to 44, to 15.0 per cent in those aged 65 to 74. Aboriginal people have one of the highest rates of type 2 diabetes in the world.

The glucose in the bloodstream needs to move into body tissues so that cells can use it for energy. Excess glucose is also stored in the liver, or converted to fat and stored in other body tissues.

Insulin is a hormone made by the pancreas, which is a gland located just below the stomach. Insulin opens the doors (the glucose channels) that let glucose move from the blood into the body cells. It also allows glucose to be stored in muscle, the liver and other tissues. This is part of a process known as glucose metabolism.

In diabetes, either the pancreas cant make insulin (type 1 diabetes), or the cells dont respond to the insulin properly (insulin resistance) and the pancreas produces inadequate insulin for the bodys increased needs (type 2 diabetes).

If the insulin cannot do its job, the glucose channels cannot open properly. Glucose builds up in the blood instead of getting into cells for energy. High blood glucose levels cause the health problems linked to diabetes, often referred to as complications.

The symptoms of ketoacidosis are:

If a person with type 1 diabetes skips a meal, exercises heavily or takes too much insulin, their blood sugar levels will fall. This can lead to hypoglycaemica. The symptoms include tremor, sweating, dizziness, hunger, headache and change in mood. This can be remedied with a quick boost of sugar (such as jellybeans or glucose tablets), then something more substantial such as fruit. A person with type 1 diabetes should have lollies on hand at all times, just in case.

Type 2 diabetes, the most common form of diabetes, affects 85 to 90 per cent of all people with diabetes. While it usually affects mature adults (over 40), younger people are also now being diagnosed in greater numbers as rates of overweight and obesity increase. Type 2 diabetes used to be called non-insulin dependent diabetes or mature onset diabetes.

Research shows that type 2 diabetes can be prevented or delayed with lifestyle changes. However, there is no cure.

Certain women are at increased risk of developing gestational diabetes. High risk groups include:

Gestational diabetes can be monitored and treated and, if well controlled, these risks are greatly reduced. The baby will not be born with diabetes.

In severe cases, a person may pass up to 30 litres of urine per day. Without treatment, diabetes insipidus can cause dehydration and, eventually, coma due to concentration of salts in the blood, particularly sodium.

The name of this condition is a bit misleading, since diabetes insipidus has nothing to do with diabetes caused by high blood sugar levels, apart from the symptoms of thirst and passing large volumes of urine. Depending on the cause, diabetes insipidus can be treated with medications, vasopressin replacement and a low-salt diet.

Management depends on the type of diabetes, but can include:

Original post:
Diabetes - Better Health Channel

Posted in Diabetes | Comments Off on Diabetes – Better Health Channel

Diabetes Facts & Information | Joslin Diabetes Center

Posted: August 23, 2016 at 8:40 pm

What is diabetes?

Diabetes is a disease in which the body is unable to properly use and store glucose (a form of sugar). Glucose backs up in the bloodstream causing ones blood glucose (sometimes referred to as blood sugar) to rise too high.

There are two major types of diabetes. In type 1 (fomerly called juvenile-onset or insulin-dependent) diabetes, the body completely stops producing any insulin, a hormone that enables the body to use glucose found in foods for energy. People with type 1 diabetes must take daily insulin injections to survive.This form of diabetes usually develops in children or young adults, but can occur at any age. Type 2 (formerly called adult-onset or non insulin-dependent) diabetes results when the body doesnt produce enough insulin and/or is unable to use insulin properly (insulin resistance).This form of diabetes usually occurs in people who are over 40, overweight, and have a family history of diabetes, although today it is increasingly occurring in younger people, particularly adolescents.

People with diabetes frequently experience certain symptoms. These include:

In some cases, there are no symptoms this happens at times with type 2 diabetes. In this case, people can live for months, even years without knowing they have the disease. This form of diabetes comes on so gradually that symptoms may not even be recognized.

Diabetes can occur in anyone. However, people who have close relatives with the disease are somewhat more likely to develop it. Other risk factors include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop diabetes, although the incidence of type 2 diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop full-blown diabetes later in life.

There are certain things that everyone who has diabetes, whether type 1 or type 2, needs to do to be healthy. They need to have a meal (eating) plan. They need to pay attention to how much physical activity they engage in, because physical activity can help the body use insulin better so it can convert glucose into energy for cells.Everyone with type 1 diabetes, and some people with type 2 diabetes, also need to take insulin injections. Some people with type 2 diabetes take pills called "oral agents" which help their bodies produce more insulin and/or use the insulin it is producing better.Some people with type 2 diabetes can manage their disease without medication by appropriate meal planning and adequate physical activity.

Everyone who has diabetes should be seen at least once every six months by a diabetes specialist (an endocrinologist or a diabetologist). He or she should also be seen periodically by other members of a diabetes treatment team, including a diabetes nurse educator, and a dietitian who will help develop a meal plan for the individual. Ideally, one should also see an exercise physiologist for help in developing a physical activity plan, and, perhaps, a social worker, psychologist or other mental health professional for help with the stresses and challenges of living with a chronic disease. Everyone who has diabetes should have regular eye exams (once a year) by an eye doctor expert in diabetes eye care to make sure that any eye problems associated with diabetes are caught early and treated before they become serious.

Also, people with diabetes need to learn how to monitor their blood glucose. Daily testing will help determine how well their meal plan, activity plan, and medication are working to keep blood glucose levels in a normal range.

Your healthcare team will encourage you to follow your meal plan and exercise program, use your medications and monitor your blood glucose regularly to keep your blood glucose in as normal a range as possible as much of the time as possible. Why is this so important? Because poorly managed diabetes can lead to a host of long-term complications among these are heart attacks, strokes, blindness, kidney failure, and blood vessel disease that may require an amputation, nerve damage, and impotence in men.

But happily, a nationwide study completed over a 10-year period showed that if people keep their blood glucose as close to normal as possible, they can reduce their risk of developing some of these complications by 50 percent or more.

Maybe someday. Type 2 diabetes is the most common type of diabetes, yet we still do not understand it completely. Recent research does suggest, however, that there are some things one can do to prevent this form of diabetes.Studies show that lifestyle changes can prevent or delay the onset of type 2 diabetes in those adults who are at high risk of getting the disease. Modest weight loss (5-10% of body weight) and modest physical activity (30 minutes a day) are recommended goals.

Find more information about diabetes in What You Need to Know about Diabetes A Short Guide available from the Joslin Online Store.

Follow this link:
Diabetes Facts & Information | Joslin Diabetes Center

Posted in Diabetes | Comments Off on Diabetes Facts & Information | Joslin Diabetes Center

Diabetes mellitus type 2 – Wikipedia, the free encyclopedia

Posted: August 23, 2016 at 8:40 pm

Diabetes mellitus type2, (also known as type 2 diabetes; ), is a long term metabolic disorder that is characterized by high blood sugar, insulin resistance, and relative lack of insulin.[3] Common symptoms include increased thirst, frequent urination, and unexplained weight loss. Symptoms may also include increased hunger, feeling tired, and sores that do not heal.[4] Often symptoms come on slowly.[3] Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations.[1] The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.[5][6]

Type2 diabetes primarily occurs as a result of obesity and not enough exercise.[1] Some people are more genetically at risk than others.[3] Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to diabetes mellitus type 1 and gestational diabetes.[1] In diabetes mellitus type1 there is an absolute lack of insulin due to breakdown of islet cells in the pancreas.[7] Diagnosis of diabetes is by blood tests such as fasting plasma glucose, oral glucose tolerance test, or A1C.[4]

Type2 diabetes is partly preventable by staying a normal weight, exercising regularly, and eating properly. Treatment involves exercise and dietary changes.[1] If blood sugar levels are not adequately lowered, the medication metformin is typically recommended.[8][9] Many people may eventually also require insulin injections.[10] In those on insulin, routinely check blood sugar levels is advised, however this may not be needed in those taking pills.[11]Bariatric surgery often improves diabetes in those who are obese.[12][13]

Rates of type2 diabetes have increased markedly since 1960 in parallel with obesity.[14] As of 2013 there were approximately 368million people diagnosed with the disease compared to around 30million in 1985.[15][16] Typically it begins in middle or older age,[3] although rates of type 2 diabetes are increasing in young people.[17][18] Type 2 diabetes is associated with a ten-year-shorter life expectancy.[19] Diabetes was one of the first diseases described.[20] The importance of insulin in the disease was determined in the 1920s.[21]

The classic symptoms of diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss.[22] Other symptoms that are commonly present at diagnosis include a history of blurred vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue.[7] Many people, however, have no symptoms during the first few years and are diagnosed on routine testing.[7] People with type2 diabetes mellitus may rarely present with hyperosmolar hyperglycemic state (a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure).[7]

Type 2 diabetes is typically a chronic disease associated with a ten-year-shorter life expectancy.[19] This is partly due to a number of complications with which it is associated, including: two to four times the risk of cardiovascular disease, including ischemic heart disease and stroke; a 20-fold increase in lower limb amputations, and increased rates of hospitalizations.[19] In the developed world, and increasingly elsewhere, type2diabetes is the largest cause of nontraumatic blindness and kidney failure.[23] It has also been associated with an increased risk of cognitive dysfunction and dementia through disease processes such as Alzheimer's disease and vascular dementia.[24] Other complications include acanthosis nigricans, sexual dysfunction, and frequent infections.[22]

The development of type2 diabetes is caused by a combination of lifestyle and genetic factors.[23][25] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[19] A lack of sleep has been linked to type2 diabetes.[26] This is believed to act through its effect on metabolism.[26] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of altered DNA methylation.[27] The intestinal bacteri Prevotella copri and Bacteroides vulgatus have been connected with type2 diabetes.[28]

A number of lifestyle factors are known to be important to the development of type2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, stress, and urbanization.[19][29] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 6080% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders.[7] Those who are not obese often have a high waisthip ratio.[7] Smoking also appears to increase the risk of type 2 diabetes mellitus.[30]

Dietary factors also influence the risk of developing type2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[31][32] The type of fats in the diet are also important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[25] Eating lots of white rice appears to also play a role in increasing risk.[33] A lack of exercise is believed to cause 7% of cases.[34]Persistent organic pollutants may also play a role.[35]

Most cases of diabetes involve many genes, with each being a small contributor to an increased probability of becoming a type2 diabetic.[19] If one identical twin has diabetes, the chance of the other developing diabetes within his lifetime is greater than 90%, while the rate for nonidentical siblings is 2550%.[7] As of 2011, more than 36genes had been found that contribute to the risk of type2 diabetes.[36] All of these genes together still only account for 10% of the total heritable component of the disease.[36] The TCF7L2 allele, for example, increases the risk of developing diabetes by 1.5times and is the greatest risk of the common genetic variants.[7] Most of the genes linked to diabetes are involved in beta cell functions.[7]

There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[7][19] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson-Mendenhall syndrome, among others.[19] Maturity onset diabetes of the young constitute 15% of all cases of diabetes in young people.[37]

There are a number of medications and other health problems that can predispose to diabetes.[38] Some of the medications include: glucocorticoids, thiazides, beta blockers, atypical antipsychotics,[39] and statins.[40] Those who have previously had gestational diabetes are at a higher risk of developing type2 diabetes.[22] Other health problems that are associated include: acromegaly, Cushing's syndrome, hyperthyroidism, pheochromocytoma, and certain cancers such as glucagonomas.[38]Testosterone deficiency is also associated with type2 diabetes.[41][42]

Type2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance.[7] Insulin resistance, which is the inability of cells to respond adequately to normal levels of insulin, occurs primarily within the muscles, liver, and fat tissue.[43] In the liver, insulin normally suppresses glucose release. However, in the setting of insulin resistance, the liver inappropriately releases glucose into the blood.[19] The proportion of insulin resistance versus beta cell dysfunction differs among individuals, with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion.[7]

Other potentially important mechanisms associated with type2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[19] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[7]

The World Health Organization definition of diabetes (both type1 and type2) is for a single raised glucose reading with symptoms, otherwise raised values on two occasions, of either:[46]

A random blood sugar of greater than 11.1mmol/l (200mg/dL) in association with typical symptoms[22] or a glycated hemoglobin (HbA1c) of 48mmol/mol (6.5 DCCT%) is another method of diagnosing diabetes.[19] In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of 48mmol/mol (6.5 DCCT%) should be used to diagnose diabetes.[47] This recommendation was adopted by the American Diabetes Association in 2010.[48] Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1mmol/l (>200mg/dl).[47]

Threshold for diagnosis of diabetes is based on the relationship between results of glucose tolerance tests, fasting glucose or HbA1c and complications such as retinal problems.[19] A fasting or random blood sugar is preferred over the glucose tolerance test, as they are more convenient for people.[19] HbA1c has the advantages that fasting is not required and results are more stable but has the disadvantage that the test is more costly than measurement of blood glucose.[49] It is estimated that 20% of people with diabetes in the United States do not realize that they have the disease.[19]

Diabetes mellitus type2 is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency.[50] This is in contrast to diabetes mellitus type 1 in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes mellitus that is a new onset of high blood sugars associated with pregnancy.[7] Type1 and type2 diabetes can typically be distinguished based on the presenting circumstances.[47] If the diagnosis is in doubt antibody testing may be useful to confirm type1 diabetes and C-peptide levels may be useful to confirm type2 diabetes,[51] with C-peptide levels normal or high in type2 diabetes, but low in type1 diabetes.[52]

No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes.[53][54] Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80mmHg.[55] For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening.[55] There is no evidence that it changes the risk of death in this group of people.[56] They also recommend screening among those who are overweight and between the ages of 40 and 70.[57]

The World Health Organization recommends testing those groups at high risk[53] and in 2014 the USPSTF is considering a similar recommendation.[58] High-risk groups in the United States include: those over 45 years old; those with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome.[22] The American Diabetes Association recommends screening those who have a BMI over 25 (in people of Asian descent screening is recommending for a BMI over 23.[59]

Onset of type2 diabetes can be delayed or prevented through proper nutrition and regular exercise.[60][61] Intensive lifestyle measures may reduce the risk by over half.[23][62] The benefit of exercise occurs regardless of the person's initial weight or subsequent weight loss.[63] High levels of physical activity reduce the risk of diabetes by about 28%.[64] Evidence for the benefit of dietary changes alone, however, is limited,[65] with some evidence for a diet high in green leafy vegetables[66] and some for limiting the intake of sugary drinks.[31] In those with impaired glucose tolerance, diet and exercise either alone or in combination with metformin or acarbose may decrease the risk of developing diabetes.[23][67] Lifestyle interventions are more effective than metformin.[23] While low vitamin D levels are associated with an increased risk of diabetes, correcting the levels by supplementing vitamin D3 does not improve that risk.[68]

Management of type2 diabetes focuses on lifestyle interventions, lowering other cardiovascular risk factors, and maintaining blood glucose levels in the normal range.[23] Self-monitoring of blood glucose for people with newly diagnosed type2 diabetes may be used in combination with education,[69] however the benefit of self monitoring in those not using multi-dose insulin is questionable.[23][70] In those who do not want to measure blood levels, measuring urine levels may be done.[69] Managing other cardiovascular risk factors, such as hypertension, high cholesterol, and microalbuminuria, improves a person's life expectancy.[23] Decreasing the systolic blood pressure to less than 140mmHg is associated with a lower risk of death and better outcomes.[71] Intensive blood pressure management (less than 130/80mmHg) as opposed to standard blood pressure management (less than 140/85100mmHg) results in a slight decrease in stroke risk but no effect on overall risk of death.[72]

Intensive blood sugar lowering (HbA1c<6%) as opposed to standard blood sugar lowering (HbA1c of 77.9%) does not appear to change mortality.[73][74] The goal of treatment is typically an HbA1c of around 7% or a fasting glucose of less than 7.2mmol/L (130mg/dL); however these goals may be changed after professional clinical consultation, taking into account particular risks of hypoglycemia and life expectancy.[75][59] It is recommended that all people with type2 diabetes get regular ophthalmology examination.[7] Treating gum disease in those with diabetes may result in a small improvement in blood sugar levels.[76]

A proper diet and exercise are the foundations of diabetic care,[22] with a greater amount of exercise yielding better results.[77]Aerobic exercise leads to a decrease in HbA1c and improved insulin sensitivity.[77]Resistance training is also useful and the combination of both types of exercise may be most effective.[77] A diabetic diet that promotes weight loss is important.[78] While the best diet type to achieve this is controversial,[78] a low glycemic index diet or low carbohydrate diet has been found to improve blood sugar control.[79][80] Culturally appropriate education may help people with type2 diabetes control their blood sugar levels, for up to six months at least.[81][needs update] If changes in lifestyle in those with mild diabetes has not resulted in improved blood sugars within six weeks, medications should then be considered.[22] There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have DM2.[62]

There are several classes of anti-diabetic medications available. Metformin is generally recommended as a first line treatment as there is some evidence that it decreases mortality;[9][23][82] however, this conclusion is questioned.[83] Metformin should not be used in those with severe kidney or liver problems.[22]

A second oral agent of another class or insulin may be added if metformin is not sufficient after three months.[75] Other classes of medications include: sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 inhibitors, SGLT2 inhibitors, and glucagon-like peptide-1 analog.[75] There is no significant difference between these agents.[75]Rosiglitazone, a thiazolidinedione, has not been found to improve long-term outcomes even though it improves blood sugar levels.[84] Additionally it is associated with increased rates of heart disease and death.[85]Angiotensin-converting enzyme inhibitors (ACEIs) prevent kidney disease and improve outcomes in those with diabetes.[86][87] The similar medications angiotensin receptor blockers (ARBs) do not.[87] A 2016 review recommended treating to a systolic blood pressure of 140 to 150 mmHg.[88]

Injections of insulin may either be added to oral medication or used alone.[23] Most people do not initially need insulin.[7] When it is used, a long-acting formulation is typically added at night, with oral medications being continued.[22][23] Doses are then increased to effect (blood sugar levels being well controlled).[23] When nightly insulin is insufficient, twice daily insulin may achieve better control.[22] The long acting insulins glargine and detemir are equally safe and effective,[89] and do not appear much better than neutral protamine Hagedorn (NPH) insulin, but as they are significantly more expensive, they are not cost effective as of 2010.[90] In those who are pregnant insulin is generally the treatment of choice.[22]

Weight loss surgery in those who are obese is an effective measure to treat diabetes.[91] Many are able to maintain normal blood sugar levels with little or no medications following surgery[92] and long-term mortality is decreased.[93] There however is some short-term mortality risk of less than 1% from the surgery.[94] The body mass index cutoffs for when surgery is appropriate are not yet clear.[93] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[95][96]

no data

7.5

7.515

1522.5

22.530

3037.5

37.545

4552.5

52.560

6067.5

67.575

7582.5

82.5

Globally as of 2010 it was estimated that there were 285million people with type2 diabetes making up about 90% of diabetes cases.[19] This is equivalent to about 6% of the world's adult population.[97] Diabetes is common both in the developed and the developing world.[19] It remains uncommon, however, in the underdeveloped world.[7]

Women seem to be at a greater risk as do certain ethnic groups,[19][98] such as South Asians, Pacific Islanders, Latinos, and Native Americans.[22] This may be due to enhanced sensitivity to a Western lifestyle in certain ethnic groups.[99] Traditionally considered a disease of adults, type2 diabetes is increasingly diagnosed in children in parallel with rising obesity rates.[19] Type2 diabetes is now diagnosed as frequently as type1 diabetes in teenagers in the United States.[7]

Rates of diabetes in 1985 were estimated at 30million, increasing to 135million in 1995 and 217million in 2005.[15] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[15] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7million, China 20.8million, the United States 17.7million, Indonesia 8.4million, and Japan 6.8million.[100] It is recognized as a global epidemic by the World Health Organization.[101]

Diabetes is one of the first diseases described[20] with an Egyptian manuscript from c. 1500 BCE mentioning "too great emptying of the urine."[102] The first described cases are believed to be of type1 diabetes.[102] Indian physicians around the same time identified the disease and classified it as madhumeha or honey urine noting that the urine would attract ants.[102] The term "diabetes" or "to pass through" was first used in 230BCE by the Greek Apollonius Of Memphis.[102] The disease was rare during the time of the Roman empire with Galen commenting that he had only seen two cases during his career.[102]

Type1 and type2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400500AD with type1 associated with youth and type2 with being overweight.[102] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus which is also associated with frequent urination.[102] Effective treatment was not developed until the early part of the 20th century when the Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922.[102] This was followed by the development of the long acting NPH insulin in the 1940s.[102]

View post:
Diabetes mellitus type 2 - Wikipedia, the free encyclopedia

Posted in Diabetes | Comments Off on Diabetes mellitus type 2 – Wikipedia, the free encyclopedia

Amniotic Stem Cell Therapy in Salt Lake City, Park City Utah

Posted: August 22, 2016 at 8:47 am

Current treatments for the painful and debilitating effects of arthritis or joint pain rely on early intervention with synthetic drugs and, in severe cases, surgery.

The human body is composed of more than 200 cell types. Each of these cells in the body is designated to perform a particular function. For e.g. its the pancreatic cells that ensure you pancreas are functioning properly. But there are some other cells in human body, which are different. These cells are called stem cells. These cells not only demonstrate their capacity to generate more stem cells but also help in making different cell types. For over a decade the adult stem cells have been used therapeutically for treating certain cancer as well as rare blood diseases.

Medical practitioners often call stem cell therapy a gift of science. So is the therapy scientifically proven type of regenerative medicine? Yes, it is! There is a considerable amount of excitement about this therapy. Stem cell has the potential to revolutionize the concept of healthcare. There is lot medical practitioners are doing with the stem cells. Diseases such as strokes and diabetes will be soon treated by the therapy. Two other areas where the therapy has worked wonders include bone and blood cancer treatment and injuries to the joint.

Next stem cell product that is making headway into the healthcare industry is for burn and wound healing. Doctors are also planning on injecting the stem cells into to brain of a patient with cerebral palsy to help enhance the function as well as restore the brain tissue. Another major field is where medical practitioners are combining 3D bio printing with stem cell regenerative medicine.

Amniotic stem cell therapy has been acknowledged in the medical history across the world as a biggest discovery in natural healing. The stem cells are first injected into the patients injured area. They then metamorphosize into different cells, when often depends upon the instructions provided by a human body. So they may become a tissue cells, bone cells or other kind. This is what medical practitioners believe is so unique about their growth. Huge number of cells injected into the patients body will help in healing the injuries at an accelerated pace. Best results are seen in neuropathy, knee pain and osteoarthritis.

Fat, cortisone and other medicines offer temporary cure. But stem cells have the capability to restore the regenerative tissue and bone back to their original condition. One of the prime components here is the high uronic acid that is known to lubricate your joints and tendons, easing pain and restoring your mobility.

The injections used in treating patients with joint problems contain naturally developing anti-inflammatory agents that actually stimulates tissue repair. Besides, there have been no cases of patient rejection recorded so far. Over 10,000 injections have been used on patients without any cases of adverse side effects. So if you want to avoid expensive and painful surgery and dependency on prescriptive medication access our Amniotic stem cell therapy and bid adieu to your pain.

*Disclaimer: These statements have not been evaluated by the FDA

See original here:
Amniotic Stem Cell Therapy in Salt Lake City, Park City Utah

Posted in Utah Stem Cells | Comments Off on Amniotic Stem Cell Therapy in Salt Lake City, Park City Utah

Inducible Site-Specific Recombination in Neural Stem …

Posted: August 22, 2016 at 8:47 am

Genesis. Author manuscript; available in PMC 2009 Jul 10.

Published in final edited form as:

PMCID: PMC2708938

NIHMSID: NIHMS128325

Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas

Jian Chen and Chang-Hyuk Kwon contributed equally to this work.

To establish a genetic tool for manipulating the neural stem/progenitor cell (NSC) lineage in a temporally controlled manner, we generated a transgenic mouse line carrying an NSC-specific nestin promoter/enhancer expressing a fusion protein encoding Cre recombinase coupled to modified estrogen receptor ligand-binding domain (ERT2). In the background of the Cre reporter mouse strain Rosa26lacZ, we show that the fusion CreERT2 recombinase is normally silent but can be activated by the estrogen analog tamoxifen both in utero, in infancy, and in adulthood. As assayed by -galactosidase activity in embryonic stages, tamoxifen activates Cre recombinase exclusively in neurogenic cells and their progeny. This property persists in adult mice, but Cre activity can also be detected in granule neurons and Bergmann glia at the anterior of the cerebellum, in piriform cortex, optic nerve, and some peripheral ganglia. No obvious Cre activity was observed outside of the nervous system. Thus, the nestin regulated inducible Cre mouse line provides a powerful tool for studying the physiology and lineage of NSCs.

Keywords: Cre-ERT2, nestin, neural stem cells, tamoxifen, transgenic mouse, recombination

The recognition that the adult brain retains stem cells (NSCs) has fundamentally changed our view of brain plasticity (Lie et al., 2004; Ming and Song, 2005; Zhao et al., 2008). It also raises the hope of cell replacement therapy for neurodegenerative disease (Lie et al., 2004). Adult neurogenesis in the subventricular zone (SVZ) of the lateral ventricles serves to replenish olfactory bulb (OB) interneurons via the rostral migratory stream (RMS). In the dentate gyrus, neurogenesis in the subgranular layer (SGL) generates synaptically active granule neurons and has been implicated in learning, memory and mood disorders in rodents (Li et al., 2008; Ming and Song, 2005; Zhang et al., 2008; Zhao et al., 2008). The development of conditional mutant alleles using the Cre/loxP system has permitted circumvention of early lethality observed when many genes are mutated by traditional knockout, thus offering the opportunity to study gene function with spatial control (Mak, 2007). A further refinement of this technology has been the development of inducible Cre transgenes that permit temporal control of gene recombination and inactivation (Feil et al., 1997; Hayashi and McMahon, 2002). Fusion of the Cre recombinase protein with a modified estrogen receptor ligand-binding domain (ERT2) causes sequestering of the fusion protein in the cytoplasm where it cannot mediate loxP recombination. Application of estrogen or estrogen analogs, however, causes translocation of the Cre-ERT2 fusion protein to the nucleus where recombination can then be achieved.

To achieve temporal ablation of genes in the neural stem cell lineage, we have constructed a tamoxifen-inducible Cre transgene that is regulated by the neurogenic lineage specific promoter/enhancer of the nestin gene. Nestin is an intermediate filament protein specifically expressed in neural stem/progenitor cells in both developing central nervous system and adult brain. The regulatory element driving neural-specific nestin expression has been mapped to the second intron of the nestin gene (Lendahl et al., 1990; Zimmerman et al., 1994). As detailed in our studies, we show that the transgene is silent in the absence of estrogen analog. Upon activation, the expression is robust and recombination is elicited primarily in the principal neurogenic niches. Additional expression is confined to the cerebellum, certain peripheral nerves, and to the piriform cortex, a potentially novel site of neurogenesis.

The Cre-ERT2 cDNA was placed under the control of a 5.6 kb rat nestin 5 regulatory element and followed by the 668 bp of inversed nestin second intron (). Six transgenic lines were obtained after pronuclear injection and four underwent germline transmission. To assay Cre recombinase activity after induction, we crossed the CreERT2 lines with Rosa26-stop-lacZ (Rosa26lacZ) reporter mice. The Rosa26lacZ mice require Cre-mediated recombination for -galactosidase gene activation due to a stop cassette flanked by loxP sites upstream of the lacZ gene. To assess inducibility of the Cre transgene, sunflower oil vehicle (150 l) or the estrogen analog tamoxifen (1 mg) was injected into pregnant mice at embryonic day 12.5 (E12.5) and the embryos were dissected out at E14.5 for whole mount X-gal staining. In a Rosa26lacZ reporter background, exposure of the four transgenic lines to tamoxifen revealed that only two of the lines (Line 8 and Line 73) exhibited recombination activity ( and not shown). Moreover, comparison of Cre activity upon induction was similar although Line 8 was leaky, having minor but detectable Cre activity in the absence of tamoxifen. In contrast, Line 73 (Nes73-CreERT2) showed no signs of Cre activity in the absence of tamoxifen and the blue X-gal staining was found predominantly in embryonic brain and spinal cord where most nestin-positive neural progenitors are located ().

Transgene construct and tamoxifen inducibility. (a) Structure of the Nestin-CreERT2 transgene consisting of the rat nestin promoter/enhancer, cDNA encoding the CreERT2 fusion protein and inversely oriented Nestin second intron. (b) Transgene induction ...

The temporal control of Cre activity allowed us to induce Cre-mediated recombination for the purpose of tracing NSCs and their progeny at various time points. The pattern observed upon embryonic induction closely reflected the course of brain development. Tamoxifen induction at E13.5 labeled almost the entire cortex in the forebrain as well as the entire cerebellum including neurons and glia (). This coincides with the initiation of neural progenitor migration that contributes to different cortical layers in embryonic neural development (Sun et al., 2002). Induction at E17.5, when neurogenesis in the forebrain reaches completion, resulted in labeling of only the outer most layers of the cortex (), which stands in line with the inside-out pattern of cortex layer formation (Sun et al., 2002). Additionally, the thalamus and hindbrain were labeled at this time point. In the neonatal mouse brain, there is persistent mild but widespread lacZ activity, indicative of residual but rare progenitor cells throughout the parenchyma (). The most active neurogenic region at this time is the cerebellum (Herrup and Kuemerle, 1997), which showed intense lacZ staining following induction at E17.5 through P7 (). Mouse cerebellum development is considered to be complete by 3 weeks after birth, however our Nes73-CreERT2;Rosa26lacZ mice showed strong Cre activity in the anterior part of cerebellum when induced 4 and 8 weeks after birth (, and ; and see below). Nonetheless, in the anterior brain, by 4 weeks of age the SVZ and SGL are the most neurogenic regions as assayed by tamoxifen-induced Cre activity ().

Novel Cre activity. Nes73-CreERT2;Rosa26lacZ mice were treated with tamoxifen at 4 weeks of age and analyzed at 8 weeks (ac, eh, left and right panel of i). Abundant -Gal expression was detected in the anterior part of cerebellum ...

Adult NSCs modify their gene expression as they migrate and differentiate. In the SVZ, glial fibrillary acidic protein (GFAP) positive cells are considered to be stem cells (Doetsch et al., 1999). When differentiation starts and neuronal fate of the progenitor cells has been specified, cells begin to express doublecortin (DCX) and migrate into the OB through the RMS to finally become NeuN-positive mature neurons (Doetsch et al., 1999; Ming and Song, 2005). To determine the sites of primary Cre recombinase activity, we examined the SVZ of 4-week-old Nes73-CreERT2;Rosa26lacZ mice 48 h after a short pulse of tamoxifen, since both GFAP-positive neural stem cells and some transient amplifying progenitor cells express nestin. X-gal staining followed by immunohistochemistry (IHC) with GFAP or DCX antibody revealed that the majority of Cre activity resides in GFAP-positive SVZ cells close to the lateral ventricle, with only rare DCX-positive SVZ or RMS cells showing recombination (). This was further confirmed using an estrogen receptor antibody to show double labeling of Cre-ERT2-positive cells with the stem cell marker GFAP, and with S100, a marker of radial glia-derived ependymal cells (Supp. Info. Fig. 1) (Spassky et al., 2005). These studies indicate that the primary site of tamoxifen-activated Cre recombinase is the GFAP-positive, SVZ stem cell population.

Cre activity in adult NSC niches and migration targets. (a) Representative X-gal stained brain sections from mice 48 h after two tamoxifen administrations at P28 (12-h interval). X-gal signal was mainly restricted to SVZ (a1), with little or no signal ...

To measure the efficiency of tamoxifen-induced recombination in our Nes73-CreERT2 mice, we crossed them with the Rosa26YFP reporter line to generate Nes73-CreERT2;Rosa26YFP mice and then induced these mice with tamoxifen at 4 weeks of age. We then harvested brain sections from the induced mice at 6 weeks of age, and performed immunofluorescent double-labeling with GFP and Sox2 antibodies (Supp. Info. Fig. 2). The percentage of GFP/Sox2 double-positive cells divided by the number of Sox2 positive cells in the SVZ was used to determine recombination efficiency. This quantification analysis revealed that 75 4% of Sox2-positive cells in the SVZ have been targeted 2 weeks after a 5-day tamoxifen induction.

To further study the dynamics of stem/progenitor cell migration and differentiation, Nes73-CreERT2;Rosa26lacZ mice were induced at 4 weeks of age and examined by X-gal staining 2 or 4 weeks later ( and ). The dynamics of Cre-active cells in the hippocampus over time was not very dramatic (), however in the SVZ, an increase in the number of Cre active cells in an expanded ventricular area was evident 4 weeks after induction (). These results suggest a precursor-progeny relationship in which, after 2 weeks of induction, a significant number of new progenitor cells have been generated by stem cells and are beginning to disperse from the SVZ. Similarly, in the OB 2 weeks after induction, the X-gal positive cells were confined to a central cluster, whereas 4 weeks postinduction the cells were dispersed throughout the OB (). We interpret this result to indicate that at 2 weeks postinduction, cells are just arriving to the OB via the RMS and are confined to this central area, whereas at 4 weeks postinduction, these labeled cells have now dispersed throughout the OB. A similar, although more restricted, migration was also observed in hippocampus, where -Gal and NeuN double-positive neurons first appear close to the SGL 2 weeks after induction but by 4 weeks postinduction have migrated deeper into the granular layer ().

To explore the identity of the Cre-active cells, immunofluorescent double labeling was used to characterize Nes73-CreERT2;Rosa26lacZ mice 4 weeks after induction (). -Gal immunoreactivity was found in nestin and GFAP-positive neural stem/progenitor cells in the SVZ and SGL (). In the anterior part of the SVZ and SGL, DCX-positive neural progenitors also showed Cre activity (). In addition, a majority of the cells in the RMS express both -Gal and DCX (). Furthermore, NeuN-positive mature neurons that also retained -Gal immunoreactivity could be found in the HP and OB (). A small number of GFAP-positive astrocytes in the OB and the corpus callosum (CC) also expressed the reporter gene -Gal (), indicating the presence of Cre activity in multiple cell types in the NSC lineage. This result is consistent with recent quantitative lineage tracing studies (Lagace et al., 2007).

The significant amount of Cre activity induced in anterior cerebellum of adult mice was unexpected (). shows a representative eight-week-old brain from a mouse that was induced with tamoxifen at 4 weeks of age. The -Gal positive cells were mostly NeuN-positive inner granular layer (IGL) granule cells and Bergmann glia that extend long processes to the surface of the cerebellum (). Consistent with previous reports that Bergmann glia express NSC markers such as nestin and Sox2 (Mignone et al., 2004; Sottile et al., 2006), we found that Cre-active Bergmann glia also expressed the NSC marker nestin (). However, the Cre-ERT2 fusion transgene was also expressed in some Sox2-negative cells in the IGL (, middle panel), suggesting potential aberrant expression of the Nestin-CreERT2 transgene. Mild but reproducible tamoxifen-induced Cre activity was also observed in the piriform cortex (), which has also been reported to be a potential neurogenic region (Pekcec et al., 2006). We next assessed tamoxifen-induced Cre activity in other regions using whole mount X-gal staining, and found that the dorsal root ganglia (DRG) but not the spinal cord showed Cre activity (). Histologic examination revealed that less than half of the DRG neurons undergo Cre-mediated recombination (). In addition, Cre activity was detected in the optic nerve and trigeminal ganglia in mice induced at neonatal (, middle panel) or adult stages (, right panel). Collectively these data indicate that the nestin promoter/enhancer employed to generate this tamoxifen inducible transgene, exhibits remarkable fidelity to the endogenous neural expression with only a few potential sites of discrepancy.

Detailed analysis of traditional Nestin-Cre transgenic lines has revealed Cre activity outside the CNS, for example, in the kidney and in somite-derived tissues (Dubois et al., 2006). To determine whether Cre activity in the Nes73-CreERT2 mice was restricted to the nervous system, Nes73-CreERT2;Rosa26lacZ mice were induced for 5 days starting at P0 and analyzed at 8 weeks of age by whole-mount X-gal staining of internal organs including the heart, lung, liver, thymus, spleen, kidney, pancreas and stomach. With the exception of the esophagus, where neonatal but not adult exposure to tamoxifen induced Cre activity (, Supp. Info. Fig. 3) and stomach, where spontaneous lacZ activity is present in controls (, Supp. Info. Fig. 3) (Kwon et al., 2006), we found no evidence of obvious reporter expression in the absence or presence of tamoxifen (see ).

Cre activity is not observed in internal organs. Nes73-CreERT2;Rosa26lacZ mice were treated with vehicle (Veh) or tamoxifen (Tmx) at P0 for 5 days. Different organs were then dissected out at 8 weeks and subjected to whole mount X-gal staining. Endogenous ...

The rediscovery of neurogenesis in the adult brain has led to reawakened interest in the role of new neurons in the mature brain. The SVZ is a major site of neurogenesis for OB interneurons, although emerging evidence suggests additional roles. In the hippocampus, neurogenesis has been implicated in mood modulation and in learning and memory (Li et al., 2008; Lie et al., 2004; Zhao et al., 2008). On the dark side, stem/progenitor cells in the CNS have been implicated as the source of glioblastoma (Kwon et al., 2008; Sanai et al., 2005; Zhu et al., 2005). Specific ablation or activation of genes implicated in hippocampal function and in glioma can be achieved with our tamoxifen-inducible Cre transgene and we have developed successful models of both SVZ stem/progenitor cell-dependent induction of glioma and hippocampal stem/progenitor cell-dependent antidepressant insensitive mice using this tamoxifen-inducible Cre mouse line (Li et al., 2008; Llaguno et al., submitted).

Still, there is much to be learned about the precise role of neural stem cells in normal brain function and in associated pathologies. For example, in this report we describe novel sites of nestin-Cre recombinase activity. Whether this activity identifies previously undetected sites of neurogenesis or simply ectopic Cre expression remains to be rigorously determined. Of note, a second, independently derived transgenic line, Nes8-CreERT2, shows a similar pattern of inducible expression (data not shown) leading us to favor the conclusion that the expression outside the SVZ and SGZ is not due to position effects at the site of transgene insertion but rather is a reflection of the properties of the transgenic construct. Stem cells have been isolated from neonatal cerebellum and they are reported to be prominin/CD133-positive and Math1-negative (Klein et al., 2005; Lee et al., 2005). We observe Cre activity in the cerebellum from E17.5 through 8 weeks of age. Although diminishing over time, a clear gradient is observed that becomes progressively more anterior. The lacZ positive cells resulting from activation of the Rosa26 reporter possess the characteristic morphology of granule cells. In adult cerebellum, the Bergmann glia retain a morphology reminiscent of radial glia which can generate neurons and adult NSCs during brain development (Gotz and Barde, 2005; Merkle et al., 2004). In addition, Bergmann glia still express stem cell markers such as Sox2 and nestin (Mignone et al., 2004; Sottile et al., 2006). On the other hand, only rarely have cells with BrdU incorporation been observed in adult cerebellum, even after growth factor infusion (Grimaldi and Rossi, 2006). We also found that a number of cells in the anterior cerebellum targeted 2 days after acute tamoxifen administration were positive for NeuN but not GFAP or nestin (Supp. Info. Fig. 4), suggesting that the cre activity in the IGL was more likely due to promoter leakiness (Supp. Info. Fig. 4). Further study is needed to resolve this issue.

A series of similar inducible Nestin-Cre transgenes has recently been reported, although the extent of expression over time and expression outside the nervous system was not described (Supp. Info. Table 1) (Balordi and Fishell, 2007; Burns et al., 2007; Imayoshi et al., 2006; Kuo et al., 2006; Lagace et al., 2007). Eisch and co-workers recently described a tamoxifen-inducible Cre transgenic mouse line with no obvious Cre activity in the cerebellum upon tamoxifen induction (Lagace et al., 2007). The fact that our transgenic construct included only intron 2 of the nestin gene whereas their construct contained nestin exons 13 could account for this discrepancy (Zimmerman et al., 1994). It is possible that our more limited nestin construct might lack cerebellar-specific repressor sequences. Another potentially significant variation is the use of a Rosa26lacZ reporter line versus the Rosa26YFP reporter used by Lagace et al. (2007). Both the sensitivity of the reporter and perhaps the recombinogenic efficiency could in principle differ, leading to these discrepancies. We also observe Cre activity in the adult piriform cortex. This is in accordance with previous reports of BrdU incorporation in this region, leading to the suggestion of additional neurogenic niches (Pekcec et al., 2006).

We examined our mice for leakiness as well as for inducible transgene expression in the peripheral nervous system (PNS) and multiple organs. In contrast to many other Nestin reporter transgenic mice (Day et al., 2007; Dubois et al., 2006; Gleiberman et al., 2005; Li et al., 2003; Ueno et al., 2005), we found no evidence of obvious leakiness or of inducible transgene activation outside the CNS except in the PNS, where inducible expression was found both in the DRG and trigeminal ganglion, and in the esophagus. It is possible that our Nestin-CreERT2 transgene has a more restricted expression pattern or that the tamoxifen induction efficiency is lower in certain tissues. In addition, whole mount X-gal staining of the organs makes it difficult to capture rare Cre-positive cells if they do exist. DRG have been used to culture neurospheres (Li et al., 2007), and it will be of interest to determine whether our transgene is active in these progenitor cells, which would provide supportive evidence for the existence of additional neural stem/progenitor niches. Subsequent detailed lineage tracing of the Cre expressing cells will more clearly address this issue.

A 2.0 kb fragment of CreERT2 and SV40 polyA sequence of the pCre-ERT2 vector (Feil et al., 1997) were amplified using a PCR technique that also generated 5 Not1 and 3 Spe1 sites. After enzymatic digestion, purified fragment was ligated to an 8.9 kb fragment from pNerv (Panchision et al., 2001; Yu et al., 2005) digested with Not1 and Xba1. The resulting pNes-CreERT2 construct contains a 5.6 kb rat nestin 5 genetic element from pNerv, a 2.0 kb CreERT2 and SV40 polyA sequence from pCre-ERT2 and a 668 bp of reversed second intron of rat nestin from pNerv (). After Sal1 digestion, an 8.3 kb band was purified and microinjected into the pronuclei of fertilized eggs from B6D2F1 mice. Among 28 pups born after two rounds of transgenic injection, six contained the transgene, and four of them transmitted to germline. Rosa26lacZ mice were obtained from Jackson Laboratories (Bar Harbor, ME), Rosa26YFP mice were kindly provided by Dr. Jane Johnson. All the mice were maintained in a mixed genetic background of C57BL/6, SV129 and B6/CBA. Nestin73-CreERT2; Rosa26lacZ mice were generated by crossing male Nestin-CreERT2 mice with female Rosa26lacZ mice. Genotyping of the mice was performed as described previously (Kwon et al., 2006). All mouse protocols were approved by the Institutional Animal Care and Research Advisory Committee at the University of Texas Southwestern Medical Center.

Tamoxifen (Sigma-Aldrich, St. Louis, MO) was dissolved in a sunflower oil (Sigma-Aldrich, St. Louis, MO)/ethanol mixture (9:1) at 6.7 mg/ml. For initial screening of the embryonic induction of the transgenic lines, 150-l tamoxifen (1 mg) or vehicle (sunflower oil/ethanol mixture only) was injected intraperitoneally into pregnant mice at embryonic day E12.5 (E12.5 hereafter). Embryos were dissected out 2 days later and subjected to X-gal staining. For in utero induction, 150-l tamoxifen (1 mg) or vehicle was injected intraperitoneally into pregnant mothers at E13.5 or E17.5, and pups were analyzed 1 month after birth. For neonatal induction, 12.5-l tamoxifen (83.5 mg/kg body weight) or vehicle per gram of mouse body weight was injected into lactating mothers (tamoxifen can be delivered to pups through the mothers milk) at P0 or P7, once a day for 5 days and the pups were analyzed 4 weeks after the first induction. For induction in adult mice, 12.5-l tamoxifen (83.5 mg/kg) or vehicle per gram of body weight was injected intraperitoneally into 4- or 8-week-old mice twice a day for five consecutive days and then analyzed 2 or 4 weeks after the first induction.

Mice were dissected and perfused as previously described (Kwon et al., 2006). For whole mount X-gal staining, the embryos or organs were carefully dissected out, washed with phosphate-buffered saline (PBS), and then fixed in 2% (w/v) paraformaldehyde (PFA; in PBS) for 1 h at 4C. Postnatal brains were postfixed in 2% PFA overnight (O/N) at 4C, embedded in 2.5% chicken albumin sagittally or coronally, and then cut into 50-m thick sections by vibratome (Leica, Nussloch, Germany). Every fifth sagittal section or 12th coronal section was chosen to perform X-gal staining and comparable sections were selected for further immunostaining according to the X-gal staining result. X-gal staining of organs and sections was performed as described (Kwon et al., 2006).

Four Nestin73-CreERT2;Rosa26YFP mice were induced at 4 weeks of age as described above and perfused with 2% PFA at 6 weeks of age. The brains were dissected out, postfixed in 4% PFA O/N at 4C, processed and embedded in paraffin blocks. Five-m thick sagittal sections were cut until the lateral ventricle was gone. H&E staining was performed on every fifth slide to determine comparable sections. Every 10th of comparable sections was subjected to GFP (Aves Labs, Tigard, OR) and Sox2 (Chemicon, Temecula, CA) immunofluorescence staining, and three random regions of the frontal SVZ of each section were selected for counting. The efficiency was determined by the percentage of GFP (mean 203)/Sox2 (mean 270) double-positive cells out of the total Sox2-positive cells in SVZ.

Free-floating immunofluorescence staining was performed on 50-m thick sections. Antibodies used for the staining were against -galactosidase (ICN, Aurora, OH), GFAP, nestin (BD Biosciences, Bedford, MA), doublecortin (Santa Cruz Biotechnology, Santa Cruz, CA), NeuN (Chemicon, Temecula, CA), Mash1 (BD Biosciences, Bedford, MA), S100 (Sigma-Aldrich, St. Louis, MO). Alexar-488 or Alexar-555 conjugated goat anti-mouse or anti-rabbit (Molecular Probes, Eugene, OR) and Cy2 or Cy3 donkey anti-goat, anti-rabbit antibodies (Jackson Immunoresearch, West Grove, PA) were used to visualize primary antibody staining. Images were taken on a Zeiss LSM 510 confocal microscope (Carl Zeiss, Jena, Germany). For ER and Sox2 staining, 5-m thick paraffin sections were first stained with estrogen receptor antibody (Lab Vision, Fremont, CA) and visualized by DAB substrate with nickel solution (Vector Laboratories, Burlingame, CA). The slides were then washed with PBS three times, stained with Sox2 antibody (Chemicon, Temecula, CA), and visualized by Vector NovaRED (Vector Laboratories, Burlingame, CA). Images were taken with a Nikon 2000 CCD camera (Nikon, Japan). All images were assembled using Adobe Photoshop CS and Illustrator CS (Adobe Systems Incorporated, San Jose, CA).

We thank Steven Kernie for providing pNerv plasmid, Jane Johnson and Frank Costantini for providing Rosa26YFP mice, Steven McKinnon, Shirley Hall, and Linda McClellan for technical assistance, Renee McKay for reading the manuscript, and Jane Johnson, James Battiste, Jing Zhou, and Yun Li for discussion and suggestions.

Additional Supporting Information may be found in the online version of this article.

View post:
Inducible Site-Specific Recombination in Neural Stem ...

Posted in Texas Stem Cells | Comments Off on Inducible Site-Specific Recombination in Neural Stem …