Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Monthly Archives: October 2022
A Look Into the Next Century After 100 Years of Insulin – Cureus
Posted: October 13, 2022 at 1:46 am
A metabolic condition with numerous etiological factors is diabetes mellitus. High blood sugar and chronic aberrations in the carbohydrate, lipid, and protein metabolism are its defining characteristics. These defects in insulin action or release, or occasionally both, are to be blamed. [1]. They are linked to the emergence of the unique microvascular consequences of retinopathy, including neuropathy, nephropathy, and kidney failure, which can result in blindness [2]. The latter entails the danger of autonomic neural malfunction, foot ulceration, and amputation. A heightened incidence of the macrovascular disease is also linked to diabetes. Thirst, frequent urination, blurred eyesight, and losing weight are typical clinical manifestations, which may result in hyperosmolar nonketotic coma or ketoacidosis. Generally, presentations are minimal or nonexistent, and minor hyperglycemia can last for years while causing tissue damage, even when a person is symptom-free [3].
Diabetes mellitus affects a comparatively substantial portion of the global population. Type II diabetes accounts for 90% of patients, and type I diabetes accounts for 5-10% of the total cases. For patients with type I diabetes mellitus, providing Insulin is crucial; however, type II diabetic patients may administer it in the later stages [4]. Insulin, its delivery, and its future are the subjects of this review. Before prescribing, distributing, or administering insulin, a clinical diagnosis of hyperglycemia should be verified. For all patients having type I diabetes mellitus, insulin is the first-line treatment [5]. The main varieties of insulin therapy are long, ultra-long, intermediate-acting insulin, and rapid or short-acting insulin [6]. The differences in types of insulin are given in Table 1.
In the past, pigs' and cows' pancreas were used to make early formulations of insulin, but it was hard to procure appropriate glycemic regulation due to leftover impurities ahead of the purification method [8]. The fresher, finer animal insulin is more readily handled and may reach a point of glycemic regulation identical to artificial human insulin. Statistically notable variation in hypoglycemia between human and animal insulin also seems comparable. The objective of insulin replacement therapy is always to replicate natural insulin production and avoid causing severe hypoglycemic levels. There are several insulin formulations available, each with a distinct spectrum of activity attainable to accomplish the same: insulin analogs that respond quickly (around three hours), neutral protamine, soluble insulin Hagedorn (NPH) insulin that work for 12 to 18 hours, long-running insulin (12-18 hours), and the Lente insulin(12-24 hours). The skin should be pinched to reduce the risk of muscle injection when giving insulin, and the fold should remain for 5 to 10 seconds after the injection has been given perpendicular to the skin. It would be best if you injected at a 90-degree angle or use a short needle to avoid injecting insulin repeatedly between the skin layers. Thanks to this, you can use a right angle with no issues [9].
Three approaches have been used to genetically engineer insulin. First, efforts were made to directly separate and purify it from the human cadaver pancreas. However, there has never been significant adequacy of human tissue to make this procedure effective in enough quantity. The "semi-synthesis" method chemically transforms swine insulin into the human insulin sequence by substituting just one amino acid variance in the target coding sequence. Human insulin therapy did not generally become accessible before the 1980s until the advent of recombinant genetic modification. The human genetic code must be inserted into the host organism cell to produce insulin, usually baker's yeast or the bacterium Escherichia coli [10].
Many physicians oversee the administration of injectable or infusion therapy to diabetic patients, but there are not many printed recommendations to assist these caregivers. The critical point in the guidelines is the prevention of intramuscular injections, particularly long-acting insulin analogs, since they can lead to a severe hypoglycemic state. Currently, short needles, such as the 4-mm pen and 5-mm needles, are secure and efficient, and cause less pain; hence, they should be among the first options for all classes of people. Lipohypertrophy is one of the standard treatment complications that affect insulin absorption. Therefore, injection or infusion should not be administered in such lesions, and appropriate site changes will be of use. Improper disposal of consumed sharp objects increases the danger of infection with blood-borne microorganisms; however, this risk can be reduced with proper guidance and training, sensible disposal methods, and use of protective equipment [11]. These guidelines were created and reviewed by 183 diabetes specialists from 54 nations in Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) in Rome, Italy, in the year 2015. The new insulin administration guidelines, just published in Mayo Clinic Proceedings 2016, are by far the most recent in a line of recommendations made by international specialists [12].
Diabetic patients administer dosages of insulin on their own with multiple daily injections (MDIs) by using syringes, pens, as well as patches. In this approach, people with diabetes routinely inject themselves with long-lasting dosages, which can be supplemented with added fast-acting insulin dosages to regulate their blood glucose levels. Multiple injections are required throughout the day to maintain normoglycemia; hence, the method of delivery should lessen injection pain to improve patient compliance with therapy [13]. In subcutaneous continuous insulin infusion, a single subcutaneous site is used by insulin pumps to infuse insulin continuously; this site is changed, on average, every three days. The only type of insulin utilized is rapid-acting, and analog insulins have become more widespread than conventional insulin for this application [14]. Compared to MDIs or traditional continuous subcutaneous infusion of insulin, sensor-augmented pump (SAP) therapy, which integrates insulin pump therapy and real-time continuous glycaemic monitoring, has enhanced metabolic control and has lowered the incidence of hypoglycemia in patients having type I diabetes mellitus [15]. There are numerous insulin pen models and brands available in market. Most of them can be divided into reusable and disposable. A prefilled insulin cartridge is used in a disposable pen. The entire pen device is discarded after a single use. A reusable insulin cartridge is located inside the pen. When the insulin-filled cartridge is empty, we can remove it and put a new one. After each insulin injection, a new disposable needle must be used. Reusable insulin pens can be used for several years with proper maintenance [16]. Omnipod DASH insulin management system by Insulet Corporation is a pod therapy that provides a tubeless, wearable insulin pump that is impervious to water and can carry up to 200 units of insulin and provide 72 hours of continuous insulin therapy using adjustable basal rates and bolus quantity. Insulin "bolus" dosages are given during meals or for correcting high blood sugar levels, whereas basal insulin dosages help maintain your blood sugar constant over time [17]. V-Go is an insulin delivery system available only through prescription for patients with type II diabetes who need to take insulin to maintain their blood glucose levels. V-Go is a practical substitute for needles and syringes for administering insulin multiple times a day, just like a conventional insulin pump, but with one significant distinction, i.e., V-Go is a debit card sized patch that attaches to the skin, as opposed to typical pumps, which contain an insulin reservoir (a device of roughly the size of a small cellphone) that is connected to the body by tubing [18].
The newer insulin, known as "smart insulin," reacts to fluctuating blood glucose levels automatically [19]. A larger or smaller quantity of insulin is released, linked to the glycemic levels in circulation. The hormone insulin, whether supplied orally or intravenously, maintains steady blood sugar levels all day, which helps eliminate carb counting, several regular injections, hypoglycemia, and high blood sugar. Todd Zio, anMassachusetts Institute of Technology expert, launched a firm named SmartCells Inc. in 2003, quickly receiving support from Juvenile Diabetes Research Foundation as it attempted to create GRI (glucose-responsive insulin) [20]. This effort was one of the initial intelligent insulin efforts. With more money available recently, more groups are experimenting with ways to distribute intelligent insulin molecules, often made to circulate in the bloodstream longer than conventional insulin [21]. For many years, scientists in North Carolina have been developing an intelligent insulin patch. Researchers said in 2015 that this patching, worn on the body's exterior, utilizes a network of tiny needles for detecting high blood levels of glucose and provides the right amount of insulin. A year later, the patch was improved to include living beta-cells, which can stabilize increasing blood sugar levels for about 10 hours at a stretch. There is no chance that the body's immune system of patients with type I diabetes will reject the beta-cells because they are confined inside the patch on the exterior of the body. Animal trials have been ongoing since about 2016; however, it will take some time before human clinical trials occur [22].
Year 2021 marks the 100th anniversary of insulin's discovery. Insulin has emerged as one of the most acceptable glucose-lowering treatments for diabetes which is given to patients through syringes, pens, and pumps. But, some people feel it is inconvenient to administer insulin injections numerous times in a day. Experts at Scuola Superiore Sant'Anna and physicians at the University of Pisa are included in this movement to create closed-loop insulin delivery systems entirely internal to our body [23]. U.K. researchers have started developing an intelligent insulin pill. The innovative new initiative from the University of Birmingham may permit people with type 1 diabetes to get rid of routine insulin injections. When blood glucose levels rise, these intelligent capsules rest in the body and release insulin. The capsules include particles that adhere to glucose; when blood glucose levels are high, these particles in the capsules melt away, releasing the insulin. Making patients' lives better is the team's first aim, according to Dr. John Fossey, a senior lecturer in Birmingham's School of Chemistry. They are attempting to develop a mechanism to deliver more insulin if blood sugar levels are high [24]. There are two types of continuous glucose monitoring (CGM) systems: professional devices, which patients wear without being able to view glucose values until their doctor download data retrospectively during an office visit, and personal systems, which allow for both real-time and retrospective review of entire profile by patients at home, doctors in health center, or remotely (Figure 1) [25].
Regular human insulin and rapid-acting manufactured insulin are the two kinds of insulin used by the jet injector group [26]. Insulin jet injectors come with either a compressed gas cartridge or a compressed spring to create the desired pressure required to propel insulin through the jet injector into the skin. Compressed springs are used more often, and these gadgets are light, compact, durable, and affordable. The jet is loaded by filling its adapter with insulin, and once it is loaded, the gauge is set according to the calibrated insulin dosage. The device is placed against the skin, usually in the fat-rich part. The stomach, the anterior aspect or side of the thigh, and the upper or outer portion of your buttocks can be suitable locations [27]. Insulin is administered with the help of the InsuJetTM system, which was created for people with diabetes. The device's essential component is its innovative, needle-free nozzle. A very narrow stream of insulin that is easily penetrated via the skin is produced by pressing insulin through the nozzle aperture. The insulin then spreads uniformly in the subcutaneous tissue layer by following the path of least resistance. The use of jet injectors to give various live and inactivated vaccinations for viral and bacterial infections has been documented to be effective and safe [28].
Discovery of Foxo
Identifying a family of insulin-responsive transcriptional proteins called Foxo proteins in nematodes marked a turning point in insulin action research. As claimed by the American Diabetes Association, the capacity of insulin to simultaneously regulate numerous genes through a transcription factor provides the best explanation for its integrated effects on various cellular activities. Although the impact of glucagon and insulin on the expression of genes was well understood, their metabolic outcome was not thoroughly understood until it became clear that diabetes could be reversed by inhibiting Foxo1 [29]. Additionally, Fox's capacity to connect a standard signal (Akt phosphorylation) to various transcriptional targets across multiple cell types is crucial for diversifying insulin signaling in different organs. It has made it possible for the two critical characteristics of diabetes (insulin resistance and pancreatic-cell dysfunction) to be combined under a single Foxo-dependent methodology [30].
Inceptor
Insulin resistance beta-cells of the pancreas lead to overt diabetes in rats; hence, the treatment that sensitizes beta-cells to insulin may shield diabetic patients from beta-cell failure. Experts have identified an inhibitor of the insulin receptor, i.e., INSR and IGF1 receptor (IGF1R) signaling in beta-cells of rats, named insulin inhibitory receptor (inceptor; encoded by the Iir gene). Inceptor has a cysteine-rich region similar to INSR and IGF1R and a mannose 6-phosphate receptor region (found in the IGF2 receptor-IGF2R). Rats deficient in the receptor inceptor present hyperinsulinemia and hypoglycemia and live only for a bit after birth [31]. Hence, we can conclude that Inceptor reduces insulin's effect and acts against its signaling (countereffect) in beta-cells to control glycemic levels [32].
Ultrastable Insulin
Weiss (Indiana University School of Medicine) believes that the development that might occur the quickest relates to ultrastable insulins to eliminate the requirement of cold chain. Now, we must prevent insulin from being revealed, even briefly, to temperatures over 30-35 degrees Celsius. Delivering insulin internationally and globally would be made possible by making it less expensive and its current distribution infrastructure less complicated, which hinders the treatment of the diabetes pandemic in underdeveloped nations [33].
This Might be the End of Insulin
We are getting closer to a cure for diabetes (which was unavailable to date) because of new research. Diabetes treatment was introduced a century ago. Five experts (University of Alberta) aim to eradicate insulin treatments. If this research is successful, insulin might gradually become obsolete with the passage of time. If pushed in the appropriate direction, stem cells can differentiate into any cell. Shapiro and his team are trying to genetically modify a person's biological blood cells to transform them into stem cells and then reprogram them to form insulin-producing islet cells. The islets will then be implanted into the same person's liver, and insulin will be produced there. The "super-liver" will take over the routine duties of the pancreas. There is no requirement for the anti-rejection medications that are given along with conventional transplantation procedures since the donor and the receiver are the same person [34]. But, if the donor and receiver are not the same people, then anti-rejection medications will be needed, which can raise the chance of malignant changes and renal deterioration [35].
Effective glycemic management is crucial due to the high rates of morbidity and death caused by diabetes and the high expenses of treating it. Traditional syringe/vial insulin administration is accompanied by patient and clinician hurdles, including psychological insulin resistance, patients' anxiety about the consequences and harmful effects of insulin, and necessary dietary modifications or restrictions. Despite research showing that many type 2 diabetic patients cannot maintain their blood sugar levels with just oral medication, some doctors are still hesitant to start insulin treatment. Over the past several years, improvements in insulin delivery have been concentrated on enhancing patient convenience and glycemic control. The more recent insulin delivery methods include transdermal patches, inhalable devices, continuous subcutaneous insulin infusion pumps, insulin pens, and insulin injection ports.
See original here:
A Look Into the Next Century After 100 Years of Insulin - Cureus
Posted in North Carolina Stem Cells
Comments Off on A Look Into the Next Century After 100 Years of Insulin – Cureus
Human cells in a rat’s brain could shed light on autism and ADHD – Kansas Public Radio
Posted: October 13, 2022 at 1:45 am
Scientists have demonstrated a new way to study conditions like autism spectrum disorder, ADHD, and schizophrenia.
The approach involves transplanting a cluster of living human brain cells from a dish in the lab to the brain of a newborn rat, a team from Stanford University reports in the journal Nature.
The cluster, known as a brain organoid, then continues to develop in ways that mimic a human brain and may allow scientists to see what goes wrong in a range of neuropsychiatric disorders.
"It's definitely a step forward," says Paola Arlotta, a prominent brain organoid researcher at Harvard University who was not involved in the study. "The ultimate goal of this work is to begin to understand features of complex diseases like schizophrenia, autism spectrum disorder, bipolar disorder."
But the advance is likely to make some people uneasy, says bioethicist Insoo Hyun, director of life sciences at the Museum of Science in Boston and an affiliate of the Harvard Medical School Center for Bioethics.
"There is a tendency for people to assume that when you transfer the biomaterials from one species into another, you transfer the essence of that animal into the other," Hyun says, adding that even the most advanced brain organoids are still very rudimentary versions of a human brain.
The success in transplanting human brain organoids into a living animal appears to remove a major barrier to using them as models of human disease. It also represents the culmination of seven years of work overseen by Dr. Sergiu Pasca, a professor of psychiatry and behavioral sciences at Stanford.
Human brain organoids are made from pluripotent stem cells, which can be coaxed into becoming various types of brain cells. These cells are grown in a rotating container known as a bioreactor, which allows the cells to spontaneously form brain-like spheres about the size of a small pea.
But after a few months, the lab-grown organoids stop developing, says Pasca, whose lab at Stanford devised the transplant technique. Individual neurons in the cluster remain relatively small, he says, and make relatively few connections.
"No matter how long we keep them in a dish, they still do not become as complex as human neurons would be in an actual human brain," Pasca says. That may be one reason organoids have yet to reveal much about the origins of complex neuropsychiatric disorders, he says.
So Pasca's team set out to find an environment for the organoids that would allow them to continue growing and maturing. They found one in the brains of newborn rats.
"We discovered that the [organoid] grows, over the span of a few months, about nine times in volume," Pasca says. "In the end it covers roughly about a third of a rat's hemisphere."
The transplanted cells don't seem to cause problems for the rats, who behave normally as they grow, Pasca says.
"The rat tissue is just pushed aside," he says. "But now you also have a group of human cells that are integrating into the circuitry."
The human cells begin to make connections with rat cells. Meanwhile, the rat's blood vessels begin to supply the human cells with oxygen and nutrients.
Pasca's team placed each organoid in an area of the rat brain that processes sensory information. After a few months, the team did an experiment that suggested the human cells were reacting to whatever the rat was sensing.
"When you stimulate the whiskers of the rat, the majority of human neurons are engaged in an electrical activity that follows that stimulation," Pasca says.
Another experiment suggests the human cells could even influence a rat's behavior.
The team trained rats to associate stimulation of their human cells with a reward a drink of water. Eventually, the rats began to seek water whenever the human cells were stimulated.
In a final experiment, Pasca's team set out to show how transplanted organoids could help identify the brain changes associated with a specific human disorder. They chose Timothy Syndrome, a very rare genetic disorder that affects brain development in ways that can cause symptoms of autism spectrum disorder.
The team compared organoids made from the stem cells of healthy people with organoids made from the stem cells of patients with the syndrome. In the lab, the cell clusters looked the same.
"But once we transplanted and we looked 250 days later, we discovered that while control cells grew dramatically, patient cells failed to do so," Pasca says.
A better model, with ethical concerns
The experiments show that Pasca's team has developed a better model for studying human brain disorders, Arlotta says.
The key seems to be providing the transplanted organoids with sensory information that they don't get growing in a dish, she says, noting that an infant's brain needs this sort of stimulation to develop normally.
"It's the stuff that we get after we are born," she says, "especially when we begin to experience the world and hear sound, see light, and so on."
But as brain organoids become more like actual human brains, scientists will have to consider the ethical and societal implications of this research, Arlotta says.
"We need to be able to watch it, consider it, discuss it and stop it if we think we think one day we are at the point where we shouldn't progress," she says. "I think we are far, far away from that point right now."
Even the most advanced brain organoids have nothing even remotely like the capabilities of a human brain, says Hyun, who posted a video conversation he had with Pasca to coincide with the publication of the new study.
Yet many ethical discussions have focused on the possibility that an organoid could attain human-like consciousness.
"I think that's a mistake," Hyun says. "We don't exactly know what we mean by 'human-like consciousness,' and the nearer issue, the more important issue, is the well-being of the animals used in the research."
He says that wasn't a problem in the Pasca lab's experiments because the organoids didn't seem to harm the animals or change their behavior.
If human brain organoids are grown in larger, more complex animal brains, Hyun says, the cell clusters might develop in ways that cause the animals to suffer.
"What I'm concerned about," he says, "is what's next."
Read the original:
Human cells in a rat's brain could shed light on autism and ADHD - Kansas Public Radio
Posted in Kansas Stem Cells
Comments Off on Human cells in a rat’s brain could shed light on autism and ADHD – Kansas Public Radio
Woman Who Conceived Twins in Rape Rejects Abortion, Shares How Her 21-Year-Old Twins Saved Her Life – The Epoch Times
Posted: October 13, 2022 at 1:44 am
Even today, Nancy Kelly swears she heard the sound of her unborn babys scream during the first abortion procedure she underwent.
The sound would haunt her from that day forward.
It made such an impact on her heart that she chose to not abort the twins she would conceive years later, after she was raped.
Today Kelly, 55, is a pro-life advocate who proudly vocalizes that those very same twins, now 21 and thriving, in fact saved her life.
A product of her being traumatically molested in youth, Kellys subsequent promiscuity in her early 20s led to pregnancy out of wedlock. Her then-partner compelled her to terminate the pregnancy.
What she heard that daythat soul-destroying screamshe believes, validates that an unborn baby isnt just a blob of cells.
I still swear to this day, as they were ripping parts of my babys body from me, that I heard a scream, she told The Epoch Times. I mean, having your limbs ripped from your body one at a time is painful. A baby is more than justyou know, a baby is a life.
Kelly was a registered nurse, then in her early 30s at John Hopkins Hospital in Baltimore, when she experienced severe PTSD as a result of her abortion experience (she recalled being coerced into having a second one a year later); that trauma would torment her until much later in life, when she found faith.
But the haunting memory jarred her enoughto reject the procedure in time to save two other lives.
Then working three jobs, already a mother of five, Kelly learned she was pregnant again, but now with twins. She went for an ultrasound on her lunch break at the hospital, she recalled, where one of the doctors made her a chilling offer.
She said, I know about your situation. She goes, Youre pregnant with twins, and I was like, you know, in a state of disbelief, Kelly said. And she goes, I can help you.
I didnt know what she was talking about at first, and she said, Youre too far along to go and have an abortion, but we can make arrangements for you to come in for a hospital stay for an illness. We can make sure that when you leave, youre no longer pregnant.
And I said, Thats not legal. She goes, Whats not legal? I said, An abortion. She said, I didnt say anything about abortion, and she kind of looked at me. And I said, What? How elseshe goes, she stopped me, and she said, Think about it. Offer is on the table, and she left.
Kelly was in disbelief that anyone could say such a thing, seeing two beating hearts on the ultrasound screen. Her past trauma had made her sober.
Far from being a woman of faith at the time, Kelly was, by her own admission, a pagan who practiced that belief system, including rituals such as jumping over brooms and casting spellsthe whole works.
Looking back, she believes it was the moral compass given to all people, believers and non-believers alike, from God, that compelled her to reject termination flat out. She felt unworthy of being a mother for what she had done.
She shared that some in society hold the ideology orbelief that children conceived because of rape should be abortedor even killed. Even some conservatively-minded individuals consider rape to be the exception, when abortion is okay.
Kelly has been asked if she wished to see the face of her rapist in her childrens faces for the rest of her life, as if that was reason enough to end their lives.
It was not just her moral compass but also her faith that would engender the wisdom to rebut that narrativeshe would realize the unexpected blessings that stem from the hardships we are dealt in life.
That spiritual awakening came after she moved to Alabama to distance herself from the man who raped her.
It wasnt easy moving to a new townwhere she knew no one and had no job to support her large family.
Their community of pro-life Christians kept their heads above water. For two years, they lived in a homeless womens shelter; Kelly had to attend Bible study regularly where there were plenty of angry women also in attendance; many just fulfilled the obligation, trying their utmost to not pay attention.
At one particular study though, Kelly heard one wonderful Christian woman and had a breakthrough.
That night, I just went to my room, and I think I was weeping and wailing. And [I said, God,] if youre real, you got to show me, because at this point I feel like you just left me to just wallow in my sin in my life, and I dont deserve this, she said.
At that point, there was a peace that came over me. That confirmed to me that, you know, that God was real.
That validation didnt make life easier, she said, but it made it easier to deal with life. A similar understanding dawned on her in raising her twin babies, Gracie and Ryan.
In them, Kelly saw how the horror of what abortion had inflicted upon her life, could be so markedly contrasted by the unexpected blessings from choosing lifeGod made that possible.
I daily looked at the faces of my children and knew that there were two that were missing, that there were faces that I would never know, hugs that I would never get, and laughter that I would never have, she said.God blessed me by making me pregnant with those kids.
Were it not for them, Kelly might not have found life worth living. They were her reasons.
If Id given my babies away, I wouldnt have had that blessing to look at and say, These are the reasons. [The] Bible says that God takes everything and uses it for the good of those who love Him and are called by His purpose.
Oddly, life started to improve afterward.
One of the ladies from my church called me and said, I heard you are cleaning houses or something, because I needed somebody to clean my house, Kelly recalled. And I kind of laughed and I was like, No, I havent been cleaning anybodys house. But if you want somebody to help you clean your house, I could use the extra money.
Within a few weeks, the mom had a tidy little cleaning business to support herself and her seven kids.
Today, living in Chelsea, Kelly and her son remain devoted to faith. Ryan even aspires to become a church leader. Meanwhile, her daughter Gracie lives with her eldest sister out-of-state, where she plans to attend college.
Still, the malicious narrative perpetuated by certain segments in society: that rapists babies somehow deserve to die, or somehow do not deserve to live, has been a painful hurdle for the threeone that Gracie has, to some extent, succumbed to in the formation of her own beliefs.
You hear the propaganda enough and youre surrounded by it without any counter, sometimes you take on those beliefs, Kelly said. And despite the fact that she knows my story, and all the sacrifices that I made to make sure that she was here, she is among those who will say, Well, just because youve got to make the choice, doesnt mean everybody else has to.
Of the cruelty emanating from certain domains of society, Kelly believes that Satan is hard at work, turning good evil and evil good, yet she finds solace in telling others how choosing life was a blessing in disguise that redeemed her life.
She is quick to point out how life-affirming communities abound across the nation, offering robust networks of support for women in need. Resources are plentiful: be they accommodations, food and clothing, furniture, and everything in between.
Added Kelly, When I walk into heaven and someone will say, I met Jesus because of you, or, I didnt abort my child because of what I heard, or Im here because my mother made a decision because she heard you talk. Thats where my measure of success is.
Share your stories with us at emg.inspired@epochtimes.com, and continue to get your daily dose of inspiration by signing up for the Inspired newsletter at TheEpochTimes.com/newsletter
Posted in Alabama Stem Cells
Comments Off on Woman Who Conceived Twins in Rape Rejects Abortion, Shares How Her 21-Year-Old Twins Saved Her Life – The Epoch Times
Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 – Yahoo Finance
Posted: October 13, 2022 at 1:43 am
ReportLinker
Abstract: Whats New for 2022?? Global competitiveness and key competitor percentage market shares. Market presence across multiple geographies - Strong/Active/Niche/Trivial.
New York, Oct. 10, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Induced Pluripotent Stem Cell (iPSC) Industry" - https://www.reportlinker.com/p05798831/?utm_source=GNW
Online interactive peer-to-peer collaborative bespoke updates
Access to our digital archives and MarketGlass Research Platform
Complimentary updates for one yearGlobal Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027- In the changed post COVID-19 business landscape, the global market for Induced Pluripotent Stem Cell ((iPSC) estimated at US$1.4 Billion in the year 2020, is projected to reach a revised size of US$0 Thousand by 2027, growing at a CAGR of -100% over the analysis period 2020-2027. Vascular Cells, one of the segments analyzed in the report, is projected to record a -100% CAGR and reach US$0 Thousand by the end of the analysis period. Taking into account the ongoing post pandemic recovery, growth in the Cardiac Cells segment is readjusted to a revised -100% CAGR for the next 7-year period.- The U.S. Market is Estimated at $629.2 Million, While China is Forecast to Grow at -100% CAGR- The Induced Pluripotent Stem Cell ((iPSC) market in the U.S. is estimated at US$629.2 Million in the year 2020. China, the world`s second largest economy, is forecast to reach a projected market size of US$0 Thousand by the year 2027 trailing a CAGR of -100% over the analysis period 2020 to 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at -100% and -100% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately -100% CAGR.Neuronal Cells Segment to Record -100% CAGR- In the global Neuronal Cells segment, USA, Canada, Japan, China and Europe will drive the -100% CAGR estimated for this segment. These regional markets accounting for a combined market size of US$188.9 Million in the year 2020 will reach a projected size of US$0 Thousand by the close of the analysis period. China will remain among the fastest growing in this cluster of regional markets.
Select Competitors (Total 51 Featured)Axol Bioscience Ltd.Cynata Therapeutics LimitedEvotec SEFate Therapeutics, Inc.FUJIFILM Cellular Dynamics, Inc.NcardiaPluricell BiotechREPROCELL USA, Inc.Sumitomo Dainippon Pharma Co., Ltd.Takara Bio, Inc.Thermo Fisher Scientific, Inc.ViaCyte, Inc.
Read the full report: https://www.reportlinker.com/p05798831/?utm_source=GNW
I. METHODOLOGY
II. EXECUTIVE SUMMARY
1. MARKET OVERVIEWInfluencer Market InsightsImpact of Covid-19 and a Looming Global RecessionInduced Pluripotent Stem Cells (iPSCs) Market Gains fromIncreasing Use in Research for COVID-19Studies Employing iPSCs in COVID-19 ResearchStem Cells, Application Areas, and the Different Types: A PreludeApplications of Stem CellsTypes of Stem CellsInduced Pluripotent Stem Cell (iPSC): An IntroductionProduction of iPSCsFirst & Second Generation Mouse iPSCsHuman iPSCsKey Properties of iPSCsTranscription Factors Involved in Generation of iPSCsNoteworthy Research & Application Areas for iPSCsInduced Pluripotent Stem Cell ((iPSC) Market: Growth Prospectsand OutlookDrug Development Application to Witness Considerable GrowthTechnical Breakthroughs, Advances & Clinical Trials to SpurGrowth of iPSC MarketNorth America Dominates Global iPSC MarketCompetitionRecent Market ActivitySelect Innovation/AdvancementInduced Pluripotent Stem Cell (iPSC) - Global Key CompetitorsPercentage Market Share in 2022 (E)Competitive Market Presence - Strong/Active/Niche/Trivial forPlayers Worldwide in 2022 (E)
2. FOCUS ON SELECT PLAYERSAxol Bioscience Ltd. (UK)Cynata Therapeutics Limited (Australia)Evotec SE (Germany)Fate Therapeutics, Inc. (USA)FUJIFILM Cellular Dynamics, Inc. (USA)Ncardia (Belgium)Pluricell Biotech (Brazil)REPROCELL USA, Inc. (USA)Sumitomo Dainippon Pharma Co., Ltd. (Japan)Takara Bio, Inc. (Japan)Thermo Fisher Scientific, Inc. (USA)ViaCyte, Inc. (USA)
3. MARKET TRENDS & DRIVERSEffective Research Programs Hold Key in Roll Out of AdvancediPSC TreatmentsInduced Pluripotent Stem Cells: A Giant Leap in the TherapeuticApplicationsResearch Trends in Induced Pluripotent Stem Cell SpaceWorldwide Publication of hESC and hiPSC Research Papers for thePeriod 2008-2010, 2011-2013 and 2014-2016Number of Original Research Papers on hESC and iPSC PublishedWorldwide (2014-2016)Concerns Related to Embryonic Stem Cells Shift the Focus ontoiPSCsRegenerative Medicine: A Promising Application of iPSCsInduced Pluripotent: A Potential Competitor to hESCs?Global Regenerative Medicine Market Size in US$ Billion for2019, 2021, 2023 and 2025Global Stem Cell & Regenerative Medicine Market by Product(in %) for the Year 2019Global Regenerative Medicines Market by Category: Breakdown(in %) for Biomaterials, Stem Cell Therapies and TissueEngineering for 2019Pluripotent Stem Cells Hold Significance for CardiovascularRegenerative MedicineLeading Causes of Mortality Worldwide: Number of Deaths inMillions & % Share of Deaths by Cause for 2017Leading Causes of Mortality for Low-Income and High-IncomeCountriesGrowing Importance of iPSCs in Personalized Drug DiscoveryPersistent Advancements in Genetics Space and Subsequent Growthin Precision Medicine Augur Well for iPSCs MarketGlobal Precision Medicine Market (In US$ Billion) for the Years2018, 2021 & 2024Increasing Prevalence of Chronic Disorders Supports Growth ofiPSCs MarketWorldwide Cancer Incidence: Number of New Cancer CasesDiagnosed for 2012, 2018 & 2040Number of New Cancer Cases Reported (in Thousands) by CancerType: 2018Fatalities by Heart Conditions: Estimated Percentage Breakdownfor Cardiovascular Disease, Ischemic Heart Disease, Stroke,and OthersRising Diabetes Prevalence Presents Opportunity for iPSCsMarket: Number of Adults (20-79) with Diabetes (in Millions)by Region for 2017 and 2045Aging Demographics Add to the Global Burden of ChronicDiseases, Presenting Opportunities for iPSCs MarketExpanding Elderly Population Worldwide: Breakdown of Number ofPeople Aged 65+ Years in Million by Geographic Region for theYears 2019 and 2030Growth in Number of Genomics Projects Propels Market GrowthGenomic Initiatives in Select CountriesNew Gene-Editing Tools Spur Interest and Investments inGenetics, Driving Lucrative Growth Opportunities for iPSCs:Total VC Funding (In US$ Million) in Genetics for the Years2014, 2015, 2016, 2017 and 2018Launch of Numerous iPSCs-Related Clinical Trials Set to BenefitMarket GrowthNumber of Induced Pluripotent Stem Cells based Studies bySelect Condition: As on Oct 31, 2020iPSCs-based Clinical Trial for Heart DiseasesInduced Pluripotent Stem Cells for Stroke Treatment?Off-the-shelf? Stem Cell Treatment for Cancer Enters ClinicalTrialiPSCs for Hematological DisordersMarket Benefits from Growing Funding for iPSCs-Related R&DInitiativesStem Cell Research Funding in the US (in US$ Million) for theYears 2016 through 2021Human iPSC Banks: A Review of Emerging Opportunities and DrawbacksHuman iPSC Banks Worldwide: An OverviewCell Sources and Reprogramming Methods Used by Select iPSC BanksInnovations, Research Studies & Advancements in iPSCsKey iPSC Research Breakthroughs for Regenerative MedicineResearchers Develop Novel Oncogene-Free and Virus-Free iPSCProduction MethodScientists Study Concerns of Genetic Mutations in iPSCsiPSCs Hold Tremendous Potential in Transforming Research EffortsResearchers Highlight Potential Use of iPSCs for DevelopingNovel Cancer VaccinesScientists Use Machine Learning to Improve Reliability of iPSCSelf-OrganizationSTEMCELL Technologies Unveils mTeSR? PlusChallenges and Risks Related to Pluripotent Stem CellsA Glance at Issues Related to Reprogramming of Adult Cells toiPSCsA Note on Legal, Social and Ethical Considerations with iPSCs
4. GLOBAL MARKET PERSPECTIVETable 1: World Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Geographic Region -USA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld Markets - Independent Analysis of Annual Sales in US$Thousand for Years 2020 through 2025 and % CAGR
Table 2: World 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Geographic Region - Percentage Breakdown ofValue Sales for USA, Canada, Japan, China, Europe, Asia-Pacificand Rest of World Markets for Years 2021 & 2025
Table 3: World Recent Past, Current & Future Analysis forVascular Cells by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 4: World 5-Year Perspective for Vascular Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 5: World Recent Past, Current & Future Analysis forCardiac Cells by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 6: World 5-Year Perspective for Cardiac Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 7: World Recent Past, Current & Future Analysis forNeuronal Cells by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 8: World 5-Year Perspective for Neuronal Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 9: World Recent Past, Current & Future Analysis for LiverCells by Geographic Region - USA, Canada, Japan, China, Europe,Asia-Pacific and Rest of World Markets - Independent Analysisof Annual Sales in US$ Thousand for Years 2020 through 2025 and% CAGR
Table 10: World 5-Year Perspective for Liver Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 11: World Recent Past, Current & Future Analysis forImmune Cells by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 12: World 5-Year Perspective for Immune Cells byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 13: World Recent Past, Current & Future Analysis forOther Cell Types by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 14: World 5-Year Perspective for Other Cell Types byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 15: World Recent Past, Current & Future Analysis forCellular Reprogramming by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 16: World 5-Year Perspective for Cellular Reprogrammingby Geographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 17: World Recent Past, Current & Future Analysis for CellCulture by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 18: World 5-Year Perspective for Cell Culture byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 19: World Recent Past, Current & Future Analysis for CellDifferentiation by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 20: World 5-Year Perspective for Cell Differentiation byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 21: World Recent Past, Current & Future Analysis for CellAnalysis by Geographic Region - USA, Canada, Japan, China,Europe, Asia-Pacific and Rest of World Markets - IndependentAnalysis of Annual Sales in US$ Thousand for Years 2020 through2025 and % CAGR
Table 22: World 5-Year Perspective for Cell Analysis byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 23: World Recent Past, Current & Future Analysis forCellular Engineering by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 24: World 5-Year Perspective for Cellular Engineering byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 25: World Recent Past, Current & Future Analysis forOther Research Methods by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 26: World 5-Year Perspective for Other Research Methodsby Geographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 27: World Recent Past, Current & Future Analysis for DrugDevelopment & Toxicology Testing by Geographic Region - USA,Canada, Japan, China, Europe, Asia-Pacific and Rest of WorldMarkets - Independent Analysis of Annual Sales in US$ Thousandfor Years 2020 through 2025 and % CAGR
Table 28: World 5-Year Perspective for Drug Development &Toxicology Testing by Geographic Region - Percentage Breakdownof Value Sales for USA, Canada, Japan, China, Europe,Asia-Pacific and Rest of World for Years 2021 & 2025
Table 29: World Recent Past, Current & Future Analysis forAcademic Research by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 30: World 5-Year Perspective for Academic Research byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 31: World Recent Past, Current & Future Analysis forRegenerative Medicine by Geographic Region - USA, Canada,Japan, China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 32: World 5-Year Perspective for Regenerative Medicine byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
Table 33: World Recent Past, Current & Future Analysis forOther Applications by Geographic Region - USA, Canada, Japan,China, Europe, Asia-Pacific and Rest of World Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 34: World 5-Year Perspective for Other Applications byGeographic Region - Percentage Breakdown of Value Sales forUSA, Canada, Japan, China, Europe, Asia-Pacific and Rest ofWorld for Years 2021 & 2025
III. MARKET ANALYSIS
UNITED STATESInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Statesfor 2022 (E)Table 35: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 36: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 37: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 38: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 39: USA Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 40: USA 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
CANADATable 41: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 42: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 43: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 44: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 45: Canada Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 46: Canada 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
JAPANInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2022 (E)Table 47: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 48: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 49: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 50: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 51: Japan Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 52: Japan 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
CHINAInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2022 (E)Table 53: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 54: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 55: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 56: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 57: China Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 58: China 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
EUROPEInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2022 (E)Table 59: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Geographic Region -France, Germany, Italy, UK and Rest of Europe Markets -Independent Analysis of Annual Sales in US$ Thousand for Years2020 through 2025 and % CAGR
Table 60: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Geographic Region - Percentage Breakdown ofValue Sales for France, Germany, Italy, UK and Rest of EuropeMarkets for Years 2021 & 2025
Table 61: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 62: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 63: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 64: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 65: Europe Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 66: Europe 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
FRANCEInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2022 (E)Table 67: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 68: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 69: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 70: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 71: France Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 72: France 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
GERMANYInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2022 (E)Table 73: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 74: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Cell Type - Percentage Breakdown of ValueSales for Vascular Cells, Cardiac Cells, Neuronal Cells, LiverCells, Immune Cells and Other Cell Types for the Years 2021 &2025
Table 75: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 76: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Research Method - Percentage Breakdown ofValue Sales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 77: Germany Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 78: Germany 5-Year Perspective for Induced PluripotentStem Cell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
ITALYTable 79: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Cell Type - VascularCells, Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cellsand Other Cell Types - Independent Analysis of Annual Sales inUS$ Thousand for the Years 2020 through 2025 and % CAGR
Table 80: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
Table 81: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Research Method -Cellular Reprogramming, Cell Culture, Cell Differentiation,Cell Analysis, Cellular Engineering and Other Research Methods -Independent Analysis of Annual Sales in US$ Thousand for theYears 2020 through 2025 and % CAGR
Table 82: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Research Method - Percentage Breakdown of ValueSales for Cellular Reprogramming, Cell Culture, CellDifferentiation, Cell Analysis, Cellular Engineering and OtherResearch Methods for the Years 2021 & 2025
Table 83: Italy Recent Past, Current & Future Analysis forInduced Pluripotent Stem Cell (iPSC) by Application - DrugDevelopment & Toxicology Testing, Academic Research,Regenerative Medicine and Other Applications - IndependentAnalysis of Annual Sales in US$ Thousand for the Years 2020through 2025 and % CAGR
Table 84: Italy 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Application - Percentage Breakdown of ValueSales for Drug Development & Toxicology Testing, AcademicResearch, Regenerative Medicine and Other Applications for theYears 2021 & 2025
UNITED KINGDOMInduced Pluripotent Stem Cell (iPSC) Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdomfor 2022 (E)Table 85: UK Recent Past, Current & Future Analysis for InducedPluripotent Stem Cell (iPSC) by Cell Type - Vascular Cells,Cardiac Cells, Neuronal Cells, Liver Cells, Immune Cells andOther Cell Types - Independent Analysis of Annual Sales in US$Thousand for the Years 2020 through 2025 and % CAGR
Table 86: UK 5-Year Perspective for Induced Pluripotent StemCell (iPSC) by Cell Type - Percentage Breakdown of Value Salesfor Vascular Cells, Cardiac Cells, Neuronal Cells, Liver Cells,Immune Cells and Other Cell Types for the Years 2021 & 2025
See the original post here:
Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance
Posted in New York Stem Cells
Comments Off on Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 – Yahoo Finance
Paris-based startup Gourmey uses the Big Idea Ventures accelerator program as a launch pad and goes on to raise the world’s largest cultivated meat…
Posted: October 13, 2022 at 1:43 am
NEW YORK, Oct. 11, 2022 (GLOBE NEWSWIRE) -- French cultivated meat startup Gourmey, who was part of the Big Idea Ventures programs first cohort, has just raised an oversubscribed 48M Series A. This is the worlds largest Series A round for a cultivated meat startup.
Gourmey joined the Big Idea Ventures accelerator program in 2019. The global program facilitated the Paris-based startups move to Singapore, where it worked closely with a dedicated Big Idea Ventures team to lay the foundation for its success.
Andrew D. Ive, Founder and Managing General Partner at Big Idea Ventures, said: Gourmey has gone from strength to strength ever since joining our first cohort. Their agile team, bio-engineering achievements and focus on scalable solutions have allowed them to move faster than others and build the foundation for growth and commercialization. As one of their first investors, we will keep supporting Nicolas and the whole Gourmey team in this next step of their exciting journey.
Gourmey creates sustainable restaurant-grade meats directly from real animal cells, with an initial focus on premium meats and cultivated foie gras as their flagship product. Cultivated meat production consumes significantly less land and water and could cut the climate impact of meat production by up to 92%.
With this financing, the French startups will be opening a 46,000-square-foot commercial production facility and R&D center in Paris, France the largest cultivated meat hub in Europe to fast-track commercialization globally.
About Big Idea Venture (BIV)Big Idea Ventures is a venture firm focused on solving the world's greatest challenges by backing the world's best entrepreneurs, scientists and engineers. To date, BIV has invested in 100+ companies across 22 countries with a focus on protein alternatives and food tech. The investments were made through their New Protein Fund I (NPF I), which is backed by leading food corporations including AAK, Avril, Bel, Bhler, Givaudan, Meiji, Temasek Holdings, and Tyson Foods. New Protein Fund II will be available in Q4 2022 and will build on the successes of NPF I. For more information, visit https://bigideaventures.com
About GourmeyGourmeys mission is to accelerate the worlds transition toward more ethical, sustainable and healthy meat. The company creates sustainable restaurant-grade meats directly from real animal cells, thereby significantly reducing the impact on the environment. Founded in 2019 by CEO Nicolas Morin-Forest (ex-LOral), CTO Dr. Victor Sayous, PhD in molecular biology, and CSO Antoine Davydoff, cell biologist, the company is now a team of 40+ world-class scientists and engineers in the fields of gastronomic and food sciences, bioprocess engineering, and stem cell biology.
Media contact: press@gourmey.com High-resolution images and logo of Gourmey: presskit.gourmey.com Find out more: gourmey.com
Posted in New York Stem Cells
Comments Off on Paris-based startup Gourmey uses the Big Idea Ventures accelerator program as a launch pad and goes on to raise the world’s largest cultivated meat…
Expert Reviews in Molecular Medicine | Cambridge Core
Posted: October 13, 2022 at 1:42 am
Editor-in-Chief: Professor Nicola Curtin Editorial Board Expert Reviews in Molecular Medicine is an online journal featuring authoritative and timely reviews on all aspects of molecular medicine. Review articles cover current and emerging understanding of the molecular mechanisms underpinning human health and disease, and molecular aspects of the approaches used to diagnose and treat them. They may critically evaluate laboratory or in silico studies, studies on patient samples and molecular aspects of clinical diagnostics or therapy. The journal's focus is on translation from molecular science to clinical studies and is not constrained to any single system or disease. We particularly welcome articles spanning more than one of the themes below. Overarching Themes: 1. Molecular mechanisms of disease, including hereditary disorders 2. Molecular aspects of infection, immunity and inflammation 3. Diagnostic, prognostic and predictive molecular biomarkers 4. Molecular mechanisms of all classes of therapeutic agents, including novel and repurposed drugs, biologics, immunotherapeutics 5. Novel molecular technologies 6. Bioinformatics. Within these themes topics may be disease-specific. While we welcome papers covering all traditional specialist disease areas, we are also extremely interested in general cross cutting areas, including life-course diseases (in utero to ageing).
See the article here:
Expert Reviews in Molecular Medicine | Cambridge Core
Posted in Molecular Medicine
Comments Off on Expert Reviews in Molecular Medicine | Cambridge Core
UT Southwestern ranked top health care institution globally for published research by Nature Index – UT Southwestern
Posted: October 13, 2022 at 1:42 am
DALLAS Oct. 12, 2022 For the third year in a row, UTSouthwestern is ranked as the top health care institution globally by Nature Index for publishing high-quality research inall subjects and in the life sciences.
Joan Conaway, Ph.D.
We are incredibly proud of the outstanding work by our scientists and clinical researchers that is reflected in these Nature Index 2022 rankings, said Joan Conaway, Ph.D., Vice Provost and Dean of Basic Research at UTSW. Our discoveries impact multiple fields in basic science and are making a real difference in developing diagnostic and therapeutic applications for patients at our institution and beyond.
The Nature Index compiles affiliation information from research articles published in 82 premier science journals, providing perspective on high-quality scientific discoveries around the globe.
UTSW also ranked second globally this year among health care institutions in chemistry; among the top 10 in biochemistry and cell biology, earth and environmental, and physical sciences; and among the top 25 in neurosciences. Other peer institutions on the global listings include Massachusetts General Hospital, Mount Sinai Health System, Memorial Sloan Kettering Cancer Center, the University of Texas MD Anderson Cancer Center, and Brigham and Womens Hospital System in the United States; along with the Scientific Institute for Research, Hospitalization, and Healthcare in Italy, the West China School of Medicine/West China Hospital of Sichuan University in China, and Renji Hospital in China.
UTSW's ranking is a testament to the consistent strength and impact of our research community. Our scientists are currently leading about 5,800 research projects with nearly $610 million in support from the National Institutes of Health, the state of Texas, foundations, individuals, and corporations, said W. P. Andrew Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean of UTSouthwestern Medical School, who holds the Atticus James Gill, M.D. Chair in Medical Science.
UTSW faculty members have received six Nobel Prizes, and its faculty includes 26 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, 16 members of the American Academy of Arts and Sciences, 14 Howard Hughes Medical Institute Investigators, and three recipients of the prestigious Breakthrough Prize in Life Sciences. The Medical Center houses one of HHMIs 12 principal laboratories nationwide, has four HHMI Faculty Scholars on campus, and has more than 100 early-career researchers, who have come to UTSW through the Medical Centers acclaimed Endowed Scholars Program in Medical Science, subsequently establishing themselves as leaders in their fields.
The UTSW Graduate School of Biomedical Sciences, with more than 1,000 predoctoral and postdoctoral students, educates biomedical students, engineers, clinical researchers, and psychologists. The Graduate School has two Divisions: Basic Science and Clinical Science, which together offer 11 programs leading to the Ph.D. degree Biological Chemistry; Biomedical Engineering; Cancer Biology; Cell and Molecular Biology; Clinical Psychology; Genetics, Development, and Disease; Immunology; Molecular Biophysics; Molecular Microbiology; Neuroscience; and Organic Chemistry. In addition, an M.S. degree and graduate certificate are offered in Clinical Science.
Dr. Conaway holds the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology.
About UTSouthwestern Medical Center
UTSouthwestern, one of the nations premier academic medical centers, integrates pioneering biomedical research with exceptional clinical care and education. The institutions faculty has received six Nobel Prizes, and includes 26 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,900 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UTSouthwestern physicians provide care in more than 80 specialtiesto more than 100,000 hospitalized patients, more than 360,000 emergency room cases, and oversee nearly 4 million outpatient visits a year.
The rest is here:
UT Southwestern ranked top health care institution globally for published research by Nature Index - UT Southwestern
Posted in Molecular Medicine
Comments Off on UT Southwestern ranked top health care institution globally for published research by Nature Index – UT Southwestern
Common Antibiotics Are Losing Their Potency. Researchers Pinpoint Mechanism to Restore It. – NYU Langone Health
Posted: October 13, 2022 at 1:42 am
Ever taste something awful and instinctively spit it out? The deadly bacterium Staphylococcus aureus relies on a similar instinct, using a pumping mechanism to expel antibiotics that could kill it. Its just one clever way that S. aureus has evolved over the years to outsmart more than 60 common antibiotics, intensifying a global crisis of antibiotic-resistant infections that claim some 700,000 lives each year.
Now, researchers at NYU Grossman School of Medicine and NYU Langones Perlmutter Cancer Center have unlocked the mysteries of a bacterial mechanism that science has long sought to solve, and discovered a potential way to disarm this so-called efflux pump. In a paper published in Nature Chemical Biology, the researchers developed a clever strategy to visualize the infinitesimally small parts of the pump and, in the process, engineered an antibody that could jam it. In cell cultures, a protein fragment of the antibody reduced the growth of antibiotic-resistant S. aureus by more than 95 percent at high concentrations when combined with the antibiotic norfloxacin.
Instead of trying to find a new antibiotic, we aimed to make commonly used antibiotics that have been rendered ineffective by bacterial resistance highly effective again, says study author Douglas Brawley, PhD, who completed his doctoral thesis in the laboratories of fellow study authors Nathaniel J. Traaseth, PhD, professor in NYUs Department of Chemistry, and Da-Neng Wang, PhD, professor in the Department of Cell Biology at NYU Grossman School of Medicine.
This work is particularly striking for its collaborative effort, drawing upon experts in structural biology, antibody engineering, microbiology, and peptide chemistry. The discovery of this new way to inhibit resistant strains of S. aureus demonstrates that five labs from four departments can collaborate to accomplish what none could alone, says study author Shohei Koide, PhD, professor in the Department of Biochemistry and Molecular Pharmacology at NYU Grossman School of Medicine.
Posted in Molecular Medicine
Comments Off on Common Antibiotics Are Losing Their Potency. Researchers Pinpoint Mechanism to Restore It. – NYU Langone Health
expert reaction to study looking at integrating human stem cell-derived brain-like tissue in the brains of newborn rats – Science Media Centre
Posted: October 13, 2022 at 1:42 am
October 12, 2022
A study published in Nature follows the maturation and circuit integration of transplanted human cortical organoids.
Dr Andrs Lakatos, Neuroscientist and Neurologist at the University of Cambridge, (Group Leader in Neurobiology, Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge & Wellcome Trust-MRC Cambridge Stem Cell Institute), said:
This work has increased our confidence in that human organoids, complex tissues grown in a laboratory dish from stem cells, have the potential to revolutionise brain research. Although it has been pretty clear that organoids can provide a great advantage for studying how the human brain works and what might go wrong in disease, the extent of their maturity required for such analyses has been questionable. One way to prove that cells in brain organoids are mature enough is to show that they do whatever they are supposed to be doing in the brain, and that is to form the right connections that can control behaviour. Sergiu Pascas team did just that and did it quite convincingly.
The choice of implanting human organoids into rat brains to allow such observations is, of course, not without ethical considerations. There are ongoing discussions on the topic to address the arising concerns and, equally, to avoid obstacles to discovery. Nevertheless, this paper in Nature is a significant leap and a great example of why such research should be continued.
Prof Tara Spires-Jones, UK Dementia Research Institute at The University of Edinburgh & Deputy Director, Centre for Discovery Brain Sciences, University of Edinburgh, said:
This paper from Pasca and team from Stanford University shows that clumps of human brain cells derived from stem cells (called organoids) implanted into newborn rat brains can mature in the rat brain and integrate into the rats neuronal circuits. Implanting the organoids in rat brain provided a blood supply and brain environment that let the human neurons mature better than they do in culture dishes. These neurons also made connections with other neurons in the rat brain and when activated, they could influence the behaviour of the rats. Researchers implanted organoids from stem cells of people with Timothy syndrome, a rare genetic disease that causes autism spectrum disorders as well as heart defects. The neurons from Timothy syndrome organoids had abnormal development, illustrating that this new type of experiment may be useful for finding treatments for human neurodevelopmental disorders. However, these human grafts did not replicate all of the important features of human developing brain and some of the experiments analysed only a handful of neurons from 3-4 rats per group so more work will need to be done to be sure this system is a robust model for brain development and neurodevelopmental disorders.
This research has the potential to advance what we know about human brain development and neurodevelopmental disorders, but there is more work to be done to be sure this type of graft is a robust method. I also agree with the experts Drs Camp and Treutlein who wrote a commentary accompanying the paper who point out that these experiments pose several ethical questions that should be considered moving forward including whether these rats will have more human-like thinking and consciousness due to the implants.
Comments collected by our friends at the German SMC:
Prof Dr Jrgen Knoblich, Scientific Director and Senior Scientist at the Institute for Molecular Biotechnology, Vienna, Austria, said:
The work is characterised by its methodological progress, as the organoids were implanted in rat brains. These are larger compared to mouse brains and one can transplant larger amounts of tissue. In addition, the organoids were transplanted very early, that is, when the rats were only a few days old. The advantage here is thatthe brain is still developing, and the transplant can therefore co-evolve.
In addition, the researchers show that the human neurons, when activated, interfere with the rats behaviour. The human cells functionally connect to the rat brain. This is the reason why the work is so outstanding.
The human brain is home to some of the most horrific diseases and so far, we dont understand it very well. A lot of brain experiments are done on animals like mice or rats, but really, they should be done on primates (as primate brains are more similar to human brains; editors note). This is very controversial. Organoid models from human stem cells are promising and resolve this conflict.
Using brain organoids, you can gain some insights because the neurons form connections. The problem with the organoids so far, though, is that they dont have blood vessels. When they are transplanted, they become vascularised, that is, they have blood vessels growing through them. The transplanted organoids now make it possible to study network properties of human nerve cells in a different way. This could have an impact on research into neurological diseases such as epilepsy or autism.
Until now, experiments on the brain have only been carried out on animals, but their brain functions are often different from those of humans. Animal experiments are necessary, but they only provide part of a mosaic. For the complete picture, you have to study humans. For that, organoids from human stem cells are needed because they are less ethically controversial than animal experiments.
Dr Agnieszka Rybak-Wolf, Head of the Organoids Technology Platform, Max Delbrck Center for Molecular Medicine (MDC), Berlin, said:
The authors transplanted human cortical organoids into newborn rat brains in order to stimulate neuronal maturation and to promote the integration of human neurons into rat sensory and motivation-related circuits. Such cortical neurons showed more complex anatomical and functional properties, extended axons through the rat brain and what is important and novel transplanted organoids receive sensory-related inputs and their optogenetic activation (activated by light; editors note) could drive rat behaviour during reward-seeking.
Human-rodent chimeras (an organism consisting of cells of different genetic origins; editors note) although raising some ethical debate about mixing human and animal brain tissue are well accepted experiments to demonstrate functionality of human in vitro brain cells within in vivo circuits. The authors idea is not completely novel. There have been already several studies published in the last years using a similar approach. Just to mention a few examples: Wang et al. demonstrated that transplanted cerebral organoids improves neurological motor function after brain injury [1]. A study by Bao et al. suggested that cerebral organoid transplanted in lesion sites can serve as potential therapeutic approach for traumatic brain injury by reversing deficits in spatial learning and memory [2]. Kitahara et al. optimized the time point and the conditions for organoids transplantation into mouse and monkey brain [3] and Daviaud et al. grafted cerebral organoids into mouse brains to achieve organoids vascularization [4]. The ethical concerns of such models have been also previously discussed [5] [6].
Although brain organoids form a relatively complex brain tissue like structure, they still lack brain immune cells, vasculature and the circuit connectivity found in vivo. Therefore, they often fail when it comes to model complex human brain diseases related to circuits formation such as autism or schizophrenia. Engrafting of human brain organoids into highly vascularized immunodeficient rodents brains (the immune system of the animals used in the study is not fully developed as they lack the thymus and thus functional T cells, thus preventing rejection of the transplanted organoids; editors note) gives a unique opportunity to incorporate missing components into the model and to fully form neural circuit in human in vitro brain models. The area of chimeric research models is quickly evolving, motivated by the potential application of such models to for example grow human compatible organs for transplantation. However, when it comes to the brain, it always raises several ethical concerns, such as: Can we create human-like cognition in animals by such transplantations?
As we cannot conduct research on human adult or fetal brains for obvious reasons, human brain organoids are a major advance in the study of the human brain. Developing physiological conditions that reflect the real human brain is one of the main aims in the field. Therefore, we need to carefully find a compromise between the gains and the risks when it comes to such chimeric models.
[1] Wang SN et al. (2020):Cerebral Organoids Repair Ischemic Stroke Brain Injury.Translational Stroke Research. DOI: 10.1007/s12975-019-00773-0.
[2] Bao Z et al. (2021):Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice.Oxidative Medicine and Cellular Longevity. DOI: 10.1155/2021/6338722.
[3] Kitahara T et al. (2020):Axonal extensions along corticospinal tracts from transplanted human cerebral organoids.Stem Cell Reports. DOI: 10.1016/j.stemcr.2020.06.016.
[4] Daviaud N et al. (2018):Vascularization and Engraftment of Transplanted Human Cerebral Organoids in Mouse Cortex.ENeuro. DOI: 10.1523/ENEURO.0219-18.2018.
[5] Powell K (03.08.2022):Hybrid brains: the ethics of transplanting human neurons into animals.Nature. DOI: 10.1038/d41586-022-02073-4.
[6] Chen HI et al. (2019):Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras.Cell Stem Cell. DOI: 10.1016/j.stem.2019.09.002.
Maturation and circuit integration of transplanted human cortical organoids by Omer Revah et al. will be published in Nature at 16:00 UK time on Wednesday 12 October 2022, which is also when the embargo will lift.
DOI: 10.1038/s41586-022-05277-w
Declared interests
Dr Andrs Lakatos: Ihave no conflicts with this study.
Prof Tara Spires-Jones: I have no conflicts with this study.
Prof Dr. Jrgen Knoblich: I have no conflicts of interest that have a direct impact on the issues discussed in the paper.
For all other experts, no reply to our request for DOIs was received.
Posted in Molecular Medicine
Comments Off on expert reaction to study looking at integrating human stem cell-derived brain-like tissue in the brains of newborn rats – Science Media Centre
HTG Provides Update on Third Quarter Progress Toward Its Transcriptome-Informed Approach to Drug Discovery – Yahoo Finance
Posted: October 13, 2022 at 1:42 am
HTG Molecular Diagnostics, Inc.
TUCSON, Ariz., Oct. 12, 2022 (GLOBE NEWSWIRE) -- HTG Molecular Diagnostics, Inc. (Nasdaq: HTGM) (HTG), a life science company advancing precision medicine through its innovative transcriptome-wide profiling technology, completed its planned milestones for the third quarter of 2022, further advancing its transcriptome-informed approach to drug design and discovery utilizing the companys proprietary HTG EdgeSeq technology.
Significant milestone progress made during the period included the advancement of machine-learning components of the transcriptome-informed drug discovery and design platform and the continued generation of internal, proprietary data supporting the training set. Capital investments made during the period established internal cell culture capabilities allowing for flexibility and expansion of HTGs cell-based test system models. For the companys first therapeutic target, a series of chemical libraries were designed, with the most advanced library for this target having entered preclinical characterization, along with a series of data generated including measures of early efficacy in two different disease states.
We have made significant strides during the third quarter, further advancing our transcriptome-informed drug discovery platform and solidifying our first planned targets utilizing HTGs novel approach, said Dr. Stephen Barat, Senior Vice President of Therapeutics at HTG. We have made steady progress on this very important initiative throughout 2022 and expect to continue to advance and refine our most promising potential molecular candidates for measures of efficacy, safety and pharmaceutical considerations. We are optimistic that this continued advancement will result in the selection by the end of the year of at least one candidate molecule to enter preclinical development through potential licensing or partnering opportunities.
A cornerstone of the Therapeutics business, the HTG Transcriptome Panel (HTP) was launched with commercial availability in August 2021. The HTP was designed to enable the assessment of approximately 20,000 mRNA targets using HTGs EdgeSeq technology, a targeted RNA sequencing technology that couples a nuclease protection assay with next-generation sequencing for rapid and accurate RNA quantification. HTG EdgeSeqs many advantages that make it attractive technology for applying transcriptomic profiling to drug discovery include a 96-well plate format, low sample input requirement, no RNA extraction, and rapid assay and analysis time. Further information regarding HTGs transcriptome-informed drug design and discovery platform is included in the White Papers published by HTG earlier in the year, which can be found here.
Story continues
About HTG:
HTG is accelerating precision medicine from diagnosis to treatment by harnessing the power of transcriptome-wide profiling to drive translational research, novel therapeutics and clinical diagnostics across a variety of disease areas.
Building on more than a decade of pioneering innovation and partnerships with biopharma leaders and major academic institutes, HTGs proprietary RNA platform technologies are designed to make the development of life science tools and diagnostics more effective and efficient and to unlock a differentiated and disruptive approach to transformative drug discovery. For more information visit http://www.htgmolecular.com.
Forward-Looking Statements:
Statements contained in this press release regarding matters that are not historical facts are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding HTGs expectations that its continued advance of its molecule candidates will result in the selection by the end of the year of at least one molecular candidate to enter preclinical development through potential licensing or partnering opportunities; the design, capabilities and benefits of the HTP and its potential impact on the drug discovery process, future business development, licensing and partnering opportunities, and other potential benefits of HTGs RNA platform and technologies. Words such as can, designed to, goal, intends to, believe, optimistic, will, potential and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements necessarily contain these identifying words. These forward-looking statements are based upon managements current expectations, are subject to known and unknown risks, and involve assumptions that may never materialize or may prove to be incorrect. Actual results and the timing of events could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, including, without limitation, risks associated with drug discovery and development; the risk that HTP and our RNA platform and medicinal chemistry technologies may not provide the benefits that we expect; risks associated with our ability to develop and commercialize our products and our Therapeutics business, including by entering into licensing or partnering agreements for any candidates we develop; the risk that our products and services may not be adopted by biopharmaceutical companies or other customers as anticipated, or at all; our ability to manufacture our products to meet demand; competition in our industry; additional capital and credit availability; our ability to attract and retain qualified personnel; risks associated with the impact of the COVID-19 pandemic on us and our customers; and product liability claims. These and other factors are described in greater detail in our filings with theSecurities and Exchange Commission (SEC), including under the Risk Factors heading of our Quarterly Report on Form 10-Q for the quarter endedJune 30, 2022, as filed with theSEConAugust 12, 2022. Allforward-looking statements contained in this press release speak only as of the date on which they were made, and we undertake no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.
Investor Contact:
Ashley RobinsonLifeSci AdvisorsPhone: (617) 430-7577Email:arr@lifesciadvisors.com
Posted in Molecular Medicine
Comments Off on HTG Provides Update on Third Quarter Progress Toward Its Transcriptome-Informed Approach to Drug Discovery – Yahoo Finance