Page 110«..1020..109110111112..120130..»

Category Archives: Cell Medicine

Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy …

Posted: March 14, 2014 at 6:44 am

Philadelphia, PA (PRWEB) March 13, 2014

Bioquark, Inc., (http://www.bioquark.com) a company focused on the development of combinatorial biologics for regeneration and disease reversion in human organs and tissues, today announces the appointment of Dr. Luis Martinez, MD, MPH, as VP of Global Operations.

We are honored to have someone with Dr. Martinezs experience join us as we execute on a globalized strategy in regenerative medicine, said Ira S. Pastor, CEO, Bioquark Inc. His broad clinical experience in applied regenerative medicine and cellular therapies make him a very valuable addition to the Bioquark team.

Dr. Martinez is a regenerative medicine and cell therapy specialist with over 10 years of experience in the clinical setting. He is currently the President of Elite Regenerative Medicine Group, a premier treatment and research center specializing in cell therapy applications for therapeutic, regenerative and preventive purposes. Dr. Martinez obtained his medical degree, as well as his Master of Public Health, at the Ponce School of Medicine and Health Sciences, and completed his residency at the prestigious University of Pennsylvania. He also completed a fellowship in biosecurity with the UPMC Center for Health Security. He is currently a clinical instructor at the Ponce School of Medicine and Health Sciences and is a board certified physician. Dr. Martinez also serves as vice-president of the XanoGene Anti-Aging Clinic and is President at Xyrion Medical, a biomedical consulting firm. He is a current consultant for multiple biomedical and pharmaceutical companies and conducts clinical research for various clients in the industry. Dr. Martinez is also a renowned international speaker, speaking at multiple venues for professional and academic organizations and he offers training to physicians in multiple applications of regenerative medicine, including Platelet Rich Plasma (PRP) therapy, adipose and bone marrow stem cell derived harvesting, preparation and therapeutic administration, as well as cytokine, growth factor and peptide therapies.

I am very excited about the biologic candidates being developed at Bioquark Inc. and their very novel approach to human regeneration and disease reversion, which has broad clinical applicability towards a range of degenerative disorders," said Dr. Martinez. "I'm pleased to be joining the team and am looking forward to playing a more active role in this truly transformational platform."

About Bioquark, Inc.

Bioquark Inc. is focused on the development of biologic based products that have the ability to alter the regulatory state of human tissues and organs, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

Read the rest here:
Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy ...

Posted in Cell Medicine | Comments Off on Bioquark Inc. Announces the Appointment of Dr. Luis Martinez, MD, MPH, Regenerative Medicine and Cell Therapy …

Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Posted: March 12, 2014 at 12:45 pm

Contact Information

Available for logged-in reporters only

Newswise COLUMBUS, Ohio -- Imagine a world where malfunctioning organs are replaced by new ones made from your own tissues, where infected wounds are cured with a signal from your smartphone, where doctors find the perfect medicine for whatever ails you simply by studying your stem cells.

Its a world thats inching closer to reality because of the work of some of the nations top scientists, many of whom will gather March 13-15 at The Ohio State University for the 7th Annual Translational to Clinical (T2C) Regenerative Medicine Conference to discuss their recent successes and challenges in coaxing the body to heal itself in extraordinary ways.

Regenerative medicine will change the way you and I experience sickness, health and healthcare, said Chandan Sen, director of the Center for Regenerative Medicine and Cell Based Therapies at Ohio States Wexner Medical Center. Because the field is so new, we as researchers are also changing the way we work to be synergistic not competitive, so patients are able to access the benefits more quickly.

And the benefits are desperately needed, says keynote speaker Dr. Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine at Wake Forest Baptist Medical Center.

From chronic diseases such as kidney failure that costs billions of dollars each year to the medical needs of our aging population and the significant injuries sustained by military troops in Afghanistan, developing new treatment paradigms is essential, said Atala, who was selected to lead the $75 million Armed Forces Institute of Regenerative Medicine (AFIRM), a consortium of 30 academic and industry partners in applying regenerative medicine techniques to battlefield injuries.

In theory, every tissue in the body has the ability to regenerate and heal itself. Its good to come to this meeting and exchange ideas that will enable us to harness that remarkable ability.

Other speakers include Elaine Fuchs, Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller University in New York, who has advanced multiple areas of stem cell research through her work in skin cells and genetics; and Dr. Michael Longaker, director of the Hagey Laboratory for Stem Cell Biology for Pediatric Regenerative Medicine at Stanford University. Longaker is considered one of the nations experts in using a combination of stem cell- and bioengineering-based technologies for craniofacial reconstruction.

Several Ohio State College of Medicine and Wexner Medical Center clinician-scientists are also sharing research updates during pre-conference lectures and the meeting:

See the rest here:
Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

Posted in Cell Medicine | Comments Off on Advances in Stem Cell, Organ Printing, Tissue Engineering Changing Healthcare, Saving Lives

DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …

Posted: March 12, 2014 at 12:45 pm

Sarasota, FL (PRWEB) March 12, 2014

Erectile dysfunction (ED) is the most commonly studied disorder when it comes to male sexual dysfunction. It is estimated that 18 million men in the US alone suffer from erectile dysfunction and that it appears to be affecting 1 in 4 males under age 40 according to a study published in The Journal of Sexual Medicine.

While the emphasis of treatments for ED focuses on relieving the symptoms, they only provide a temporary solution rather than a cure or reversing the cause.

The DaSilva Institute is excited to announce the recruitment of males suffering from ED, in an IRB study, which will look at the safety, and efficacy of autologous, adipose derived stem cells (ADSCs) in regenerating the causes of ED.

The evidence shows that ADSCs reverses the pathophysiological changes leading to ED, rather than treating the symptoms of ED. Not only is the data in the literature compelling, but our own, in-house, results on our patients have been phenomenal, states Dr. DaSilva.

The many underlying causes for ED that are being investigated range from those secondary to aging, to injury of the cavernous nerve secondary to injury, surgery and/or radiation of the prostate, to diabetic ED and Peyronies Disease to name a few. According to Dr. DaSilva, the possibilities for ADSCs in reversing ED are limitless.

Currently, there is an expansive and growing body of evidence in the medical literature strongly indicating that ADSCs might be a potential cure for ED, rather than merely symptom relief, which is indicative of the increasing interest in ADSC-regenerative options for sexual medicine over the past decade. The DaSilva Institutes goal is to take this from pre-clinical studies to the clinical world offering it to all males that suffer from intractable ED under an IRB approved protocol.

More information about Dr. DaSilva and the DaSilva Institute Guy DaSilva, MD is currently the medical director of the DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine, located in Sarasota, Florida. Dr. DaSilvas enthusiasm for using autologous stem cells in regenerative medicine comes from his early days as a pathologist in New York City back in 1987 and later as a fellow in hematology in1990 following his residency in internal medicine.

He later brought his expertise in molecular and cellular medicine to the University of Kansas Medical Center where he served as chief of Hematology & Hematopathology. He later became the CEO and medical director of HemePath Institute, a diagnostic leader in diagnosing the most difficult cases of leukemia and lymphomas. Most recently, Dr. DaSilva teamed up with one of the most influential stem cell scientist in the world to bring the highest quality and viability of the harvested stem cells, bar none, to the DaSilva Institute.

Dr. DaSilva is board certified and fellowship trained in Anti-Aging and Regenerative Medicine. For more information about Dr. DaSilva or the DaSilva Institute go to http://www.dasilvainstitute.com.

Continue reading here:
DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men ...

Posted in Cell Medicine | Comments Off on DaSilva Institute of Anti-Aging, Regenerative & Functional Medicine Offers Autologous Stem Cell Therapy for Men …

Stem Cell Researcher Suggests Recalling His Own Study

Posted: March 11, 2014 at 12:48 pm

By Maggie Fox

One of the worlds leading stem cell experts has suggested withdrawing a study that made global headlines last January, saying he has questions about some of the images and data in it.

The Japanese team, led by Teruhiko Wakayama, reported that they had created powerful stem cells by doing little more than soaking ordinary cells in an acid solution.

The report, published in the journal Nature, impressed other stem cell researchers and opened the possibility of an easy approach to regenerative medicine. But Japanese television quotes Wakayama as saying he wants to take a closer look.

"When conducting the experiment, I believed it was absolutely right, Reuters news agency quotes Wakayama as telling the television station NHK.

"But now that many mistakes have emerged, I think it is best to withdraw the research paper once and, using correct data and correct pictures, to prove once again the paper is right," he said.

"If it turns out to be wrong, we would need to make it clear why a thing like this happened."

But Charles Vacanti of Harvard Medical School and Brigham and Women's Hospital in Boston, who helped work on the study, said he disagreed. "Some mistakes were made, but they don't affect the conclusions," the Wall Street Journal quoted him as saying.

"Based on the information I have, I see no reason why these papers should be retracted."

Stem cell researchers may be more sensitive than other scientists. In 2006, Seoul National University fired Hwang Woo-Suk after the journal Science retracted two papers he wrote claiming to have cloned human embryos and extracted stem cells from them.

Read this article:
Stem Cell Researcher Suggests Recalling His Own Study

Posted in Cell Medicine | Comments Off on Stem Cell Researcher Suggests Recalling His Own Study

Scientists Chafe at Restrictions on New Stem Cell Lines

Posted: March 6, 2014 at 12:45 am

The California Institute for Regenerative Medicine is rethinking its rules in the wake of a recent breakthrough involving the creation of stem cell lines from a cloned human embryo

OHSU Photos

The announcement last month of a long-awaited breakthrough in stem-cell research the creation of stem-cell lines from a cloned human embryo has revived interest in using embryonic stem cells to treat disease. But US regulations mean that many researchers will be watching those efforts from the sidelines.

The US National Institutes of Health (NIH), which distributes the majority of federal funding for stem-cell research, prohibits research on cells taken from embryos created solely for research a category that includes the six stem-cell lines developed by Shoukhrat Mitalipov, a reproductive-biology specialist at the Oregon Health and Science University in Beaverton, and his colleagues. The team used cloning techniques to combine a donor cell with an unfertilized egg whose nucleus had been removed, creating a self-regenerating stem-cell colony that is genetically matched to the cell donor.

Mitalipovs cell lines are also off limits to researchers funded by the California Institute for Regenerative Medicine (CIRM), which was created in part to support stem-cell work that is restricted by the NIH. CIRM funds cannot be used for studies that pay women for their eggs or rely on cell lines produced using eggs from paid donors. That rules out Mitalipovs lines, because his team paid egg donors US$3,0007,000 each, says Geoffrey Lomax, senior officer to the standards working group at CIRM, which is based in San Francisco. That amount is above and beyond any out-of-pocket costs to donors, he says.

The end result, says Mitalipov, is that a dozen or so universities are struggling to negotiate material transfer agreements to receive the new cell lines without running afoul of CIRM or the NIH. Interest in the new cell lines is high, especially since the identification of errors in images and figures in Mitalipovs research paper shortly after its publication in Cell. But regulations would require laboratories to use only dedicated, privately funded equipment to study the new cells, a condition that only a fewresearchers such as George Daley, a stem-cell expert at Boston Childrens Hospital in Massachusetts will be able to meet.

That concerns Daley, who calls the NIH stem-cell policy a frustrating limitation that will preclude federal dollars being used to ask many important questions about how Mitalipovs cell lines compare with induced pluripotent stem cells (iPS), which are created by reprograming adult cells to an embryonic state. Most labs will take the path of least resistance and continue working with iPS cells unless someone shows that there is a clear and compelling reason to change course, Daley says.

Mitalipov also worries that his cell lines wont be sufficiently analyzed, which he says could hamper efforts to understand how epigenetic changes modifications to chromosomes that determine how genes are expressed affect stem cells' ability to transform into a wide array of mature cell types. We just dont have that much expertise at looking at all aspects of epigenetics, he says.

But some scientists say that the impact of US stem-cell restrictions is overestimated. Alexander Meissner, a developmental biologist at the Harvard Stem Cell Institute in Cambridge, Massachusetts, says Mitalipov's cell lines will not reveal much about how stem cells transform. That work can be done only with eggs that are easy to come by, allowing scientists to examine the reprograming process at many points. In practical terms, that means relying on eggs from mice instead of humans. Everything is over by time you derive those cell lines, he says of Mitalipovs cells. There is no signature that would tell you what has happened. Its the wrong species.

In the meantime, CIRM is re-examining the rules that govern the research its supports. The institute is not likely to alter the restrictions against funding studies that pay cell donors, but it might overturn the rules against using cell lines produced in such studies, Lomax says. The original policy was set in 2006 to address concerns that arose in the wake of fraud and ethical violations by Woo Suk Hwang, then a researcher at Seoul National University.

Read this article:
Scientists Chafe at Restrictions on New Stem Cell Lines

Posted in Cell Medicine | Comments Off on Scientists Chafe at Restrictions on New Stem Cell Lines

Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

Posted: February 28, 2014 at 11:46 am

PUBLIC RELEASE DATE:

27-Feb-2014

Contact: Eric C. Liao cliao@partners.org Society for Experimental Biology and Medicine

Researchers at the Massachusetts General Hospital (MGH)/Harvard Medical School, Drs. Beste Kinikoglu and Yawei Kong, led by Dr. Eric C. Liao, cultured and characterized for the first time multipotent neural crest cells isolated from zebrafish embryos. This important study is reported in the February 2014 issue of Experimental Biology and Medicine. Neural crest is a unique cell population induced at the lateral border of the neural plate during embryogenesis and vertebrate development depends on these multipotent migratory cells. Defects in neural crest development result in a wide range of malformations, such as cleft lip and palate, and diseases, such as melanoma. Dr. Liao's laboratory uses zebrafish as a model vertebrate to study the genetic basis of neural crest related craniofacial malformations. Zebrafish has long been used to study early development and recently emerged as a model to study disease. "Development of in vitro culture of neural crest cells and reproducible functional assays will provide a valuable and complementary approach to the in vivo experiments in zebrafish" said Dr. Eric C. Liao, senior author of the study and an Assistant Professor of Surgery at MGH, and Principal Faculty at the Harvard Stem Cell Institute.

The team took advantage of the sox 10 reporter transgenic model to enrich and isolate the neural crest cells (NCCs), which were subsequently cultured under optimized culture conditions. Cultured NCCs were found to express major neural crest lineage markers such as sox10, sox9a, hnk1, p75, dlx2a, and pax3, and the pluripotency markers c-myc and klf4. The cells could be further differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. Using the functional cell behavior assays that they developed, the team was able to assess the influence of retinoic acid, an endogenously synthesized, powerful, morphogenetic molecule, on NCC behavior. This study showed that retinoic acid had a profound effect on NCC morphology and differentiation, significantly inhibited proliferation and enhanced cell migration. The data implicate NCCs as a target cell population for retinoic acid and suggest that it plays multiple critical roles in NCC development.

"We hope that our novel neural crest system will be useful to gain mechanistic understanding of NCC development and for cell-based high-throughput drug screening applications" said Dr. Beste Kinikoglu, a postdoctoral fellow in Dr. Liao's laboratory and the study's first author. Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Liao and colleagues have provided the first zebrafish embryo derived NCC pure population in vitro model for the study of neural crest development. I believe that this will be a valuable tool for this purpose".

###

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

See the original post here:
Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

Posted in Cell Medicine | Comments Off on Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

RoosterBio Inc, a Frederick Maryland Biotech Startup, Achieves Rapid Traction with Product Launch and Fundraising …

Posted: February 25, 2014 at 1:44 pm

Frederick, MD (PRWEB) February 25, 2014

RoosterBio Inc is a new biotech start-up supplying human bone marrow-derived Mesenchymal Stem Cells (hBM-MSC) for tissue engineering research and stem cell-based product development into the high growth Synthetic Biology and Regenerative Medicine fields. RoosterBio, Inc. initiated laboratory operations in October, 2013, and has achieved the critical milestone of first product shipment to paying customers in just four short months. In addition to the early validation of their business model and rapidly generating revenue, Roosterbio has raised over 250K in seed investment and are actively seeking funds via AngelList (https://angel.co/roosterbio).

RoosterBio credits their quick-to-market accomplishments to hyper-efficient operations and the passion that the RoosterBio team shares in their desire to assist tissue engineers and cell therapists to accelerate life-saving technologies into the clinic. Our laser focus coupled with operational excellence has enabled us to reach these milestones; we will delight our customers with our product offering, says Chief Operating Officer, Dr. Uplaksh Kumar. The RoosterBio teams extensive experience sourcing raw materials, manufacturing stem cell products, and controlling for high quality with best-in-class characterization techniques has allowed them to successfully launch their flagship hBM-MSC product quickly and efficiently.

Dr. Jon Rowley, RoosterBios Chief Executive said I cant express how proud I am of our small, highly dedicated team that worked tirelessly to get our first products designed, manufactured, quality tested, released, and just as importantly sold and shipped to our first paying customers. This was truly a team effort that couldnt have been done without each and every person at RoosterBio.

Having spent years as cell and tissue technologists, the RoosterBio team has an intimate understanding of the pain points surrounding the generation of large numbers of robust, reproducible, standardized cells for research and product development purposes. RoosterBio products are designed to solve this problem and they believe that high volume and affordable cellular raw materials will kick-start the cell-based medical product revolution.

Dr. Sarah Griffiths, a Researcher at Georgia Tech in Atlanta, believes that RoosterBios MSCs will do exactly that, and was anxiously awaiting receipt of the product. "We are excited to receive the first shipment of RoosterBios product. The potential to generate large stocks of MSCs in a short period of time will be a tremendous advantage to the progress of our research."

Researchers in the fields of Synthetic Biology and Regenerative Medicine, such as Dr. Griffiths, will use RoosterBios MSCs to develop new medical therapies to provide treatments for degenerative diseases such as Parkinsons and Alzheimers diseases, or to repair or replace tissue after a catastrophic injury such as traumatic bone and cartilage injury, spinal cord damage, heart attack, or significant burns.

RoosterBios current focus is to supply high volume research-grade cells manufactured with processes consistent with current Good Manufacturing Practices (cGMP). They are rapidly approaching their next milestones by laying the groundwork for initiating production of clinical-grade cells to be used in translational R&D and clinical studies.

About RoosterBio RoosterBio is focused on building a robust and sustainable Regenerative Medicine industry. Our products are affordable and standardized primary cells and media, manufactured and delivered with highest quality and in formats that simplify product development efforts. RoosterBio products are made with care in Frederick, MD, and will accelerate the translation of cell therapy and tissue engineering technologies into the clinic.

Read the original here:
RoosterBio Inc, a Frederick Maryland Biotech Startup, Achieves Rapid Traction with Product Launch and Fundraising ...

Posted in Cell Medicine | Comments Off on RoosterBio Inc, a Frederick Maryland Biotech Startup, Achieves Rapid Traction with Product Launch and Fundraising …

Skin cells transformed into functioning liver cells in mouse study

Posted: February 24, 2014 at 1:42 pm

The power of regenerative medicine now allows scientists to transform skin cells into cells that closely resemble heart cells, pancreas cells and even neurons. However, a method to generate cells that are fully mature -- a crucial prerequisite for life-saving therapies -- has proven far more difficult. But now, scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), have made an important breakthrough: they have discovered a way to transform skin cells into mature, fully functioning liver cells that flourish on their own, even after being transplanted into laboratory animals modified to mimic liver failure.

In previous studies on liver-cell reprogramming, scientists had difficulty getting stem cell-derived liver cells to survive once being transplanted into existing liver tissue. But the Gladstone-UCSF team figured out a way to solve this problem. Writing in the latest issue of the journal Nature, researchers in the laboratories of Gladstone Senior Investigator Sheng Ding, PhD, and UCSF Associate Professor Holger Willenbring, MD, PhD, reveal a new cellular reprogramming method that transforms human skin cells into liver cells that are virtually indistinguishable from the cells that make up native liver tissue.

These results offer new hope for the millions of people suffering from, or at risk of developing, liver failure -- an increasingly common condition that results in progressive and irreversible loss of liver function. At present, the only option is a costly liver transplant. So, scientists have long looked to stem cell technology as a potential alternative. But thus far they have come up largely empty-handed.

"Earlier studies tried to reprogram skin cells back into a pluripotent, stem cell-like state in order to then grow liver cells," explained Dr. Ding, one of the paper's senior authors, who is also a professor of pharmaceutical chemistry at UCSF, with which Gladstone is affiliated. "However, generating these so-called induced pluripotent stem cells, or iPS cells, and then transforming them into liver cells wasn't always resulting in complete transformation. So we thought that, rather than taking these skin cells all the way back to a pluripotent, stem cell-like state, perhaps we could take them to an intermediate phase."

This research, which was performed jointly at the Roddenberry Center for Stem Cell Research at Gladstone and the Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, involved using a 'cocktail' of reprogramming genes and chemical compounds to transform human skin cells into cells that resembled the endoderm. Endoderm cells are cells that eventually mature into many of the body's major organs -- including the liver.

"Instead of taking the skin cells back to the beginning, we took them only part way, creating endoderm-like cells," added Gladstone and CIRM Postdoctoral Scholar Saiyong Zhu, PhD, one of the paper's lead authors. "This step allowed us to generate a large reservoir of cells that could more readily be coaxed into becoming liver cells."

Next, the researchers discovered a set of genes and compounds that can transform these cells into functioning liver cells. And after just a few weeks, the team began to notice a transformation.

"The cells began to take on the shape of liver cells, and even started to perform regular liver-cell functions," said UCSF Postdoctoral Scholar Milad Rezvani, MD, the paper's other lead author. "They weren't fully mature cells yet -- but they were on their way."

Now that the team was encouraged by these initial results in a dish, they wanted to see what would happen in an actual liver. So, they transplanted these early-stage liver cells into the livers of mice. Over a period of nine months, the team monitored cell function and growth by measuring levels of liver-specific proteins and genes.

Two months post-transplantation, the team noticed a boost in human liver protein levels in the mice, an indication that the transplanted cells were becoming mature, functional liver cells. Nine months later, cell growth had shown no signs of slowing down. These results indicate that the researchers have found the factors required to successfully regenerate liver tissue.

See the original post here:
Skin cells transformed into functioning liver cells in mouse study

Posted in Cell Medicine | Comments Off on Skin cells transformed into functioning liver cells in mouse study

Duke Health System CEO appointed to head Institute of Medicine – Boston.com

Posted: February 22, 2014 at 4:43 pm

Duke University Health SystemDr. Victor J. Dzau, the current president and CEO of Duke University Health System

Dr. Victor J. Dzau, the current president and CEO of Duke University Health System and chancellor for health affairs at Duke University, has been appointed to a six-year term as the next president of the Institute of Medicine (IOM), effective July 1, 2014. Dr. Dzau will take over the lead role from Dr. Harvey Fineberg, who served in the position for twelve years.

Dr. Dzau began his career in medicine as a cardiologist, having previously taught at Harvard Medical School and served as chair of the department of medicine. He also worked at Brigham and Womens Hospital as the director of research. His ongoing award-winning research has been key in the development of cardiovascular drugs, as well as techniques to repair tissue damage from heart attacks and heart disease using stem cell therapies.

Dr. Eugene Braunwald, often called the father of modern cardiology and a professor of medicine at Harvard Medical School, has known Dr. Dzau for more than 40 years and worked with him at many different stages of his career at Brigham and Womens Hospital and Partners Healthcare. In an interview Wednesday he called the upcoming IOM president a force of nature.

He is what I would call a talented, quadruple threat. A great physician, inspiring teacher, and a very creative scientist, said Dr. Braunwald, who trained Dzau when he was a resident at Brigham and Womens and continued to work with him on cardiovascular research when Dr. Dzau became chief resident, and then faculty at Harvard Medical School. The quadruple threat is that he also sees the larger picture. Hes interested in areas of medicine that most academic physicians have stayed away from. His work and ideas in global and community-based medicine have left an important heritage at each institution where hes worked.

After nearly a decade at Duke, Dr. Dzaus leadership has been credited with the launch of a number of innovative and global-focused medical institutions, including the Duke-National University of Signapore Graduate Medical School, Duke Global Health Institute, Duke Institute for Health Innovation, Duke Cancer Institute, as well as the Duke Translational Medicine Institute.

Im deeply honored to become the next president of the IOM and recognize the critically important role that the IOM will have in improving the health of the nation at a time of extraordinary evolution in biomedical research and health care delivery, Dzau said in a press release from Duke University Health System. The explosion of new data resources, novel technologies and breathtaking research advances make this the most promising time in history for driving innovations that will improve health care delivery, outcomes and quality.

As the health sciences extension of the National Academy of Sciences, the Institute of Medicine is known for its leadership in advancing health sciences and objective medical research nationally as a nonprofit academic research organization. The outgoing IOM president, Dr. Harvey Fineberg (previously Dean of the Harvard School of Public Health) has lead the nonprofit for twelve years. His focus and research have centered around public health policy and an improvement in informed medical decision making.

This leaves the medical community wondering what Dr. Dzau will bring to the Institute.

As a former chairman of the Association of Academic Health Centers (AAHC), Dr. Dzau advocated for the innovative transition of academic medical and health centers into institutions that can survive the rapid transitions in the health care industry. In a recent article in the New England Journal of Medicine, Dr. Dzau discusses the uncertain future of academic medical centers. He argues that industry pressures and cost restraints from the Affordable Care Act limit the research and education-based missions of teaching hospitals.

Read more from the original source:
Duke Health System CEO appointed to head Institute of Medicine - Boston.com

Posted in Cell Medicine | Comments Off on Duke Health System CEO appointed to head Institute of Medicine – Boston.com

$5 billion initiative proposed for stem cell research

Posted: February 21, 2014 at 4:53 am

Supporters of Californias multibillion-dollar stem cell program plan to ask for $5 billion more to bring the fruits of research to patients.

Robert Klein, a leader of the 2004 initiative campaign that established the program, said Thursday hes going to be talking with California voters about the proposal. If the public seems receptive, backers will work to get an initiative on the 2016 ballot to extend funding for the California Institute for Regenerative Medicine

Klein outlined the proposal Thursday at UC San Diego Moores Cancer Center, during a symposium on how to speed research to patient care.

Since cancer cells and stem cells share some underlying characteristics, CIRM has funded research into those similarities, including the work of Moores Cancer Center researchers David Cheresh and Catriona Jamieson.

Klein said supporters, including researchers, patients and patient advocates need to educate the public about the benefits of funding stem cell research, and the results to date. A former chairman of CIRM, Klein is no longer formally affiliated with the agency but continues to support its work.

No stem cell treatments funded by CIRM have been approved, but patients have benefited in other ways. CIRM-funded research into cancer stem cells led to a clinical trial of a drug that caused remission of a bone marrow cancer in Sandra Dillon, a patient of Jamiesons. Moreover, California has vaulted into prominence in regenerative medicine, and the field has also provided a new growth engine for the states large biotech industry.

Though CIRM has been praised for advancing quality research, it has been criticized for being slow to fund commercialization by life science companies.

In addition, CIRM has been criticized for a lack of transparency and conflicts of interest in how it awards grants. The agency revamped its policies last year to forbid members of its governing oversight committee from voting on proposals to fund research at their own institutions.

California voters set aside $3 billion in bond money for CIRM in 2004 under Proposition 71. The money is expected to run out around 2017, so Klein and other supporters have been preparing to go back to the public. The amount paid back will be $6 billion, including interest over the life of the bonds, Klein noted. So the $5 billion for CIRM would require a $10 billion bond measure.

Can it be done again? Klein asked. If we continue to have the extraordinary results the scientists and research institutes are presenting, as well as the biotech sector.

View post:
$5 billion initiative proposed for stem cell research

Posted in Cell Medicine | Comments Off on $5 billion initiative proposed for stem cell research

Page 110«..1020..109110111112..120130..»