Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Cell Medicine
Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the …
Posted: March 9, 2015 at 2:47 pm
Orphan Designation Provides 7-Year Post Approval Marketing Exclusivity, Tax Credits and Elimination of FDA Prescription Drug User Fees
SAN DIEGO, CA--(Marketwired - February 10, 2015) - Targazyme Inc., a clinical-stage biopharmaceutical company developing enzyme technologies and products to improve efficacy outcomes for stem cell transplantation, immunotherapy, gene therapy and regenerative medicine, announced today that the U.S. Food and Drug Administration (FDA) has granted Orphan Drug designation to TZ101 to prevent and reduce the severity and incidence of graft vs. host disease (GVHD) in patients eligible for hematologic stem cell transplant.
GVHD is a serious, life-threating complication of stem cell transplantation.Orphan drug status confirms the importance of Targazyme's novel treatment approach to prevent and reduce the incidence and severity of GVHD in patients with blood cancers where stem cell transplant is prescribed.TZ101 could potentially transform hematopoietic stem cell transplantation by reducing patient morbidity and mortality from GVHD, which occurs in a large percentage of these patients and is very difficult to manage clinically.
"Our work with TZ101 demonstrates impressive increases in the persistence and activity of regulatory T cells in preclinical models of GVHD," said Dr. Elizabeth J. Shpall, Deputy Chair of the Department of Stem Cell Transplantation and Cellular Therapy at The University of Texas MD Anderson Cancer Center."We are looking forward to beginning clinical trials on this promising modality for preventing GVHD in our patients undergoing stem cell transplantation."
Orphan Drug Designation by FDA confers financial benefits and incentives, such as potential Orphan Drug grant funding to defray the cost of clinical testing, tax credits for the cost of clinical research, a 7 year period of exclusive marketing after Approval and a Waiver of Prescription Drug User Fee Act (PDUFA) filing fees which are now greater than $2 million.
"The granting of Orphan Drug status for TZ101 for prevention of GVHD in stem cell transplant patients, as well as our previous Orphan Drug designation of TZ101 for cord blood transplantation, provides additional validation of our innovative platform technologies," said Lynnet Koh, Chairman & Chief Executive Officer of Targazyme."TZ101 and our second product, TZ102 are enabling technologies for improving efficacy outcomes for multiple cell-based therapeutic approaches used to prevent and treat a variety of different diseases for which there is a high unmet medical need.In addition to initiating our registration trial with TZ101 in hematopoietic stem cell transplantation, we plan to embark on our cancer immunotherapy trial later this year."
About Targazyme, Inc.
Targazyme Inc. is a San Diego-based, clinical-stage biopharmaceutical company developing novel enzyme-based platform technologies and products to improve clinical efficacy outcomes for stem cell medicine, auto-immunotherapy, gene therapy and regenerative medicine.
The company's clinical-grade fucosyltransferase enzymes and small molecule products (TZ101 and TZ102) are off-the-shelf products used at the point-of-care to treat therapeutic cells immediately before infusion into the patient using a simple procedure that is easily incorporated into existing medical practice.The company has received a number of world-wide patents, multiple FDA orphan drug designations and major medical/scientific awards and grants.
Targazyme has partnerships and collaborations with Kyowa Hakko Kirin and Florida Biologix, as well as various medical research institutions including The University of Texas MD Anderson Cancer Center, Oklahoma Medical Research Foundation, Texas Transplant Institute, Case Western/University Hospitals, Scripps Hospitals, Fred Hutchinson Cancer Research Center, UCLA Medical Center, Stanford University Medical Center, University of Minnesota Medical Center, University of California San Diego, Sanford-Burnham Medical Research Institute, Indiana University, Memorial Sloan Kettering Cancer Center, and New York Blood Center.For more information please go to http://www.targazyme.com.
The rest is here:
Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the ...
Posted in Cell Medicine
Comments Off on Targazyme Inc. Receives Orphan Drug Designation to TZ101 for Use With Regulatory T Cells to Prevent & Reduce the …
Achieving gender equality in science, engineering and medicine
Posted: March 8, 2015 at 10:46 pm
(March 5, 2015) - Gender equality has not yet been achieved in science, medicine, and engineering, but The New York Stem Cell Foundation (NYSCF), through its Initiative on Women in Science and Engineering, is committed to making sure progress is made. NYSCF convened the Inaugural Meeting of its Initiative on Women in Science and Engineering (IWISE) Working Group in February 2014, where the group put forward seven actionable strategies for advancing women in science, medicine, and engineering, and reconvened in February 2015 to further develop the strategies.
NYSCF began this initiative after an analysis of its own programs. "We found that the ratio of men and women in our own programs was OK but it could certainly be improved," said Susan L. Solomon, CEO and Co-Founder, of NYSCF. "We wanted to take action and actually make tangible progress, so we brought together many of the leading men and women who have already committed time, energy, and resources towards this problem."
Today, the recommendations were published in Cell Stem Cell. They were divided into three categories: direct financial support strategies, psychological and cultural strategies, and major collaborative and international initiatives. The group chose to highlight the most high-impact and implementable strategies from a larger list developed during the meeting. They also sought to promote promising, long-term initiatives that will require significant collaboration among multiple stakeholders with the aim of connecting potential partners.
"Advancing women in science and medicine is of critical importance to the academic and research enterprise in our country," said Dr. Marc Tessier-Lavigne, President of Rockefeller University. "This paper is important as it not only brings attention to this key issue but also outlines creative strategies that can help break down barriers to gender equality in science."
Changing financing structures, embedded cultural norms, and tying funding to gender balance to enact real change are the pillars underlying the seven strategies recommended by the Working Group.
"The brain power provided by women in science is essential to sustaining a thriving US society and economy. It is time to move beyond just lamenting its loss and embrace the actions called for in this timely report," Dr. Claire Pomeroy, President, the Lasker Foundation and a member of the IWISE Working Group.
The seven strategies include:
1) Implement flexible family care spending 2) Provide "extra hands" awards 3) Recruit gender-balanced external review committees and speaker selection committees 4) Incorporate implicit bias statements 5) Focus on education as a tool 6) Create an institutional report card for gender equality 7) Partner to expand upon existing searchable databases of women in science, medicine, and engineering
The IWISE Working Group reconvened in February 2015 to continue to work on the Institutional Report Card for Gender Equality. The paper published today includes the proposed Phase 1 Institutional Report Card, and the group plans to release the Phase 2 report card once finalized.
###
View original post here:
Achieving gender equality in science, engineering and medicine
Posted in Cell Medicine
Comments Off on Achieving gender equality in science, engineering and medicine
Seven strategies to advance women in science
Posted: March 8, 2015 at 5:42 pm
Despite the progress made by women in science, engineering, and medicine, a glance at most university directories or pharmaceutical executive committees tells the more complex story. Women in science can succeed, but they are succeeding in fields that may not even be conscious of the gender imbalances. These imbalances manifest themselves in the number of women that are invited to speak at conferences, the percentage of grants awarded to women scientists, and the higher rates of attrition of women at every stage of the career ladder compared to those of men.
In the March 5 issue of the journal Cell Stem Cell, the Initiative on Women in Science and Engineering Working Group, a collection of more than 30 academic and business leaders organized by the New York Stem Cell Foundation, present seven strategies to advance women in science, engineering, and medicine in this modern landscape.
"We wanted to think about broad ways to elevate the entire field, because when we looked at diversity programs across our organizations we thought that the results were okay, but they really could be better," said Susan L. Solomon, co-founder and CEO of the New York Stem Cell Foundation and a member of the working group. "We've identified some very straightforward things to do that are inexpensive and could be implemented pretty much immediately."
The working group's seven strategies are broken into three categories: the first two are direct financial support strategies, the next three are psychological and cultural strategies, and the final two are major collaborative and international initiatives.
1. Implement flexible family care spending
Make grants gender neutral by permitting grantees to use a certain percentage of grant award funds to pay for childcare, eldercare, or family-related expenses. This provides more freedom for grantees to focus on professional development and participate in the scientific community.
2. Provide "extra hands" awards
Dedicate funds for newly independent young investigators who are also primary caregivers to hire technicians, administrative assistants, or postdoctoral fellows.
3. Recruit gender-balanced review and speaker selection committees
Adopt policies that ensure that peer review committees are conscious of gender and are made up of a sufficient number of women.
Read this article:
Seven strategies to advance women in science
Posted in Cell Medicine
Comments Off on Seven strategies to advance women in science
Global Pharma Rising Stars Outlook 2015
Posted: March 5, 2015 at 11:51 pm
DUBLIN, Mar. 05, 2015 /PRNewswire/ --Research and Markets
(http://www.researchandmarkets.com/research/5sqnn3/global_rising) has announced the addition of the "Global Rising Stars Outlook 2015" report to their offering.
Innovative Therapies for treating diseases are being sought after with fresh vigor as new targets , approaches and biology is discovered. One field which is poised to bring a paradigm change in the way diseases are treated in the next decades is the Stem cell therapy/Regenerative Medicine space.
The number of companies and products in the clinic have reached a critical mass warranting a close watch for those interested in keeping pace with the development of new medicines. The Regenerative medicine Universe is large and new companies are being added to it rapidly. As a result we have used some filters to select a few names for a detailed coverage in our Outlook this year.
Key Criteria for Our Selection are:
- Uniqueness of the Technology platform and the ability to scale up commercially in case of positive outcome of products in the pipeline - Pipeline and clinical data analysis - Marketed product and commercial tie up. Robustness of the Management, financial and business model.
Key Topics Covered:
Part 1- Rising Stars in Regenerative Medicine and Stem cell based Cell Therapies-Drugs of the Future
Part II-Indian Innovators- Rising Stars:
Companies Mentioned
Read more here:
Global Pharma Rising Stars Outlook 2015
Posted in Cell Medicine
Comments Off on Global Pharma Rising Stars Outlook 2015
Translational Regenerative Medicine: Market Prospects 2015-2025
Posted: February 28, 2015 at 5:47 am
Report Details
Translational Regenerative Medicine - new study showing you trends, R&D progress, and predicted revenues Where is the market for regenerative medicine heading? What are the commercial prospects for this market and related technologies? Visiongain's brand new report shows you potential revenues and other trends to 2025, discussing data, opportunities and prospects.
Visiongain's report lets you assess regenerative medicine: cell-based therapies that aim to restore function and regenerate diseased tissues. Our 260 page report provides 145 tables, charts, and graphs. Discover the most lucrative areas in the industry and the future market prospects. Our new study lets you assess forecasted sales at world market, submarket and national level. You will see financial results, interviews, trends, opportunities and revenue predictions.
Forecasts from 2015-2025 and other analyses show you commercial prospects Besides revenue forecasting to 2025, our new study provides you with recent results, growth rates, and market shares. There you will find original analyses, with business outlooks and developments. Discover qualitative analyses (including SWOT and Porter's Five Forces), company profiles and commercial developments. Read the full transcript of an exclusive expert opinion interview from industry specialists informing your understanding and allowing you to assess prospects for investments and sales: Dr Antonio SJ Lee, CEO and Managing Director, MEDIPOST America Inc.
You find prospects for key submarkets and products In addition to analyses of the overall world market, you see revenue forecasts for these three submarkets to 2025: Stem cell therapies Gene Therapies Tissue engineering products
Products that can significantly increase disease-free survival and improve patient tolerance will achieve success. In the long term, we forecast these curative therapies to be adopted by many healthcare systems globally.
Our investigation shows business research and analyses with individual revenue forecasts and discussions. You find dynamics of the industry and assess its potential sales, seeing agents likely to achieve the most success.
To see a report overview please email Sara Peerun on sara.peerun@visiongainglobal.com
See revenue forecasts for products How will leading products perform to 2025 at the world level? Our study forecasts sales of currently marketed and pipeline regenerative medicine products including these: Osteocel Plus Trinity ELITE and Trinity Evolution Prochymal Apligraf Dermagraft ReCell Neovasculgen Glybera Talimogene Laherparepvec (T-Vec)
Discover how high revenues can go. You will see what is happening, understanding trends, challenges and opportunities.
See the original post:
Translational Regenerative Medicine: Market Prospects 2015-2025
Posted in Cell Medicine
Comments Off on Translational Regenerative Medicine: Market Prospects 2015-2025
Researchers Hone in on Stem Cell that Speeds Healing of Stubborn Diabetes Wounds
Posted: February 26, 2015 at 12:45 am
Durham, NC (PRWEB) February 25, 2015
A new study published in the latest issue of STEM CELLS Translational Medicine reveals how a particular type of stem cell generated from fat tissue may outperform other types of stem cells in speeding up the healing of wounds caused by type 1 diabetes. In the study, ulcers in a mice model treated with these cells healed significantly faster than those treated with general types of stem cells.
Slow-healing wounds present one of the most common and perplexing complications associated with both type 1 and type 2 diabetes. If left untreated, they can lead to amputation, and even death. In fact, diabetes is the leading cause of non-traumatic lower limb amputation in the United States, according to the American Diabetes Association. Despite this, there are very few consistently effective treatments for speeding the wound-healing process in patients.
Addressing this issue, researchers at the University of Tokyo (UT) School of Medicine partnered with colleagues at the Research Center for Stem Cell Engineering, National Institute for Advanced Industrial Science and Technology (Ibaraki, Japan) to test whether a type of mesenchymal stem cell (MSC) called Muse, which is harvested from adult adipose tissue (that is, fat), might work better than other types of MSCs in treating diabetes wounds. Previous studies had shown that Muse which stands for multilineage differentiating stress-enduring cells do not have high proliferative activity, but they do generate multiple cell types of the three germ layers without inducing unfavorable tumors. Thus, Muse cells appear to be safer than other induced pluripotent or multipotent cells and might have better therapeutic potential than general (non-Muse) MSCs.
The study details how researchers isolated the Muse cells from human tissue and then injected them into skin ulcers in diabetic mice. Study leader Kotaro Yoshimura, M.D., of UTs Department of Plastic Surgery said that, After 14 days the mice treated with Muse-rich cells showed significantly accelerated wound healing compared to those treated with Muse-poor cells. The transplanted cells were integrated into the regenerated skin as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions.
In fact, not only had the wounds of the mice treated with the Muse cells completely healed after the 14-day period, but the healed skin was thicker than that of the non-Muse treated wounds, too.
Were not sure yet why the Muse cells seem to work better, Dr. Yoshimura stated, but they expressed upregulated pluripotency markers and some angiogenic growth factors, and our animal results certainly suggest a clinical potential for them in the future. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues.
Fat tissue has been gaining attention as a practical source of adult stem cells, said Anthony Atala, M.D., Editor-in-Chief of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study suggests the future clinical potential for Muse cells.
###
The full article, Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers, can be accessed at http://www.stemcellstm.com.
Excerpt from:
Researchers Hone in on Stem Cell that Speeds Healing of Stubborn Diabetes Wounds
Posted in Cell Medicine
Comments Off on Researchers Hone in on Stem Cell that Speeds Healing of Stubborn Diabetes Wounds
New Commentary from Asymmetrex LLC Director Anticipates Forthcoming E-Book on Stem Cell Genetic Fidelity
Posted: February 25, 2015 at 6:41 pm
Boston, MA (PRWEB) February 25, 2015
Anyone familiar with the founding principles of Asymmetrex, LLC will appreciate the new editorial from its director and the collection of authors he assembled as Associate Editor for the Frontiers Research Topic, titled Stem Cell Genetic Fidelity. Both the introductory editorial and the individual articles are currently available online, ahead of issue in the form of the Frontiers e-book later this year.
Central to the stem cell mechanisms investigated and reviewed by the nine articles is the still controversial proposal of immortal strands in adult tissue stem cells. Based on the experimental observations of K. Gordon Lark in the 1960s, John Cairns predicted the existence of immortal strands of the DNA genetic material about a decade later.
In studies with cultured mouse tissues and plant root tips, Lark had noted that when some cells divided, they seemed to violate well-established genetic laws. These were the Mendelian laws of inheritance, name after Gregor Mendel, who laid their foundation. Each of the 46 human chromosomes has two complementary strands of DNA. One DNA strand is older than the other, because it was used as the template for copying the other. As a result of this inherent age difference in chromosome DNA strands, when the two DNA strands are split to make two new chromosomes before cell division to produce two new cells one chromosome in each of the 46 pairs of new chromosomes has the oldest DNA strand.
Mendels laws maintain that each new sister cell should randomly get a similar number of chromosomes with the oldest DNA strands. But Cairns hypothesized that adult tissue stem cells had a mechanism to ignore Mendels laws. Instead, one of the two cells produced by an asymmetric stem cell division retained all, and only, the chromosomes with the oldest DNA strands. Cairns called these immortal strands. By continuously retaining the same complete set of oldest template DNA strands, Cairns envisioned that tissue stem cells could significantly reduce their rate of accumulation of carcinogenic mutations, which primarily occur by chance when DNA is being copied.
Cairns presented his concept of immortal strands in tissue stem cells in a 1975 report to account for a large discrepancy that he had noted between human cancer rates and human cell mutation rates. He estimated that human cancer rates, though still undesirable, fell far short of expectations based on generally known rates of human cell mutation.
Whereas some scientists continue to view Cairns immortal strand hypothesis as folly, others consider it genius. In the last decade, progress in evidence for immortal strands in stem cells of diverse animal tissues and animal species accelerated greatly. However, little progress has occurred in defining their role in normal tissue stem cells or diseases like cancer.
In his new editorial, Sherley reveals that he is firmly in the camp that views the immortal strand hypothesis as genius. Before founding Asymmetrex, as a laboratory head in two different independent research institutes Fox Chase Cancer Center and Boston Biomedical Research Institute and at the Massachusetts Institute of Technology he developed new tools and approaches for investigating immortal strand functions, which are now a focus for commercial development in the new company. Immortal strands and cellular factors associated with them have significant potential to provide specific biomarkers for tissue stem cells. There is a significant unmet need for such invaluable tools in stem cell research, drug development, and regenerative medicine.
About Asymmetrex (http://asymmetrex.com/)
Asymmetrex, LLC is a Massachusetts life sciences company with a focus on developing technologies to advance stem cell medicine. Asymmetrexs founder and director, James L. Sherley, M.D., Ph.D. is an internationally recognized expert on the unique properties of adult tissue stem cells. The companys patent portfolio contains biotechnologies that solve the two main technical problems production and quantification that have stood in the way of successful commercialization of human adult tissue stem cells for regenerative medicine and drug development. In addition, the portfolio includes novel technologies for isolating cancer stem cells and producing induced pluripotent stem cells for disease research purposes. Currently, Asymmetrexs focus is employing its technological advantages to develop facile methods for monitoring adult stem cell number and function in clinically important human tissues.
The rest is here:
New Commentary from Asymmetrex LLC Director Anticipates Forthcoming E-Book on Stem Cell Genetic Fidelity
Posted in Cell Medicine
Comments Off on New Commentary from Asymmetrex LLC Director Anticipates Forthcoming E-Book on Stem Cell Genetic Fidelity
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida
Posted: February 25, 2015 at 6:41 pm
The Villages, Florida (PRWEB) February 25, 2015
The Miami Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director.
The seminars will be held on Tuesday March 3, 2015, at 1:00pm, 3:00pm, 5:00pm and 7:00pm at the Holiday Inn Express and Suites The Villages, 1205 Avenida Central, The Villages, FL 32159. There will be a Social Hour with the Doctors after the 7:00pm session. Please RSVP at (561) 331-2999, all events are by reservation only.
The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; The Villages), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, California) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.
ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used; and No bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.
About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Miami, Boca Raton, Orlando and The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com , or http://www.NYStemCellsUSA.com.
See more here:
The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida
Posted in Cell Medicine
Comments Off on The Miami Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in The Villages, Florida
Gordie Howe recovering from stroke after stem-cell transplant
Posted: February 4, 2015 at 1:47 am
Gordie Howe is making a remarkable recovery from a stroke that nearly led to him being placed in hospice care last fall.
The hockey great has gained 20 pounds and is doing fantastic after undergoing stem-cell treatment in Mexico in early December, one of his sons told NHL Live. Howe continues to recover at the Lubbock, Texas, home of his daughter.
Hes doing very, very well, said Dr. Murray Howe, director of sports medicine imaging of Toledo Hospital. He has good days and bad days like anybody whos 86, but overall hes heading in the right direction really every day, a little bit better. He had his stem cell treatment Dec. 8 and really since that time hes just been doing fantastic.
He loves to be busy. If you want to torture him just make him sit down and watch television. He is just about doing stuff. Hes in great spirits. He has an excellent quality of life. Hes doing all the things that he wants to do now other than fishing, only because we havent taken him fishing since his treatment, but hes looking forward to doing that.
Howe was unable to stand, walk or feed himself after suffering the stroke in late October. He was losing weight because he wasnt able to sustain himself in terms of eating, his son said. He essentially got to the point where he was bedridden and it was just no quality of life there.
Although it was feared that he had suffered another stroke in early December, he was suffering from dehydration, but his family was told to consider hospice care. At around the same time, a San Diego biopharmaceutical company reached out to offer treatment at no charge. According to Howes son, the results were instant. From NHL.coms Jon Lane:
Gordie Howe had the treatment Dec. 8 in Tijuana at a Mexican stem cell company called Novastem thats licensed the use of Stemedicas cells for clinical trials approved by the Mexican government. Neural stem cells were injected into the spinal canal on Day 1 and mesenchymal stem cells by intravenous infusion on Day 2, according to a release sent by the Howe family in mid-December.
They said that we might see some changes in my father within 24 hours and I just didnt believe it, Dr. Howe said.
Eight hours later, Gordie Howe began talking. He then demanded to walk to the bathroom.
I said Ill get the urinal because you cant walk and he says, Well the [heck] I cant walk, Dr. Howe said. We actually sat up and put his feet down on the side of bed and I was absolutely stunned. Id never seen anything like it in 28 years of doing medicine.
Read more:
Gordie Howe recovering from stroke after stem-cell transplant
Posted in Cell Medicine
Comments Off on Gordie Howe recovering from stroke after stem-cell transplant
UCLA Researchers Receive Prestigious CIRM Tools and Technologies Award
Posted: February 3, 2015 at 9:46 am
Contact Information
Available for logged-in reporters only
Newswise Two scientists from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have received a California Institute of Regenerative Medicine (CIRM) Tools and Technology Award that will forward revolutionary stem cell medicine. The UCLA researchers were among only 20 scientists nationwide to receive the Tools and Technologies Award, the most of any institution represented.
Recipients receiving awards for their respective projects included Dr. James Dunn, professor of bioengineering and surgery, for his research investigating skin-derived precursor stem cells for the treatment of enteric neuromuscular dysfunction, and Dr. Hanna Mikkola, associate professor of molecular, cell and developmental biology, for her work creating a suite of engineered human pluripotent stem cell lines to facilitate the generation of patient specific hematopoietic stem cells.
UCLA Broad Stem Cell Research Center Director Owen Witte said, We are very grateful for CIRMs support of these potentially groundbreaking projects intended to overcome significant bottlenecks in driving stem cell therapies to the clinic.
The CIRM Tools and Technologies initiative is designed specifically to support research that can address regenerative medicines unique translational challenges. The award seeks to facilitate the creation, design and testing of broadly applicable novel tools and technologies for addressing translational bottlenecks to stem cell therapies.
Dr. James Dunn: Unlocking the Secrets of Neuromuscular Dysfunction
Dr. Dunns cutting-edge work focuses on assessing the therapeutic potential of skin-derived stem cells to treat neuromuscular gastrointestinal diseases. CIRM reviewers noted that, if successfully completed, the project would likely have a major impact upon the field. His lab will develop a model of intestinal neuromuscular dysfunction that is amenable to stem cell transplantation.
Dunns novel approach to treat these patients will use stem cells reprogrammed from the patients own skin (induced pluripotent stem cells) to generate the neural system to correct the intestinal dysfunction. Dunn and his team hope the research will result in a clinical trial using patient specific induced pluripotent stem cells and provide a critical step toward an improved therapeutic approach and to treat intestinal neuromuscular dysfunction.
Dr. Dunns research was additionally supported by the National Institutes and Sun West Company.
Read more:
UCLA Researchers Receive Prestigious CIRM Tools and Technologies Award
Posted in Cell Medicine
Comments Off on UCLA Researchers Receive Prestigious CIRM Tools and Technologies Award