Page 139«..1020..138139140141..150160..»

Category Archives: Cell Therapy

Mum dies during stem cell therapy

Posted: July 28, 2014 at 3:44 pm

Kellie van Meurs, pictured with her husband Mark, died while undergoing stem cell treatment in Russia. Photo: Facebook

Supporters of a Brisbane mother-of-two who died while undergoing a controversial stem cell treatment in Russia say it did not cause her death, nor have others been discouraged from seeking it.

Kellie van Meurs suffered from a rare neurological disorder called stiff person syndrome, which causes progressive rigidity of the body and chronic pain.

She travelled to Moscow in late June to undergo an autologous haematopoietic stem cell transplant (HSCT) under the care of Dr Denis Fedorenko from the National Pirogov Medical Surgical Centre.

Kellie van Meurs, pictured with family and supporters, died while undergoing stem cell treatment in Russia. Photo: Facebook

The transplant more commonly used for multiple sclerosis patients involves rebooting a patients immune system with their own stem cells after high-dose chemotherapy.

Advertisement

Ms van Meurs was Dr Fedorenkos first SPS patient, and her husband Mark said she died of a heart attack on July 19.

I do know that Rosemary [Ms van Meurs' aunt and carer in Moscow] felt she received the best possible care, especially from Dr Fedorenko, he said.

Given her level of constant pain and overlapping auto-neuronal problems I still don't think we had a better option.

Read the original post:
Mum dies during stem cell therapy

Posted in Cell Therapy | Comments Off on Mum dies during stem cell therapy

Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

Posted: July 28, 2014 at 3:44 pm

Tampa Bay, FL (PRWEB) July 28, 2014

Nearly 53 million Americans today are suffering with arthritis, with the majority of them diagnosed with osteoarthritis. (1) Osteoarthritis is a degeneration of joint cartilage and its underlying bone, causing significant pain and stiffness. While osteoarthritis has no cure, stem cell therapy has been demonstrated to induce profound healing in many forms of arthritis, according to the Stem Cell Institute. (2) Dr. Cynthia Elliott of Skinspirations, a center for cosmetic enhancement devoted to non-surgical aesthetics and now also specializing in administering regenerative medicine by stem cell, has made use of these services in a recent case study, which resulted in improved health in one of their clients.

Stem cells are unique from other cells for the following reasons:

(a)They can renew themselves through cell division; and (b)Under certain conditions, they can become tissue or organ-specific cells.

Stem cells are revered for their ability to make replacement tissues, as it relates to regenerative therapy. (3) Medical scientists and researchers are discovering the seemingly endless possibilities of what stem cells can treat, including brain damage, bone repair, kidney disease, etc. (4) This treatment is starting to boom in the medical world as a viable procedure, but Skinspirations has already had these practices in place, establishing them as progressive practitioners in the field.

Skinspirations is specifically studying the Stromal Vascular Fraction (SVF)another term for stem cell treatmentand how it affects knees with severe arthritis. According to Dr. Elliott, Stromal Vascular Fraction can help to repair, replace and restore any damaged cells within the bodyDr. Elliott performed the stem cell procedure on her uncle after first treating other patients during her training, and he experienced the following results:

Case in Point:

Joe Elliott, a 63-year-old male, had severe arthritis in one knee. Doctors advised him to get a knee replacement, but Joe was hoping to avoid surgery for as long as possible. After talking to Dr. Elliott about the treatment, he drove to Skinspirations from Missouri to go forward with the stem cell procedure.

Dr. Elliott performed the treatment with the following steps:

(1)Numbed his abdomen with anesthesia; (2)Removed about 100 cc of fat; (3)Processed the fat to isolate the SVF; (4)Numbed the arthritic knee; and (5)Injected the pellet of SVF into the joint of his arthritic knee.

Continued here:
Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

Posted in Cell Therapy | Comments Off on Skinspirations Study Supports Medical Findings: Stem Cell Treatment Triggers Tissue Regeneration

Cell therapy for multiple sclerosis patients: Closer than ever?

Posted: July 27, 2014 at 2:42 pm

Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.

For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.

Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.

Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.

"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.

"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS." said Dr. Valentina Fossati, NYSCF -- Helmsley Investigator and senior author on the paper.

In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients

This important advance opens up critical new avenues of research to study multiple sclerosis and other diseases. Oligodendrocytes are implicated in many different disorders, therefore this research not only moves multiple sclerosis research forward, it allows NYSCF and other scientists the ability to study all demyelinating and central nervous system disorders.

"Oligodendrocytes are increasingly recognized as having an absolutely essential role in the function of the normal nervous system, as well as in the setting of neurodegenerative diseases,such as multiple sclerosis. The new work from the NYSCF Research Institute will help to improve our understanding of these important cells. In addition, being able to generate large numbers of patient-specific oligodendrocytes will support both cell transplantation therapeutics for demyelinating diseases and the identification of new classes of drugs to treat such disorders," said Dr. Lee Rubin, NYSCF Scientific Advisor and Director of Translational Medicine at the Harvard Stem Cell Institute.

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, distinguished by recurrent episodes of demyelination and the consequent neurological symptoms. Primary progressive multiple sclerosis is the most severe form of multiple sclerosis, characterized by a steady neurological decline from the onset of the disease. Currently, there are no effective treatments or cures for primary progressive multiple sclerosis and treatments relies merely on symptom management.

Read the original here:
Cell therapy for multiple sclerosis patients: Closer than ever?

Posted in Cell Therapy | Comments Off on Cell therapy for multiple sclerosis patients: Closer than ever?

Robert J. Harman, DVM, Founder and CEO of Vet-Stem, Inc. to Join New York Radio Host Lorry Young in Upcoming Episode …

Posted: July 26, 2014 at 7:40 am

San Diego, CA (PRWEB) July 25, 2014

WABC Radio show out of New York City, A Paws For Your Pet with Lorry Young will be hosting California-based Vet-Stem, Inc.s Founder and CEO, Robert J. Harman, DVM, to talk about stem cell therapy in pets. Dr. Harman first visited the show in November 2013 to discuss the benefits of stem cell therapy for pets suffering from osteoarthritis and other degenerative diseases, as well as recent developments moving the Regenerative Veterinary Medicine industry forward.

Young has invited Dr. Harman back to dial down into specific case studies and success stories of the over 10,000 dogs, cats, horses and exotic animals that Vet-Stems services have treated in the last decade. Moose, a Labrador Retriever Mix, is one of those special pet patients in the New York City area that was treated with Vet-Stem Regenerative Cell Therapy for arthritis caused by elbow dysplasia, and arthritic bone growth.

When Mooses owners noticed decreased mobility, lameness, and an increasingly lower tolerance for other dogs they brought Moose to local veterinarian Alex Klein to explore solutions. As many as 65% of dogs between the ages of 7 and 11 years old are inflicted with some degree of arthritis. Certain specific breeds, much like Moose, are reported to have as high of a percentage as 70 in being diagnosed with arthritis.

Stem cell therapy has been proven to help with the pain of arthritis in pets because it decreases inflammation, regenerates damaged tissues, and restores range of motion. An owner survey showed that greater than 80% of dogs treated for osteoarthritis in one or more leg joints with Vet-Stem Regenerative Cell Therapy showed an improved quality of life. Dogs like Moose have a small amount of fat collected by their veterinarian, which is sent overnight to Vet-Stems lab. There, the fat is separated from the stem cells and injectable doses of concentrated stem cells are sent back to the veterinarian overnight. Within 48 hours Moose received injections in his arthritic joints and the healing process began.

This ability to improve on a pets quality of life is why Dr. Harman is so passionate about sharing stories with other animal enthusiasts such as Young and her radio audience. Pet-spert, Young offers a special look into the latest techniques, treatments, and options that will enable listeners to provide their pets with a safer, healthier, and happier life. Produced and hosted by Young, A Paws For Your Pet, helps listeners answer any potential questions they may have regarding the health and well-being of their beloved pet, and hosts experts in the industry like Dr. Harman regularly.

About Vet-Stem, Inc. Since its formation in 2002, Vet-Stem, Inc. has endeavored to improve the lives of animals through regenerative medicine. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem pioneered the use of regenerative stem cells for horses, dogs, cats, and some exotics. In 2004 the first horse was treated with Vet-Stem Regenerative Cell Therapy for a tendon injury that would normally have been career ending. Ten years later Vet-Stem celebrated its 10,000th animal treated, and the success of establishing stem cell therapy as a proven regenerative medicine for certain inflammatory, degenerative, and arthritic diseases. As animal advocates, veterinarians, veterinary technicians, and cell biologists, the team at Vet-Stem tasks themselves with the responsibility of discovering, refining, and bringing to market innovative medical therapies that utilize the bodys own healing and regenerative cells. For more information about Vet-Stem and Regenerative Veterinary Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read more here:
Robert J. Harman, DVM, Founder and CEO of Vet-Stem, Inc. to Join New York Radio Host Lorry Young in Upcoming Episode ...

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Robert J. Harman, DVM, Founder and CEO of Vet-Stem, Inc. to Join New York Radio Host Lorry Young in Upcoming Episode …

Experiments prove 'stemness' of individual immune memory cells

Posted: July 25, 2014 at 4:47 am

PUBLIC RELEASE DATE:

24-Jul-2014

Contact: Vera Siegler vera.siegler@tum.de 49-892-892-2731 Technische Universitaet Muenchen

This news release is available in German.

The immune system has evolved to recognize and respond to threats to health, and to provide life-long memory that prevents recurrent disease. A detailed understanding of the mechanism underlying immunologic memory, however, has remained elusive. Since 2001, various lines of research have converged to support the hypothesis that the persistence of immune memory arises from a reservoir of immune cells with stem-cell-like potential. Until now, there was no conclusive evidence, largely because experiments could only be carried out on populations of cells. This first strict test of the stem cell hypothesis of immune memory was based on mapping the fates of individual T cells and their descendants over several generations.

That experimental capability was developed through a long-term collaboration, focused on clinical cell processing and purification, between researchers based in Munich and Seattle. Since 2009, the groups of Prof. Dirk Busch at the Technische Universitt Mnchen (TUM) and Prof. Stanley Riddell at the Fred Hutchinson Cancer Research Center have combined their technological and clinical expertise under the auspices of the TUM Institute for Advanced Study. The University of Heidelberg, the University of Dsseldorf, the Helmholtz Center Munich, the German Cancer Research Center (DKFZ), and the National Center for Infection Research (DZIF) also contributed to the present study.

Homing In On The "Stemness" of T Cells

After generating an immune response in laboratory animals, TUM researchers Patricia Graef and Veit Buchholz separated complex "killer" T cell populations enlisted to fight the immediate or recurring infection. Within these cell populations, they then identified subgroups and proceeded with a series of single-cell adoptive transfer experiments, in which the aftermath of immune responses could be analyzed in detail. Here the ability to identify and characterize the descendants of individual T cells through several generations was crucial.

The researchers first established that a high potential for expansion and differentiation in a defined subpopulation, called "central memory T cells," does not depend exclusively on any special source such as bone marrow, lymph nodes, or spleen. This supported but did not yet prove the idea that certain central memory T cells are, effectively, adult stem cells. Further experiments, using and comparing both memory T cells and so-called naive T cells that is, mature immune cells that have not yet encountered their antigen enabled the scientists to home in on stem-cell-like characteristics and eliminate other possible explanations.

Step by step, the results strengthened the case that the persistence of immune memory depends on the "stemness" of the subpopulation of T cells termed central memory T cells: Individual central memory T cells proved to be "multipotent," meaning that they can generate diverse types of offspring to fight an infection and to remember the antagonist. Further, these individual T cells self-renew into secondary memory T cells that are, again, multipotent at the single-cell level. And finally, individual descendants of secondary memory T cells are capable of fully restoring the capacity for a normal immune response.

View original post here:
Experiments prove 'stemness' of individual immune memory cells

Posted in Cell Therapy | Comments Off on Experiments prove 'stemness' of individual immune memory cells

MS stem cell therapy treatment hope for mum

Posted: July 25, 2014 at 4:45 am

July 24, 2014, 10:29 p.m.

A 60 MINUTES report on new multiple sclerosis stem cell therapy has thrown Wendouree mum Kathryn Johnston a potential lifeline.

A 60 MINUTES report on new multiple sclerosis stem cell therapy has thrown Wendouree mum Kathryn Johnston a potential lifeline.

Hopeful: Wendouree mum Kathryn Johnston is hoping new stem cell therapy treatment will help her be a more active mother to her daughter Dellah, 7. PICTURE: KATE HEALY

Ms Johnston, who has had MS for 15 years, is hoping the treatment will help her be a more active mother to daughter Dellah, 7.

I cant do a great deal with my daughter now but its also the unknown not knowing if Ill wake up one day and not be able to walk, Ms Johnston said.

The 35-year-old emergency nurse hopes to travel to Russia in August next year for the treatment, which involves extracting her stem cells, freezing them while she undergoes a strong course of chemotherapy and then replacing them.

It gets rid of any underlying MS and rebuilds the immune system from scratch. As a general rule, its been about 80 per cent effective.

Ms Johnston first noticed her MS symptoms as an active Ararat 20-year-old doing her nursing degree and about to marry her childhood sweetheart Andrew.

I developed numbness in both hands but thought Id just slept on them until my tummy went numb too.

See more here:
MS stem cell therapy treatment hope for mum

Posted in Cell Therapy | Comments Off on MS stem cell therapy treatment hope for mum

The New York Stem Cell Foundation Partners With Beyond Batten Disease Foundation to Fight Juvenile Batten Disease

Posted: July 25, 2014 at 4:45 am

New York, NY (PRWEB) July 23, 2014

The New York Stem Cell Foundation (NYSCF) and Beyond Batten Disease Foundation (BBDF) have partnered to develop stem cell resources to investigate and explore new treatments and ultimately find a cure for juvenile Batten disease, a fatal illness affecting children.

NYSCF scientists will create induced pluripotent stem (iPS) cell lines from skin samples of young people affected by juvenile Batten disease as well as unaffected family members. IPS cell lines are produced by artificially turning back the clock on skin cells to a time when they were embryonic-like and capable of becoming any cell in the body. Reprogramming juvenile Batten iPS cells to become brain and heart cells, will provide the infrastructure needed to investigate what is going wrong with the cells adversely affected by the disease. Thus far, efforts to study juvenile Batten disease have been done using rodent models or human skin cells; neither of which accurately mimic the disease in the brain, leaving researchers without proper tools to study the disease or a solid platform for testing drugs that prevent, halt, or reverse its progression. This will be the largest and first genetically diverse collection of human iPS cells for a pediatric brain disease.*

In addition to working with BBDF to actively recruit patients and families to donate skin samples, Batten Disease Support and Research Association (BDSRA) is providing resources and technical support, spreading awareness among academic scientists, and notifying its Pharmaceutical partners. Together, BBDF and BDSRA will ensure that juvenile Batten disease and other researchers are aware of and utilize the 48 stem cell lines resulting from this collaboration to further juvenile Batten disease research worldwide.

We know the genetic mutations associated with juvenile Batten disease. This partnership will result in stem cell models of juvenile Batten, giving researchers an unprecedented look at how the disease develops, speeding research towards a cure, said Susan L. Solomon, NYSCF Chief Executive Officer.

Working with NYSCF to generate functional neuronal subtypes from patients and families is a stellar example of one of our key strategies in the fight against juvenile Batten disease: creating resource technology with the potential to transform juvenile Batten disease research and accelerate our timeline to a cure, said Danielle M. Kerkovich, PhD, BBDF Principal Scientist.

Juvenile Batten disease begins in early childhood between the ages of five and ten. Initial symptoms typically begin with progressive vision loss, followed by personality changes, behavioral problems, and slowed learning. These symptoms are followed by a progressive loss of motor functions, eventually resulting in wheelchair use and premature death. Seizures and psychiatric symptoms can develop at any point in the disease.

Juvenile Batten disease is one disorder in a group of rare, fatal, inherited disorders known as Batten disease. Over 40 different errors (mutations) in the CLN3 segment of DNA (gene) have been attributed to juvenile Batten disease. The pathological hallmark of juvenile Batten is a buildup of lipopigment in the body's tissues. It is not known why lipopigment accumulates or why brain and eventually, heart cells are selectively damaged. It is, however, clear that we need disease-specific tools that reflect human disease in order to figure this out and to build therapy.

NYSCF is a world leader in stem cell research and production with a mission to find cures for the devastating diseases of our time, including juvenile Batten disease. NYSCF has developed the NYSCF Global Stem Cell ArrayTM, an automated robotic technology that standardizes and scales stem cell production and differentiation, enabling the manufacture and analysis of large numbers of identical cells from skin samples of patients. The Array technology allows for the production of large-scale iPS cells that have the potential to become any cell type in the body.

This collaboration brings together the expertise of these two leading non-profit organizations, the support of BDSRA, and the participation of affected families, to create and make available to researchers, juvenile Batten disease iPS cell lines. Building on the NYSCF Research Institutes leading stem cell expertise and unique automated technology and analytics, while taking advantage of the tremendous resources and expertise of BBDF, BDSRA and affected families, this collaboration will move research

See the original post:
The New York Stem Cell Foundation Partners With Beyond Batten Disease Foundation to Fight Juvenile Batten Disease

Posted in Cell Therapy | Comments Off on The New York Stem Cell Foundation Partners With Beyond Batten Disease Foundation to Fight Juvenile Batten Disease

NYSCF partners with Beyond Batten Disease Foundation to fight juvenile Batten disease

Posted: July 25, 2014 at 4:45 am

PUBLIC RELEASE DATE:

23-Jul-2014

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY -- The New York Stem Cell Foundation (NYSCF) and Beyond Batten Disease Foundation (BBDF) have partnered to develop stem cell resources to investigate and explore new treatments and ultimately find a cure for juvenile Batten disease, a fatal illness affecting children.

NYSCF scientists will create induced pluripotent stem (iPS) cell lines from skin samples of young people affected by juvenile Batten disease as well as unaffected family members. IPS cell lines are produced by artificially "turning back the clock" on skin cells to a time when they were embryonic-like and capable of becoming any cell in the body. Reprogramming juvenile Batten iPS cells to become brain and heart cells will provide the infrastructure needed to investigate what is going wrong with the cells adversely affected by the disease. Thus far, efforts to study juvenile Batten disease have been done using rodent models or human skin cells, neither of which accurately mimic the disease in the brain, leaving researchers without proper tools to study the disease or a solid platform for testing drugs that prevent, halt, or reverse its progression. This will be the largest and first genetically diverse collection of human iPS cells for a pediatric brain disease.

In addition to working with BBDF to actively recruit patients and families to donate skin samples, Batten Disease Support and Research Association (BDSRA) is providing resources and technical support, spreading awareness among academic scientists, and notifying its Pharmaceutical partners. Together, BBDF and BDSRA will ensure that juvenile Batten disease and other researchers are aware of and utilize the 48 stem cell lines resulting from this collaboration to further juvenile Batten disease research worldwide.

"We know the genetic mutations associated with juvenile Batten disease. This partnership will result in stem cell models of juvenile Batten, giving researchers an unprecedented look at how the disease develops, speeding research towards a cure," said Susan L. Solomon, NYSCF Chief Executive Officer.

"Working with NYSCF to generate functional neuronal subtypes from patients and families is a stellar example of one of our key strategies in the fight against juvenile Batten disease: creating resource technology with the potential to transform juvenile Batten disease research and accelerate our timeline to a cure," said Danielle M. Kerkovich, PhD, BBDF Principal Scientist.

Juvenile Batten disease begins in early childhood between the ages of five and ten. Initial symptoms typically begin with progressive vision loss, followed by personality changes, behavioral problems, and slowed learning. These symptoms are followed by a progressive loss of motor functions, eventually resulting in wheelchair use and premature death. Seizures and psychiatric symptoms can develop at any point in the disease.

Juvenile Batten disease is one disorder in a group of rare, fatal, inherited disorders known as Batten disease. Over 40 different errors (mutations) in the CLN3 segment of DNA (gene) have been attributed to juvenile Batten disease. The pathological hallmark of juvenile Batten is a buildup of lipopigment in the body's tissues. It is not known why lipopigment accumulates or why brain and eventually, heart cells are selectively damaged. It is, however, clear that we need disease-specific tools that reflect human disease in order to figure this out and to build therapy.

Read the rest here:
NYSCF partners with Beyond Batten Disease Foundation to fight juvenile Batten disease

Posted in Cell Therapy | Comments Off on NYSCF partners with Beyond Batten Disease Foundation to fight juvenile Batten disease

A US Leader in Stem Cell Therapy – StemGenex – Video

Posted: July 24, 2014 at 3:42 am


A US Leader in Stem Cell Therapy - StemGenex
http://www.stemgenex.com/ - StemGenex offer patients access to cutting-edge adipose stem cell therapies for degenerative diseases, cosmetic enhancements and ...

By: EMSearch C

View post:
A US Leader in Stem Cell Therapy - StemGenex - Video

Posted in Cell Therapy | Comments Off on A US Leader in Stem Cell Therapy – StemGenex – Video

Motoneuron-like cell transplantation and GDNF delivery for repair of SCI

Posted: July 21, 2014 at 6:43 pm

PUBLIC RELEASE DATE:

18-Jul-2014

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research

Adipose-derived stem cells-transdifferentiated motoneurons after transplantation can integrate in the host cord. However, cell survival has been restricted by a lack of ideal environment for nerve cell growth. Taki Tiraihi, Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Iran developed rat models of spinal cord injury (SCI) and injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neurotrophic factor (GDNF)-gelfoam complex into the myelin sheath. Motoneurons-like cell transplantation combined with GDNF delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of GDNF, adipose-derived stem cells or motoneurons alone. These findings suggest that motoneuron-like cell transplantation combined with GDNF delivery holds a great promise for repair of spinal cord injury. Related results were published in Neural Regeneration Research (Vol. 9, No. 10, 2014).

###

Article: "Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury" by Alireza Abdanipour, Taki Tiraihi, Taher Taheri (Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran) Abdanipour A, Tiraihi T, Taheri T. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury. Neural Regen Res. 2014;9(10):1003-1013.

Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read the original here:
Motoneuron-like cell transplantation and GDNF delivery for repair of SCI

Posted in Cell Therapy | Comments Off on Motoneuron-like cell transplantation and GDNF delivery for repair of SCI

Page 139«..1020..138139140141..150160..»