Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Cell Therapy
Why stem cell therapy is not available in Europe or United States of America – Video
Posted: July 8, 2014 at 7:41 am
Why stem cell therapy is not available in Europe or United States of America
In conversation with Dr Alok Sharma (MS, MCh.) Professor of Neurosurgery Head of Department, LTMG Hospital LTM Medical College, Sion, Mumbai. Explains, Why stem cell therapy is not available...
By: Neurogen Brain and Spine Institute
Read the original:
Why stem cell therapy is not available in Europe or United States of America - Video
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Why stem cell therapy is not available in Europe or United States of America – Video
Hue Hospital Succeeds in Treating Cancer with Stem Cell
Posted: July 8, 2014 at 7:40 am
Doctors of Hue Central Hospital have used stem cell transplantation to successfully treat a cancer patient of the last stage. The Hue Central Hospital announced on June 26 that its doctors have cured Le Thi Sau, 52, who was suffering ovarian cancer in the last stage, with stem cell transplant. The operation is the success of the scientific project Using stem cell in breast cancer and cervical cancer managed by Professor Nguyen Duy Thang, deputy head of the hospital. Adult stem cells have been used to treat certain cancers through bone marrow transplants. In this therapy, the stem cells that give rise to the different blood cells in the body are transplanted into the bone marrow of the patient, where they regenerate the blood. The project was given green light to carry out in the Hue Central Hospital by the Ministry of Science and Technology. Professor Nguyen Duy Thang said the success of this method will pave the way for next operations on breast and ovarian cancer patients. In the time ahead, the hospital continues to treat two other cancer female patients with the stem cell treatment. It is hoped that the treatment will save many cancer patients. (www.saigon-gpdaily.com.vn June 27)
Follow this link:
Hue Hospital Succeeds in Treating Cancer with Stem Cell
Posted in Cell Therapy
Comments Off on Hue Hospital Succeeds in Treating Cancer with Stem Cell
Stem Cell Therapy and Platelet Rich Plasma (PRP) Therapy – Video
Posted: July 6, 2014 at 8:49 pm
Stem Cell Therapy and Platelet Rich Plasma (PRP) Therapy
By: DR Kyle Kinmon
Visit link:
Stem Cell Therapy and Platelet Rich Plasma (PRP) Therapy - Video
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Stem Cell Therapy and Platelet Rich Plasma (PRP) Therapy – Video
Stem cell type resists chemotherapy drug
Posted: July 3, 2014 at 9:41 pm
A new study shows that adipose-derived human stem cells, which can become vital tissues such as bone, may be highly resistant to the common chemotherapy drug methotrexate (MTX). The preliminary finding from lab testing may prove significant because MTX causes bone tissue damage in many patients.
MTX is used to treat cancers including acute lymphoblastic leukemia, the most common form of childhood cancer. A major side effect of the therapy, however, is a loss of bone mineral density. Other bone building stem cells, such as bone marrow derived stem cells, have not withstood MTX doses well.
"Kids undergo chemotherapy at such an important time when they should be growing, but instead they are introduced to this very harsh environment where bone cells are damaged with these drugs," said Olivia Beane, a Brown University graduate student in the Center for Biomedical Engineering and lead author of the study. "That leads to major long-term side effects including osteoporosis and bone defects. If we found a stem cell that was resistant to the chemotherapeutic agent and could promote bone growth by becoming bone itself, then maybe they wouldn't have these issues."
Stem cell survivors
Originally Beane was doing much more basic research. She was looking for chemicals that could help purify adipose-derived stem cells (ASCs) from mixed cell cultures to encourage their proliferation. Among other things, she she tried chemotherapy drugs, figuring that maybe the ASCs would withstand a drug that other cells could not. The idea that this could help cancer patients did not come until later.
In the study published online in the journal Experimental Cell Research, Beane exposed pure human ASC cultures, "stromal vascular fraction" (SVF) tissue samples (which include several cell types including ASCs), and cultures of human fibroblast cells, to medically relevant concentrations of chemotherapy drugs for 24 hours. Then she measured how those cell populations fared over the next 10 days. She also measured the ability of MTX-exposed ASCs, both alone and in SVF, to proliferate and turn into other tissues.
Beane worked with co-authors fellow center member Eric Darling, the Manning Assistant Professor in the Department of Molecular Pharmacology, Physiology and Biotechnology, and research assistant Vera Fonseca.
They observed that three chemotherapy drugs -- cytarabine, etoposide, and vincristine -- decimated all three groups of cells, but in contrast to the fibroblast controls, the ASCs withstood a variety of doses of MTX exceptionally well (they resisted vincristine somewhat, too). MTX had little or no effect on ASC viability, cell division, senescence, or their ability to become bone, fat, or cartilage tissue when induced to do so.
The SVF tissue samples also withstood MTX doses well. That turns out to be significant, Darling said, because that's the kind of tissue that would actually be clinically useful if an ASC-based therapy were ever developed for cancer patients. Hypothetically, fresh SVF could be harvested from the fat of a donor, as it was for the study, and injected into bone tissue, delivering ASCs to the site.
To understand why the ASCs resist MTX, the researchers conducted further tests. MTX shuts down DNA biosynthesis by binding the protein dihydrofolate reductase so that it is unavailable to assist in that essential task. The testing showed that ASCs ramped up dihydrofolate reductase levels upon exposure to the drug, meaning they produced enough to overcome a clinically relevant dose of MTX.
See original here:
Stem cell type resists chemotherapy drug
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Stem cell type resists chemotherapy drug
Some stem cell methods closer to 'gold standard' than others
Posted: July 3, 2014 at 9:41 pm
PUBLIC RELEASE DATE:
2-Jul-2014
Contact: Kristina Grifantini press@salk.edu Salk Institute
LA JOLLA-Researchers around the world have turned to stem cells, which have the potential to develop into any cell type in the body, for potential regenerative and disease therapeutics.
Now, for the first time, researchers at the Salk Institute, with collaborators from Oregon Health & Science University and the University of California, San Diego, have shown that stem cells created using two different methods are far from identical. The finding could lead to improved avenues for developing stem cell therapies as well as a better understanding of the basic biology of stem cells.
The researchers discovered that stem cells created by moving genetic material from a skin cell into an empty egg cell-rather than coaxing adult cells back to their embryonic state by artificially turning on a small number of genes-more closely resemble human embryonic stem cells, which are considered the gold standard in the field.
"These cells created using eggs' cytoplasm have fewer reprogramming issues, fewer alterations in gene expression levels and are closer to real embryonic stem cells," says co-senior author Joseph R. Ecker, professor and director of Salk's Genomic Analysis Laboratory and co-director of the Center of Excellence for Stem Cell Genomics. The results of the study were published today in Nature.
Human embryonic stem cells (hESCs) are directly pulled from unused embryos discarded from in-vitro fertilization, but ethical and logistical quandaries have restricted their access. In the United States, federal funds have limited the use of hESCs so researchers have turned to other methods to create stem cells. Most commonly, scientists create induced pluripotent stem (iPS) cells by starting with adult cells (often from the skin) and adding a mixture of genes that, when expressed, regress the cells to a pluripotent stem-cell state. Researchers can then coax the new stem cells to develop into cells that resemble those in the brain or in the heart, giving scientists a valuable model for studying human disease in the lab.
Over the past year, a team at OHSU built upon a technique called somatic cell nuclear transfer (the same that is used for cloning an organism, such as Dolly the sheep) to transplant the DNA-containing nucleus of a skin cell into an empty human egg, which then naturally matures into a group of stem cells.
Ecker, holder of the Salk International Council Chair in Genetics, teamed up with Shoukhrat Mitalipov, developer of the new technique and director of the Center for Embryonic Cell and Gene Therapy at OHSU, and UCSD assistant professor Louise Laurent to carry out the first direct comparison of the two approaches. The scientists created four lines of nuclear transfer stem cells all using eggs from a single donor, along with seven lines of iPS cells and two lines of the gold standard hESCs. All cell lines were shown to be able to develop into multiple cell types and had nearly identical DNA content contained within them.
Read the rest here:
Some stem cell methods closer to 'gold standard' than others
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Some stem cell methods closer to 'gold standard' than others
Research team pursues techniques to improve elusive stem cell therapy
Posted: July 1, 2014 at 6:49 pm
Stem cell scientists had what first appeared to be an easy win for regenerative medicine when they discovered mesenchymal stem cells several decades ago. These cells, found in the bone marrow, can give rise to bone, fat, and muscle tissue, and have been used in hundreds of clinical trials for tissue repair. Unfortunately, the results of these trials have been underwhelming. One problem is that these stem cells don't stick around in the body long enough to benefit the patient.
But Harvard Stem Cell Institute (HSCI) scientists at Boston Children's Hospital aren't ready to give up. A research team led by Juan Melero-Martin, PhD, recently found that transplanting mesenchymal stem cells along with blood vessel-forming cells naturally found in circulation improves results. This co-transplantation keeps the mesenchymal stem cells alive longer in mice after engraftment, up to a few weeks compared to hours without co-transplantation. This improved survival gives the mesenchymal stem cells sufficient time to display their full regenerative potential, generating new bone or fat tissue in the recipient mouse body. The finding was published in the Proceedings of the National Academy of Sciences (PNAS).
"We are losing mesenchymal stem cells very rapidly when we transplant them into the body, in part, because we are not giving them what they need," said Melero-Martin, an HSCI affiliated faculty member and an assistant professor of surgery at Boston Children's Hospital, Harvard Medical School.
"In the body, these cells sit very close to the capillaries, constantly receiving signals from them, and even though this communication is broken when we isolate mesenchymal stem cells in a laboratory dish, they seem to be ok because we have learned how to feed them," he said. "But when you put the mesenchymal stem cells back into the body, there is a period of time when they will not have this proximity to capillary cells and they start to die; so including these blood vessel-forming cells from the very beginning of a transplantation made a major difference."
Melero-Martin's research has immediate translational implications, as current mesenchymal clinical trials don't follow a co-transplantation procedure. He is already collaborating with surgical colleagues at Boston Children's Hospital to see if his discovery can help improve fat and bone grafts. However, giving patients two different types of cells, as opposed to just one, would require more time and experiments to determine safety and efficacy. Melero-Martin is seeking to identify the specific signals mesenchymal stem cells receive from the blood vessel-forming cells in order to be able to mimic the signals without the cells themselves.
"Even though mesenchymal stem cells have been around for a while, I think there is still a lack of fundamental knowledge about communication between them and other cells in the body," he said. "My lab is interested in going even beyond what we found to try to understand whether these cell-cell signals are different in each tissue of the body, and to learn how to educate both blood vessel-forming and mesenchymal stem cells to co-ordinate tissue specific regenerative responses."
Other Harvard Stem Cell Institute researchers are studying mesenchymal stem cells as bioengineering tools to deliver therapeutics, which is possible because of the cell type's unique ability to not trigger an immune response. Jeffrey Karp, PhD, at Brigham and Women's Hospital has developed several methods to turn these cells into drug-delivery vehicles, so that after transplantation they can, for example, hone in on swollen tissue and secrete anti-inflammatory compounds. And Khalid Shah, PhD, at Massachusetts General Hospital has designed a gel that holds mesenchymal stem cells in place so that they can expose brain tumors to cancer-killing herpes viruses.
"A lot of these applications have no real direct link with mesenchymal stem cells' supposed progenitor cell function," Melero-Martin said. "In our study, we went back to the collective ambition to use these cells as a way to regenerate tissues and we are not in a position to say how that affects other uses that people are proposing."
Story Source:
The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.
Follow this link:
Research team pursues techniques to improve elusive stem cell therapy
Posted in Cell Therapy
Comments Off on Research team pursues techniques to improve elusive stem cell therapy
Studies Test Effectiveness and Safety of Stem Cell Treatment for Urinary Incontinence
Posted: July 1, 2014 at 6:49 pm
Durham, NC (PRWEB) July 01, 2014
Medication and minimally invasive surgery to implant a sling can provide relief for millions of people who suffer from stress urinary incontinence (SUI), but not everyone responds to these therapeutic methods. A new study in the current STEM CELLS Translational Medicine tests the safety and effectiveness of stem cells as an alternative SUI treatment.
SUI results when the pelvic floor muscles, which support the bladder and urethra, weaken to the point that the muscles are not able to prevent urine from flowing when pressure is placed on the abdomen, such as when the person laughs or coughs. It occurs most often in women, due to childbirth and pregnancy.
Tissue engineering offers an attractive method to regenerate sphincter muscle, explained the studys corresponding author, Kirsi Kuismanen, from the department of obstetrics and gynecology at Tampere University Hospital (TUH) in Finland. She and her TUH colleagues teamed up with researchers from the Adult Stem Cell Group of BioMediTech in Tampere and the University of Twente in the Netherlands on the study.
Previously, various different cell sources, such as skeletal muscle-derived stem cells (SkMSCs), mesenchymal stem cells derived from bone marrow (BMSCs) and adipose stem cells (ASCs), have been studied for treating urinary incontinence. The SkMSCs and BMSCs would be a potential alternative for incontinence therapy. However, when compared to ASCs, the major limitation of SkMSCs and BMSCs is the difficulty to obtain these cells in large quantities, Dr. Kuismanen said.
The study involved five SUI patients who either did not want a sling implant or had undergone implants but they proved unsuccessful. They were treated with ASCs combined with bovine collagen gel, which is a bulking agent, and saline.
Prior to the treatment, the ASCs were isolated from subcutaneous fat and expanded for three weeks in a laboratory. The mixture of ASCs and collagen was injected in the patients who were followed for three, six and 12 months after the injections. The primary end point was a cough test to measure the effect of the treatment. Validated questionnaires were used to determine the subjective cure rate.
After six months, one out of five patients displayed a negative cough test with full bladder. At one year, the cough test was negative with three patients; two were satisfied with the results and ended their treatment for SUI. Validated questionnaires showed some subjective improvement in all five patients.
This is the first study describing the use of autologous ASCs in combination with collagen gel for female SUI treatments, Dr. Kuismanen said. Thus far, the treatment with autologous ASCs has proven safe and well tolerated. However, the feasibility and efficacy of the treatment were not optimal so additional research is needed to develop SUI injection therapies.
New treatments are needed for this common condition that affects millions of women, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. The current study, believed to be the first to evaluate adipose-derived stem cells in combination with collagen, adds to the body of knowledge about the safety and effectiveness of stem cell treatments for stress urinary incontinence.
The rest is here:
Studies Test Effectiveness and Safety of Stem Cell Treatment for Urinary Incontinence
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Studies Test Effectiveness and Safety of Stem Cell Treatment for Urinary Incontinence
Dr Lox Stem Cell Therapy WFLA News 8 – Video
Posted: June 29, 2014 at 11:40 am
Dr Lox Stem Cell Therapy WFLA News 8
Dr. Lox | http://www.drlox.com | 727-462-5582 (WFLA) When Judy Loar, 68, could not bear to walk any longer due to excruciating pain in both of her knees from degenerative joint disease, she did what...
By: Dr. Lox
Originally posted here:
Dr Lox Stem Cell Therapy WFLA News 8 - Video
Posted in Cell Therapy
Comments Off on Dr Lox Stem Cell Therapy WFLA News 8 – Video
New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
Posted: June 28, 2014 at 4:43 pm
Durham, NC (PRWEB) June 27, 2014
A new study released today in STEM CELLS Translational Medicine suggests a new way to produce endothelial progenitor cells in quantities large enough to be feasible for use in developing new cancer treatments.
Endothelial progenitor cells (EPCs) are rare stem cells that circulate in the blood with the ability to differentiate into the cells that make up the lining of blood vessels. With an intrinsic ability to home to tumors, researchers have focused on them as a way to deliver gene therapy straight to the cancer. However, the challenge has been to collect enough EPCs for this use.
This new study, by researchers at the Institute of Bioengineering and Nanotechnology, National University of Singapore and Zhejiang University led by Shu Wang, Ph.D., explored whether human induced pluripotent stem cells (iPSCs) could provide the answer. iPSCs, generated from adult cells, can propagate indefinitely and give rise to every other cell type in the body, much like human embryonic stem cells, which are considered the gold standard for stem cell therapy.
However, human iPS cells can be generated relatively easily through reprogramming, a procedure that circumvents the bioethical controversies associated with deriving embryonic stem cells from human embryos, Dr. Wang said.
After inducing human iPS cells to differentiate into the EPCs, the research team compared the stability and reliability of the induced EPCs with regular EPCs by injecting them into mice with breast cancer that had metastasized (traveled) to the lungs. The results showed that their induced EPCs retained the intrinsic ability to home to tumors, just as regular EPCs do. They also did not promote tumor growth or metastasis.
We next tested the induced EPCs therapeutic potential by infusing them with an anticancer gene and injecting them into the mice, Dr. Wang said. The results indicated that the tumors were reduced and the animals survival rates increased.
Since this approach may use patient's own cells to prepare cellular therapeutics and is based on non-toxic immunotherapy, it holds potential for translation to clinical application and may be particularly valuable as a new type of anti-metastatic cancer therapy.
With the increasing potential of using EPCs as cancer therapeutics, it is important to have a reliable and stable supply of human EPCs, said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. This study demonstrates the feasibility of generating EPs from early-passage human iPS cells.
###
Here is the original post:
New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
Posted in Cell Therapy
Comments Off on New Stem Cell Production Method Could Clear Way for Anticancer Gene Therapy
South Reno Veterinary Hospital is Prolonging Pet Quality of Life with Stem Cell Therapy and the Ability to Bank Cells …
Posted: June 27, 2014 at 7:45 am
Poway, CA (PRWEB) June 27, 2014
South Reno Veterinary Hospital and Mathew Schmitt, VMD have recently discovered the secret to prolonging a pets quality of life with the use of stem cell therapy, and the ability to bank stem cells for the future care of a pet. Dr. Schmitt and South Reno Veterinary Hospital offer stem cell therapy and stem cell banking through Vet-Stem, Inc. for small animal osteoarthritis and partial ligament tears.
As many as 65% of dogs between the ages of 7 and 11 years old will be inflicted with some degree of arthritis. For certain specific breeds the percentage is as high as 70, such as Labrador Retrievers. Barley, a Labrador mix, was treated using cells from a sample of his own fat, and some stem cells are also stored (or banked) with Vet-Stem just in case he needs future treatment with Dr. Schmitt. Those banked stem cells do not have to be used for the same use as they were originally used for either. For example, if a pet has stem cell therapy initially for osteoarthritis pain and inflammation, the banked stem cells can be used years later for an acute injury.
After rupturing the canine cruciate ligaments in both of his stifles, or hind knees, Barleys pain was managed by medication but then medication was finally not enough and he was facing the possibility of surgery. Dr. Schmitt reported shifting lameness in Barleys hind end, which was a sign of severe discomfort. Barleys owner did not want to put him through surgery on both knees. Instead, Barleys owner elected for stem cell therapy.
I fully believe stem cell therapy has significantly prolonged Barleys quality of life and I am so glad I found out about the therapy when he was injured at six years old. He just turned 13 and his legs are still doing well. It truly is a miracle of science and I tell all my friends about it, said Barleys mom.
Vet-Stem, along with countless research and academic institutions, is working to support additional uses for stem cells which may include treatment for liver disease, kidney disease, auto-immune disorders, and inflammatory bowel disease in animals. These uses for stem cells are in the early stages of development and may provide additional value to the ability to bank stem cells to ensure a pets quality of life into the future.
About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine, visit http://www.vet-stem.com/ or call 858-748-2004.
View original post here:
South Reno Veterinary Hospital is Prolonging Pet Quality of Life with Stem Cell Therapy and the Ability to Bank Cells ...
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on South Reno Veterinary Hospital is Prolonging Pet Quality of Life with Stem Cell Therapy and the Ability to Bank Cells …