Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Cell Therapy
Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
Posted: June 26, 2012 at 11:12 pm
Public release date: 26-Jun-2012 [ | E-mail | Share ]
Contact: David Eve celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair
Putnam Valley, NY. (June 26 , 2012) Researchers in Japan who evaluated the risks and efficacy of transplanting two varieties of stem cells into mouse cochlea have concluded that both adult-derived induced pluripotent stem (iPS) cells and mouse embryonic stem (ES) cells demonstrate similar survival and neural differentiation capabilities. However, there is a risk of tumor growth associated with transplanting iPS cells into mouse cochleae. Given the potential for tumorigenesis, they concluded that the source of iPS cells is a critical issue for iPS cell-based therapy.
Their study is published in a recent issue of Cell Transplantation (21:4), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/,
"Hearing loss affects millions of people worldwide," said Dr. Takayuki Nakagawa of the Department of Otolaryngology, Graduate School of Medicine, Kyoto University, Japan. "Recent studies have indicated the potential of stem-cell based approaches for the regeneration of hair cells and associated auditory primary neurons. These structures are essential for hearing and defects result in profound hearing loss and deafness."
The authors noted that embryonic stem cells have previously been identified as promising candidates for transplantation, however they have also been associated with immune rejection and ethics issues. Consequently, this study compared the survival and neural differentiation capabilities of ES and three clones of mouse iPS cells.
"Our study examined using induced pluripotent stem cells generated from the patient source to determine if they offer a promising alternative to ES cells," explained Dr. Nakagawa. "In addition, the potential for tumor risk from iPS cells needed clarification."
Four weeks after transplantation, the researchers found that the majority of cochleae that had been transplanted exhibited the settlement of iPS or ES-derived neurons. However, there was a difference in the number of cells present based on cell lines. They noted that the number of cells able to be transplanted into cochleae is limited because of the cochleae's tiny size. Thus, the number of settled cells is low.
They also noted the formation of a teratoma (encapsulated tumor) in some cochlea after transplantation with one group of iPS cells.
"To our knowledge, this is the first documentation of teratoma formation in cochleae after cell transplantation," said Dr. Nakagawa.
See the original post:
Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
Posted in Cell Therapy
Comments Off on Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
Magnet helps target transplanted iron-loaded cells to key areas of heart
Posted: June 26, 2012 at 11:12 pm
Optimal stem cell therapy delivery to damaged areas of the heart after myocardial infarction has been hampered by inefficient homing of cells to the damaged site. However, using rat models, researchers in France have used a magnet to guide cells loaded with iron oxide nanoparticles to key sites, enhancing the myocardial retention of intravascularly delivered endothelial progenitor cells.
The study is published in a recent issue of Cell Transplantation (21:4), now freely available online.
"Cell therapy is a promising approach to myocardial regeneration and neovascularization, but currently suffers from the inefficient homing of cells after intracavitary infusion," said Dr. Philippe Menasche of the INSERM U633 Laboratory of Surgical Research in Paris. "Our study was aimed at improving and controlling homing by loading human cord-blood-derived endothelial progenitor cells (EPCs) for transplant with iron oxide nanoparticles in order to better position and retain them in the hearts of myocardial-injured test rats by using a subcutaneously implanted magnet."
The researchers found that the cells were sufficiently magnetic to be able to be remotely manipulated by a magnet subsequent to implantation.
According to the researchers, an objective assessment of the technique to enhance the homing of circulating stem cells is the ability to track their fate in vivo. This was accomplished by visualization with MRI.
"We found a good correlation between MRI non-invasive follow-up of the injected cells and immunofluoresence or quantitative PCR data," said Dr. Menasche. The researchers concluded that further studies were needed to follow cell homing at later time points. They noted that the magnitude of homing they experienced may have been reduced by the relatively small number of cells used, owing to their large size and the subsequent risk of coronary thrombosis.
"In a rat model of myocardial infarction, this pilot study suggested homing of circulating stem cells can be improved by magnetic targeting and warrants additional benchwork to confirm the validity of concept," said Dr. Menasche. "There is also a need to optimize the parameters of targeting and assess the relevance of this approach in a clinically relevant large animal model."
"This study highlights the use of magnets to target transplanted cells to specific sites which could increase their regenerative impact. Factors to still be extensively tested include confirming the safety of the cells containing the magnetic particles and whether this process alters the cell's abilities" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.
More information: Chaudeurge, A.; Wilhelm, C.; Chen-Tournoux, A.; Farahmand, P.; Bellamy, V.; Autret, G.; Mnager, C.; Hagge, A.; Larghro, J.; Gazeau, F.; Clment, O.; Menasch, P. Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention? Cell Transplant. 21 (4):679-691; 2012.
Journal reference: Cell Transplantation
The rest is here:
Magnet helps target transplanted iron-loaded cells to key areas of heart
Posted in Cell Therapy
Comments Off on Magnet helps target transplanted iron-loaded cells to key areas of heart
Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video
Posted: June 25, 2012 at 11:10 pm
25-06-2012 00:49 ProGenaCell physicians provide advanced cellular therapy to patients suffering from all known degenerative diseases. For over 70 years cell therapy has been used safely and effectively in such diverse regions as the European Union, former USSR, Republic of China, Middle East, Pacific Rim, Central and South America, Baja California and more recently the United States under select clinical trials. ProGenaCell provides patients with autologous stem cells (patient's own cells), adult progenitor xenocells, and organ extracts & growth factors. These "cellular products" are delivered to physicians who have been approved to prescribe and administer cellular therapies to patients in need. All cellular products are lawfully manufactured, and regulated under strict European Union guidelines. Visit us:
Read more:
Dr. Ulrich Friedrichson, MD,PHD - Cell Therapy Introduction - Video
Posted in Cell Therapy
Comments Off on Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video
Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video
Posted: June 25, 2012 at 2:12 pm
25-06-2012 00:49 ProGenaCell physicians provide advanced cellular therapy to patients suffering from all known degenerative diseases. For over 70 years cell therapy has been used safely and effectively in such diverse regions as the European Union, former USSR, Republic of China, Middle East, Pacific Rim, Central and South America, Baja California and more recently the United States under select clinical trials. ProGenaCell provides patients with autologous stem cells (patient's own cells), adult progenitor xenocells, and organ extracts & growth factors. These "cellular products" are delivered to physicians who have been approved to prescribe and administer cellular therapies to patients in need. All cellular products are lawfully manufactured, and regulated under strict European Union guidelines. Visit us:
See the rest here:
Dr. Ulrich Friedrichson, MD,PHD - Cell Therapy Introduction - Video
Posted in Cell Therapy
Comments Off on Dr. Ulrich Friedrichson, MD,PHD – Cell Therapy Introduction – Video
Bioheart’s Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …
Posted: June 25, 2012 at 2:11 pm
SUNRISE, Fla., June 25, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that Kristin Comella, the company's Chief Science Officer presented at the 10th Annual Meeting of the International Society for Stem Cell Research (ISSCR) in Yokohama, Japan June 13 - 16, 2012. One of the world's premier stem cell research events, the ISSCR format includes international research and poster presentations from invited speakers, exceptional peer-to-peer learning and unparalleled networking opportunities.
Comella presented a poster on clinical applications of adipose or fat derived stem cells (ADSCs).
The ISSCR annual meeting serves as the largest forum for stem cell and regenerative medicine professionals from around the world. Through lectures, symposia, workshops, and events attendees experience innovative stem cell and regenerative medicine research, advances and what's on the horizon. The meeting features more than 1,000 abstracts, nearly 150 speakers and provides numerous networking and professional development opportunities and social events. For additional information, visit http://www.isscr.org.
Kristin Comella has over 14 years experience in corporate entities with expertise in regenerative medicine, training and education, research, product development and senior management including more than 10 years of cell culturing experience. She has made a significant contribution to Bioheart's product development, manufacturing and quality systems since she joined the company in September 2004.
About Bioheart, Inc.
Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.
Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com, or visit us on Facebook: Bioheart and Twitter @BioheartInc.
Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.
Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.
The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2011, and its Quarterly Report on Form 10-Q for the quarter ended March 30, 2012.
Posted in Cell Therapy
Comments Off on Bioheart’s Chief Science Officer Kristin Comella Presents at 10th Annual Meeting of International Society for Stem …
NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure
Posted: June 25, 2012 at 2:11 pm
NEW YORK, June 25, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), a cell therapy company, today announced that it has been awarded a two year grant totaling $595,252 for the "Development of Human, Autologous, Pluripotent Very Small Embryonic Like (VSELs) Stem Cells as a Countermeasure to Radiation Threat" from the National Institute of Allergy and Infectious Diseases (NIAID), a division of the National Institutes of Health (NIH). This peer reviewed grant was awarded to support research to be headed by Denis O. Rodgerson, Ph.D., Director of Stem Cell Science for NeoStem and Mariusz Ratajczak, M.D., Ph.D., who is the head of the Stem Cell Biology Program at the James Graham Brown Cancer Center at the University of Louisville and co-inventor of VSELTM Technology.
This award will fund studies to investigate the potential of very small embryonic-like stem cells as a countermeasure to radiological and nuclear threat. The product candidate, which is an autologous stem cell therapy derived from the patient's own stem cells, will be developed to rescue patients who have been exposed to radiation due to nuclear accident or terrorist threat and to treat cancer patients who have undergone radiation therapy and who consequently have compromised immune systems. The award includes $295,252 for the first year and $300,000 for the second year of the project.
Dr. Denis O. Rodgerson, Director of Stem Cell Science for NeoStem, said, "We are very excited to add radiation treatment to the growing list of indications for which our VSELTM Technology is being evaluated. Those exposed to acute high-dose radiation have compromised immune systems such that the virulence and infectivity of biological agents is dramatically increased. Death can occur within 1-6 weeks following radiation exposure. Currently there is only one intervention that saves a fatally irradiated person -- a rescue through stem cell transplantation. VSELs might be an ideal cell therapy to regenerate the body's immune system and repair other tissues damaged by radiation exposure. Most importantly, early studies show VSELs are resistant to lethal radiation which destroys other immune system restoring stem cells in the body, making autologous treatment post-exposure possible."
Dr. Robin L. Smith, Chairman and CEO of NeoStem, added, "NeoStem is pleased that the NIAID is funding this cutting edge technology that we hope will reinvent the treatment landscape for acute radiation syndrome. We plan to continue to pursue NIH SBIR grants to fund our VSEL technology platform development with non-dilutive capital."
About VSELTM Technology
NeoStem has a worldwide exclusive license to VSELTM Technology. Research by Dr. Mariusz Ratajczak, M.D., Ph.D., and others at the University of Louisville provides compelling evidence that bone marrow contains a heterogeneous population of stem cells that have properties similar to those of an embryonic stem cell. These cells are referred to as very small embryonic-like stem cells. This finding opens the possibility of capturing some of the key advantages associated with embryonic stem cells without the ethical or moral dilemmas and without some of the potential negative biological effects associated with stem cells of embryonic derivation. The possibility of autologous VSEL treatments is yet another important potential benefit to this unique population of adult stem cells. VSELTM Technology offers the potential to go beyond the paracrine effect, yielding cells that actually differentiate into the target tissue creating true cellular regeneration.
About NeoStem, Inc.
NeoStem, Inc. ("we," "NeoStem" or the "Company") continues to develop and build on its core capabilities in cell therapy to capitalize on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a large role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. Our January 2011 acquisition of Progenitor Cell Therapy, LLC ("PCT") provides NeoStem with a foundation in both manufacturing and regulatory affairs expertise. We believe this expertise, coupled with our existing research capabilities and collaborations, will allow us to achieve our mission of becoming a premier cell therapy company. Our PCT subsidiary's manufacturing base is one of the few current Good Manufacturing Practices ("cGMP") facilities available for contracting in the burgeoning cell therapy industry. Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and Amorcyte is enrolling patients for a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. We also expect to begin a Phase 1 clinical trial by 2012/2013 to investigate AMR-001's utility in arresting the progression of congestive heart failure and the associated comorbidities of that disease. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is engaged in collaboration with Becton-Dickinson that is exploring the earlier stage clinical development of a T-cell therapy for autoimmune conditions. In addition, our pre-clinical assets include our VSELTM Technology platform as well as our MSC (mesenchymal stem cells) product candidate for regenerative medicine.
For more information on NeoStem, please visit http://www.neostem.com.
Forward-Looking Statements
The rest is here:
NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure
Posted in Cell Therapy
Comments Off on NeoStem Awarded NIAID Research Grant for the Development of VSEL Technology for Radiation Exposure
Notre Dame establishes professorships in adult stem cell research
Posted: June 23, 2012 at 4:12 am
Public release date: 22-Jun-2012 [ | E-mail | Share ]
Contact: William Gilroy gilroy.6@nd.edu 574-631-4127 University of Notre Dame
Alumnus Michael Gallagher and his wife, Elizabeth, have made a $5 million gift to establish the Elizabeth and Michael Gallagher Family Professorships in Adult Stem Cell Research at the University of Notre Dame.
Their gift, which will fund three new endowed professorships in adult and all forms of non-embryonic stem cell research, will strengthen Notre Dame's leadership in the field of stem cell research and enhance the University's effective dialogue between the biomedical research community and the Catholic Church on matters related to the use and application of stem cells and regenerative medicine.
"As a Catholic university, Notre Dame carries a mantle of responsibility to use our scholarship and resources to help alleviate human suffering, and, in this area of research in particular, to do so with deep respect for the sanctity of all human life," said Rev. John I. Jenkins, C.S.C., the University's president. "These new professorships will enable us to effectively build upon an already strong foundation in this critically important field. We are tremendously grateful to the Gallaghers for making this possible with their transformative gift."
Despite years of research, there are no known cures for a large number of degenerative diseases, such as Type 1 diabetes, Parkinson's disease, cardiovascular disease, macular degeneration and spinal cord injuries. Stem cell research has the potential to contribute to the discovery of new and successful treatments for these and other diseases because it holds the unique promise of regenerating damaged cells and tissues, fully restoring tissues and organs to their normal function.
Although this vital area of research could accelerate the ability to alleviate much human suffering, it has generated extensive ethical debate with the use of embryonic versus non-embryonic stem cells. The Catholic Church affirms the dignity of all human life at every stage and vigorously opposes the destruction of human embryos for the harvesting of stem cells. At the same time, the Church strongly endorses the use of adult and non-embryonic stem cell research as a potential therapy for individuals suffering from these debilitating diseases. Research has demonstrated that adult stem cells, including all forms of non-embryonic stem cells, such as induced pluripotent stem cells and umbilical cord stem cells, can be harvested and programmed to achieve pluripotency the same characteristic that enables embryonic stem cells to differentiate into any type of cell.
An urgent need exists to increase the number of faculty experts performing adult stem cell research at Notre Dame. Doing so will expand upon the strong foundation the College of Science holds in these areas and will help create an environment for excellence in which faculty and students can learn, grow, collaborate and ultimately affect human health.
"We are overwhelmed with gratitude at the generous gift from Mike and Liz Gallagher," said Gregory P. Crawford, dean of the College of Science. "The impact of this gift is truly beyond measure. It will play a crucial role in attracting three more of the best faculty in the field of adult stem cell research to Notre Dame. Furthermore, this gift will equip our existing talented group of adult stem cell researchers at Notre Dame to take the next great leap toward ultimately forming a premier center in adult stem cell research."
Michael Gallagher is a 1991 graduate of Notre Dame, and his wife, Elizabeth, is a 1992 graduate of Saint Mary's College. They have two sons, Brock and Jack, and currently live near Denver.
Follow this link:
Notre Dame establishes professorships in adult stem cell research
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Notre Dame establishes professorships in adult stem cell research
Stem cell therapy in Hawaii going to the dogs
Posted: June 22, 2012 at 9:21 am
HAWAII KAI (HawaiiNewsNow) -
Cutting-edge technology is helping Hawaii's pets live better lives for months, even years. We were there as a beloved dog named Kumba received one of the first-ever, in-clinic stem cell therapy surgeries in the islands.
13 year old Kumba doesn't know he's a guinea pig. The Rottweiler-Lab mix is one of the first in Hawaii to undergo the stem cell procedure at Surf Paws in Hawaii Kai.
Kumba suffers severe arthritis in his hips and knees, doesn't eat much, and is even a bit depressed. "It's an effort for him to get up off the floor, and when he gets up and crosses the room, you can see the stiffness," says his owner, Rumi Hospodar.
Kumba's kids learn some of details of his surgery. Then, he's moved to a table and nods off from anesthesia. Once he's prepped, the procedure begins. The vet removes about two tablespoons of fat tissue from Kumba's shoulder. From there, the stem cells are separated from the fat and activated. Then, they're injected back into the affected areas.
The entire process takes four hours, but the dog is actually only under for about 20 minutes. Surf Paws used to send the tissue to the mainland for processing, but with technology from Medi-Vet America, they can do it all here.
"The patient had to be, you know, go home and come back a few days later and the timing was a little bit difficult. Now, everything is same day," says Surf Paws veterinarian Dr. Cristina Miliaresis.
Cost depends on the size of animal but can run up to $2,800. It's mainly done on dogs, cats, and horses who suffer osteoarthritis, hip dysplasia, ligament and cartilage damage, and other degenerative diseases. Their quality of life can improve within a couple of weeks.
Dr. Miliaresis says, "Some people might say, 'Oh, the dog's 13. Why are you doing this for a 13 year old dog? But even 6 months, pain-free, after a very, it's not simple, but it's a pretty straightforward procedure, to me (would be) just amazing."
The techs move all 97 pounds of Kumba to post-op - while his anxious owner looks on.
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Stem cell therapy in Hawaii going to the dogs
Stem cell therapy gives dog new lease on life
Posted: June 22, 2012 at 9:21 am
Stem cell therapy has gone to the dogs. The technology aimed at giving ailing pets a new lease on life has arrived in Hawaii.
13-year-old Kumba is still a bit dazed, coming out of general anesthesia. The veterinarian at Surf Paws Animal Hospital just extracted about two tablespoons of fat tissue from the dog. Stem cells from that fat tissue will then be used to help him with his arthritis.
"Once we get the stem cells then we do some extra processing steps to wake them up so that they're very active. At the end of that, the veterinarian will inject the stem cells into the areas of damage," says Carol Spangler Vaughn of Medivet America.
A company called MediVet America is bringing the technology to animal hospitals in Hawaii. This is a first for Oahu. The company says the procedure works on other animals with different types of ailments.
"So the nice thing about this we're not gonna give you a puppy back but we'll give you some nice quality time with your animal. You won't have to put them down because of their arthritis," Vaughn said.
Kumba's arthritis had gotten worse in the past five years, and his owners were wondering whether it was best to end his life to stop him from suffering.
'When we start saying things like oh we don't know how much longer, poor Kumba, he must be in a lot of pain. That kind of stuff really hits home especially since he's been with us for so long," said Rumi Hospodar Kumba's owner.
But with this new procedure, they're counting on Kumba to be pain free in a few weeks and are looking forward to get backdoing some of the things Kumba enjoyed, like swimming.
"He can't do that now since his joints are so bad, and he's getting so old so that's one of the many things I'm looking forward to," Kelsea Hopsodar, his other owner said.
The cost of the procedure runs from 24 to 28 hundred dollars, and it's covered by most pet insurance policies.
Originally posted here:
Stem cell therapy gives dog new lease on life
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on Stem cell therapy gives dog new lease on life
‘Master molecule’ may improve stem cell treatment of heart attacks
Posted: June 21, 2012 at 7:10 pm
Public release date: 20-Jun-2012 [ | E-mail | Share ]
Contact: Phil Sneiderman prs@jhu.edu 443-287-9960 Johns Hopkins University
Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.
Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. For reasons not completely understood, however, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.
In a study published in the June 5 online edition of the journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.
"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.
The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."
Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient.
Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.
Levchenko's team wanted to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.
Original post:
'Master molecule' may improve stem cell treatment of heart attacks
Posted in Cell Therapy, Stem Cell Therapy
Comments Off on ‘Master molecule’ may improve stem cell treatment of heart attacks