Page 228«..1020..227228229230..240..»

Category Archives: Cell Therapy

MediVet-America Partners With Butler Schein Animal Health to Distribute World’s Leading Animal Stem Cell Technology to …

Posted: February 22, 2012 at 7:49 pm

Global leader in animal stem cell technology is poised for significant expansion through new partnership with top U.S. companion animal health distribution company.

Las Vegas, Nevada (PRWEB) February 22, 2012

MediVet-America, the global leader in veterinary stem cell technology and regenerative medicine, has entered into a distribution partnership with Butler Schein Animal Health, a division of Henry Schein, the leading companion animal health distribution company in the U.S., to sell and distribute stem cell kits and equipment to veterinarians serving the nation’s fast-growing $50 billion pet industry.

The announcement was made today at the Western Veterinary Conference in Las Vegas by Jeremy Delk, CEO of MediVet-America.

The two companies will partner to sell and distribute MediVet-America’s advanced stem cell technology to more than 26,000 veterinary clinics nationwide. Adult animal stem cell technology uses the body’s own regenerative healing power to help treat dogs, cats, horses and other animals suffering from painful arthritis, hip dysplasia and tendon, ligament and cartilage injuries and other ailments.

The Adipose-Derived Stem Cell Procedure Kit and state of the art equipment, co-developed with Medical Australia, enable veterinarians to remove a small sample of fat, separate the stem cells, then activate and inject them into affected areas.

“We are pleased to be teaming up with Butler Schein, the largest companion animal health distribution company in the nation,” said Delk. “Their strong track record in sales and distribution will further fuel our rapid growth and bring this breakthrough technology to more leading veterinary practices across the country.”

To introduce the distribution partnership, Delk said MediVet-America has developed an exclusive program of product and service offers that will be made available only to Butler Schein customers.

Veterinary practitioners in more than 200 markets throughout 42 states now perform the drug-free procedure entirely in their own clinics more quickly, effectively and economically than earlier generation animal stem cell therapy. MediVet-America’s new treatment, developed in Australia, is available in 26 countries worldwide.

“This exciting partnership will allow even more of our colleagues unparalleled access to MediVet-America’s superior technology, providing the most affordable and efficacious stem cell therapy in the industry,” said Mike Hutchinson, D.V.M., the world’s leading animal stem cell practitioner. Dr. Hutchinson, who has spoken around the world about stem cell therapy, most recently in Tokyo, has performed more than 300 procedures over the last 18 months in his practice near Pittsburgh, PA.

Partnering with the leading animal health manufacturers in the world, Butler Schein maintains an order-fill ratio greater than 98 percent, and is positioned to bring the broadest selection of veterinary products and strategic business solutions to veterinarians, including:

    A comprehensive product offering for companion animal, equine and large animal practices including biologicals, diagnostics, nutritionals, parasiticides and pharmaceuticals

    Technology hardware and software solutions     Capital equipment, supply products and repair services     Practice design and remodeling, client marketing and financial solutions

Stem cells are basic biological cells with the ability to differentiate into specialized tissue cells and regenerate new cells to replace or repair damaged tissue. The stem cells used in veterinary medicine are not embryonic, which have attracted controversy over the years, but are taken from adipose (fat) tissue of the adult animal.

Americans spent an estimated $50.8 billion in 2011 on their companion animals, according to the American Pet Products Association, up from $28.5 billion in 2001. MediVet-America’s stem cell treatment costs about $1,800 for small animals, $2,400 for horses. Stem cells also can be frozen and banked for future use through MediVet Lab Services.

MEDIVET-AMERICA

A research and development company and global leader in veterinary stem cell technology, MediVet-America provides innovative cell applications for the therapeutic care of animals. Headquartered in Nicholasville, Kentucky, MediVet-America develops advanced cellular designed kits and services for the treatment of arthritis and degenerative joint disease. The company also offers MediVet Lab Services in multiple locations around the world that provides technical support for in-house stem cell vets, as well as regional and national Adipose stem cell processing and cryo banking services for pets at a young age or for a maintenance program, autologous conditioned serum processing, and cell counting for in-house stem cell procedures. http://www.MediVet-America.com

BUTLER SCHEIN ANIMAL HEALTH

Butler Schein Animal Health is the leading U.S. companion animal health distribution company. Headquartered in Dublin, Ohio, the company operates through 18 distribution centers and 12 telecenters. Approximately 900 Butler Schein Animal Health team members, including 300 field sales representatives and 200 telesales and customer support representatives, serve animal health customers in all 50 states. http://www.ButlerShein.com

###

Dick Roberts
Roberts Communications
(412) 535-5000
Email Information

Here is the original post:
MediVet-America Partners With Butler Schein Animal Health to Distribute World's Leading Animal Stem Cell Technology to ...

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on MediVet-America Partners With Butler Schein Animal Health to Distribute World’s Leading Animal Stem Cell Technology to …

VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Posted: February 21, 2012 at 9:51 pm

ATLANTA, GA--(Marketwire -02/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has retained MissionIR, a national investor relations consulting firm, to develop and implement a strategic investor relations campaign. Through a network of investor-oriented online websites and full suite of investor awareness services, MissionIR broadens the influence of publicly traded companies and enhances their ability to attract growth capital and improve shareholder value.

"VistaGen's work with human stem cell technology is groundbreaking," said Sherri Snyder, Director of Marketing at MissionIR. "The company's versatile platform, Human Clinical Trials in a Test Tube™, provides clinically relevant predictions of potential heart toxicity of new drug candidates long before they are ever tested on humans. Guided by a management team with decades of experience, VistaGen's stem cell technology can potentially save billions of dollars in the healthcare industry while recapturing prior R&D investment in once-promising new drug candidates."

"We are pleased to bring MissionIR on board as our external investor relations partner," said Shawn Singh, VistaGen's Chief Executive Officer. "The crucial work our company is doing can fundamentally change the way medicine is developed. Paired with MissionIR's global presence and sound investor relations programs, we can further grow our shareholder base and accelerate internal initiatives already in place to bring our stem cell technology platform to the forefront of drug development."

About MissionIR

MissionIR is committed to connecting the investment community with companies that have great potential and a strong dedication to building shareholder value. Through a full suite of investor relations and consultancy services, we help public companies develop and execute a strategic investor awareness plan as we've done for hundreds of others. Whether it's capital raising, increasing awareness among the financial community, or enhancing corporate communications, we offer a variety of solutions to meet the objectives of our clients.

For more information, visit http://www.MissionIR.com

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen plans to initiate Phase 2 clinical development of AV-101 in the fourth quarter of 2012. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Continue reading here:
VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Posted in Cell Therapy | Comments Off on VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Posted: February 21, 2012 at 9:51 pm

CAMBRIDGE, Mass., Feb. 21, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diabetes and other diseases characterized by organ-specific cell damage, today presented preliminary data highlighting the potential of the Company's unique cell-based therapy for treating diabetes at the 7th Annual New York Stem Cell Summit. Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, provided an overview of the Company's Pathfinder Cell ("PC") technology, and presented preclinical evidence demonstrating how treatment with PCs was able to reverse the symptoms of diabetes in two different mouse models.

Pathfinder Cells are a newly identified non-stem cell mammalian cell type that has the ability to stimulate regeneration of damaged tissue without being incorporated into the new tissue. In today's presentation, Dr. Franklin showed how recent experiments performed using a non-obese diabetic (NOD) mouse strain were supportive of earlier data that demonstrated complete reversal of diabetes in mice. The earlier results, which used a drug-induced diabetic mouse model, were published in Rejuvenation Research1. Though preliminary, the recent results are encouraging because the NOD mouse model is widely used and highly regarded as being predictive of human type-1 diabetes.

In three separate experiments using this model, 30-50% of the mice treated with PCs at the onset of diabetes returned to normal blood glucose levels. Of the mice that responded well to treatment, the effects tended to be long lasting, up to two months in some cases after just two doses. These results, which were generated by intravenous injection of PC's derived from rat pancreatic tissue, further demonstrate the remarkable ability of Pathfinder Cells to elicit their positive effect regardless of the organ, or even species, of origin.

"We are very encouraged by these preclinical results using NOD mice. This model is the gold standard for type-1 diabetes and the fact that recent experiments mirror what we've seen in previous models may be highly significant," stated Dr. Franklin. "We have many questions to answer about how PCs act in the body, but we believe, based on previous experiments, that PCs may stimulate regeneration of damaged islet cells that produce insulin. The current NOD mouse data also suggest that PCs may have an effect in modulating the auto-immune process in type 1 diabetes. We continue to conduct experiments aimed at elucidating the optimal dosing and other factors that may be responsible for producing a robust and long-lasting response, as this will be critical as we start to think about how PCs may be used in treating human diabetes."

In his presentation today, Dr. Franklin also provided further insight into the mechanism of action of PCs, based on recent animal experiments. It was observed previously that PCs produce microvesicles, which are known to play a role in intercellular communication, but through mechanisms that are poorly understood. In a recent experiment, Pathfinder was able to isolate these microvesicles from the PCs and treat animals directly with an injection containing microvesicles only. Remarkably, both PC- and microvesicle-treated mice exhibited similar reductions in blood glucose compared to controls using the same drug-induced diabetes mouse model. This suggests, not only that the microvesicles produced by PCs are central to the mechanism of action, but that the microvesicles alone appear to be sufficient to produce the full effect.

Dr. Franklin commented, "If confirmed, this finding could have a significant positive impact on the future of PC-based therapy. Due to the relatively small amount of material contained within the microvesicles, determining the specific factor(s) that are responsible for regenerating damaged tissue could be more straightforward than we first anticipated, bringing us closer to understanding the mechanism of action. There may also be a number of potential manufacturing and storage benefits to using microvesicles versus PCs that will be interesting to explore in parallel as we work to advance this innovative new therapeutic approach closer to human clinical development."

The New York Stem Cell Summit brings together cell therapy company executives, researchers, investors and physicians to explore investment opportunities in cell therapy research and innovation. More information can be found at http://www.stemcellsummit.com.

Presentation details Event: 7th Annual New York Stem Cell Summit Date: Tuesday, February 21, 2012 Place: Bridgewaters New York, 11 Fulton Street, New York, NY Time: 3:35 pm ET

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

1Karen Stevenson, Daxin Chen, Alan MacIntyre, Liane M McGlynn, Paul Montague, Rawiya Charif, Murali Subramaniam, W.D. George, Anthony P. Payne, R. Wayne Davies, Anthony Dorling, and Paul G. Shiels. Rejuvenation Research. April 2011, 14(2): 163-171. doi:10.1089/rej.2010.1099

Read the original:
Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Posted in Cell Therapy | Comments Off on Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Energy network within cells may be new target for cancer therapy

Posted: February 21, 2012 at 6:14 pm

Within each cell, mitochondria are constantly splitting in two, a process called fission, and merging back into one, called fusion. Before a cell can divide, the mitochondria must increase their numbers through fission and separate into two piles, one for each cell.

By reversing an imbalance of the signals that regulate fusion and fission in rapidly dividing cancer cells, researchers were able to dramatically reduce cell division, thus preventing the rapid cell proliferation that is a hallmark of cancer growth. Increasing production of the signal that promotes mitochondrial fusion caused tumors to shrink to one-third of their original size. Treatment with a molecule that inhibits fission reduced tumor size by more than half.

"We found that human lung cancer cell lines have an imbalance of signals that tilts them towards mitochondrial fission," said Stephen L. Archer, MD, the Harold Hines Jr. Professor of Medicine at the University of Chicago Medicine and senior author of the study. "By boosting the fusion signal or blocking the fission signal we were able to tip the balance the other way, reducing cancer cell growth and increasing cell death. We believe this provides a promising new approach to cancer treatment."

"This could be a potential new Achilles' heel for cancer cells," said the study's lead author, Jalees Rehman, MD, an associate professor of medicine and pharmacology at the University of Illinois at Chicago. "Many anticancer drugs target cell division. Our work shifts the focus to a distinct but necessary step: mitochondrial division. The cell division cycle comes to a halt if the mitochondria are prevented from dividing. This new therapy may be especially useful in cancers which become resistant to conventional chemotherapy that directly targets the cycle."

The researchers found that the mitochondrial networks within several different lung cancer cell lines were highly fragmented, compared to normal lung cells. Cancer cells had low levels of mitofusin-2 (Mfn-2), a protein that promotes fusion by tethering adjacent mitochondria, and high levels of dynamin-related protein (Drp-1), which initiates fission by encircling the organelle and squeezing it into two discrete fragments. The Drp-1 in cancer cells also tended to be in its most active form.

The researchers tested several ways to enhance fusion and restore the mitochondrial network, both in cell culture and in animal models. They used gene therapy to increase the expression of Mfn-2, injected a small molecule (mdivi-1) that inhibits Drp-1, and used genetic techniques to block the production of Drp-1. All three interventions markedly reduced mitochondrial fragmentation, increased networking and reduced cancer cell growth.

Although the authors identify mitochondrial fission and Drp-1 activation as a potential therapeutic target in lung cancer, "this is not a cure," Archer emphasized. The treatment drastically reduced tumor size but the tumors did not completely disappear. They continued to use high levels of glucose as fuel, a hallmark of cancer metabolism that can be seen on PET scans. "This remnant could be either a central cluster of cancer stem cells," Archer said, "or an inflammatory response, the immune system infiltrating the tumor."

"Inhibiting mitochondrial fission", Archer said, "did not show any significant toxicity in mice or rats, so we are quite optimistic that our findings can lead to the development of novel, clinically feasible therapies."

The substances used to block fusion are commercially available for research purposes, but they have not been tested in humans. Mdivi-1 has been used in animals to prevent kidney injury.

Although the focus on mitochondria is fairly new to cancer biologists—despite a flurry of interest in the 1920s stimulated by the German Nobel Prize laureate Otto Warburg—this organelle has long been a central focus for physicians and scientists interested in muscle biology, especially cardiac muscle.

Archer, a cardiologist, specializes in pulmonary hypertension. In this disorder, as in cancer, excessive cellular growth causes disease. The death of his cousin and close friend from lung cancer made him start thinking about the connections. Rehman is a German scientist and became interested in studying mitochondria after reading some of the historical Warburg papers in German.

The fact that two cardiologists, Archer and Rehman, decided to study cancer and collaborated with a team of basic scientists, a cancer physician and a pathologist is "an indicator of how interconnected modern biomedical research has become," Rehman said.

Provided by University of Chicago Medical Center

See the rest here:
Energy network within cells may be new target for cancer therapy

Posted in Cell Therapy | Comments Off on Energy network within cells may be new target for cancer therapy

Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Posted: February 21, 2012 at 6:13 pm

AUSTIN, Texas, Feb. 21, 2012 /PRNewswire/ -- Celling Biosciences announces a sponsorship of the 7th Annual Stem Cell Summit being held on February 21st at Bridgewaters New York in New York City. The Stem Cell Summit is consistently the premiere venue for the world's leaders in regenerative medicine to network and promote next generation technologies and cell therapies.

The meeting will feature more than 30 thought leaders in stem cell therapy including Dr. Kenneth Pettine of the Orthopedic Stem Cell Institute in Loveland, Colorado.  Dr. Pettine has teamed up with Celling Biosciences' SpineSmith Division to present "Adult Stem Cell Therapy for Orthopedic and Spine Conditions Resulting from Injury or Aging."  Dr. Pettine has become an innovator in the regenerative cell therapy market and believes "regenerative therapies will become the next standard of care in treating many orthopedic conditions." 

Following the Stem Cell Summit, Dr. Pettine will be presenting a discussion on regenerative therapies to the trainers and medical staff attending this year's NFL combine.  The NFL has recently gained attention from Peyton Manning going oversees to receive a cell therapy treatment for his cervical spine condition.  Dr. Pettine envisions a day when these professional athletes stop going to foreign countries to receive medical treatment.

The Orthopedic Stem Cell Institute provides state-of-the-art regenerative cell therapy using Celling Biosciences' ART 21 system. The ART 21 system processes bone marrow from the patient at the point of care to consistently produce a concentrate of regenerative cells with high yields of mononuclear stem cells in less than 15 minutes.  Celling Biosciences provides the cell separation systems along with the biomaterials and devices necessary to recreate the environment to promote healing. 

Kevin Dunworth, founder of Celling Biosciences, believes regenerative cell therapy has more to do with creating the optimal environment then just providing cells.  "We believe autologous cell therapy is a viable solution but physicians need to understand that these cells require the necessary substrate for delivery and the proper techniques for retrieval.  Our focus has been on providing not only cell separation technologies, medical devices and biomaterials but also the registered nurses to deliver the service so physicians can have the most consistent, reliable and predictable regenerative cell therapy for their patients."

Contact:
Tracy Gladden
Communications Manager
Tgladden@spinesmithusa.com
512-637-2050

About Celling Biosciences
Celling Biosciences, works closely with surgeons, scientists and engineers to research and develop innovative technologies in the field of regenerative medicine. http://www.cellingbiosciences.com and http://www.spinesmithusa.com

More here:
Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Posted in Cell Therapy | Comments Off on Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Posted: February 21, 2012 at 2:57 pm

CAMBRIDGE, Mass., Feb. 21, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diabetes and other diseases characterized by organ-specific cell damage, today presented preliminary data highlighting the potential of the Company's unique cell-based therapy for treating diabetes at the 7th Annual New York Stem Cell Summit. Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, provided an overview of the Company's Pathfinder Cell ("PC") technology, and presented preclinical evidence demonstrating how treatment with PCs was able to reverse the symptoms of diabetes in two different mouse models.

Pathfinder Cells are a newly identified non-stem cell mammalian cell type that has the ability to stimulate regeneration of damaged tissue without being incorporated into the new tissue. In today's presentation, Dr. Franklin showed how recent experiments performed using a non-obese diabetic (NOD) mouse strain were supportive of earlier data that demonstrated complete reversal of diabetes in mice. The earlier results, which used a drug-induced diabetic mouse model, were published in Rejuvenation Research1. Though preliminary, the recent results are encouraging because the NOD mouse model is widely used and highly regarded as being predictive of human type-1 diabetes.

In three separate experiments using this model, 30-50% of the mice treated with PCs at the onset of diabetes returned to normal blood glucose levels. Of the mice that responded well to treatment, the effects tended to be long lasting, up to two months in some cases after just two doses. These results, which were generated by intravenous injection of PC's derived from rat pancreatic tissue, further demonstrate the remarkable ability of Pathfinder Cells to elicit their positive effect regardless of the organ, or even species, of origin.

"We are very encouraged by these preclinical results using NOD mice. This model is the gold standard for type-1 diabetes and the fact that recent experiments mirror what we've seen in previous models may be highly significant," stated Dr. Franklin. "We have many questions to answer about how PCs act in the body, but we believe, based on previous experiments, that PCs may stimulate regeneration of damaged islet cells that produce insulin. The current NOD mouse data also suggest that PCs may have an effect in modulating the auto-immune process in type 1 diabetes. We continue to conduct experiments aimed at elucidating the optimal dosing and other factors that may be responsible for producing a robust and long-lasting response, as this will be critical as we start to think about how PCs may be used in treating human diabetes."

In his presentation today, Dr. Franklin also provided further insight into the mechanism of action of PCs, based on recent animal experiments. It was observed previously that PCs produce microvesicles, which are known to play a role in intercellular communication, but through mechanisms that are poorly understood. In a recent experiment, Pathfinder was able to isolate these microvesicles from the PCs and treat animals directly with an injection containing microvesicles only. Remarkably, both PC- and microvesicle-treated mice exhibited similar reductions in blood glucose compared to controls using the same drug-induced diabetes mouse model. This suggests, not only that the microvesicles produced by PCs are central to the mechanism of action, but that the microvesicles alone appear to be sufficient to produce the full effect.

Dr. Franklin commented, "If confirmed, this finding could have a significant positive impact on the future of PC-based therapy. Due to the relatively small amount of material contained within the microvesicles, determining the specific factor(s) that are responsible for regenerating damaged tissue could be more straightforward than we first anticipated, bringing us closer to understanding the mechanism of action. There may also be a number of potential manufacturing and storage benefits to using microvesicles versus PCs that will be interesting to explore in parallel as we work to advance this innovative new therapeutic approach closer to human clinical development."

The New York Stem Cell Summit brings together cell therapy company executives, researchers, investors and physicians to explore investment opportunities in cell therapy research and innovation. More information can be found at http://www.stemcellsummit.com.

Presentation details Event: 7th Annual New York Stem Cell Summit Date: Tuesday, February 21, 2012 Place: Bridgewaters New York, 11 Fulton Street, New York, NY Time: 3:35 pm ET

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

1Karen Stevenson, Daxin Chen, Alan MacIntyre, Liane M McGlynn, Paul Montague, Rawiya Charif, Murali Subramaniam, W.D. George, Anthony P. Payne, R. Wayne Davies, Anthony Dorling, and Paul G. Shiels. Rejuvenation Research. April 2011, 14(2): 163-171. doi:10.1089/rej.2010.1099

Read the original post:
Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Posted: February 21, 2012 at 2:57 pm

ATLANTA, GA--(Marketwire -02/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, has retained MissionIR, a national investor relations consulting firm, to develop and implement a strategic investor relations campaign. Through a network of investor-oriented online websites and full suite of investor awareness services, MissionIR broadens the influence of publicly traded companies and enhances their ability to attract growth capital and improve shareholder value.

"VistaGen's work with human stem cell technology is groundbreaking," said Sherri Snyder, Director of Marketing at MissionIR. "The company's versatile platform, Human Clinical Trials in a Test Tube™, provides clinically relevant predictions of potential heart toxicity of new drug candidates long before they are ever tested on humans. Guided by a management team with decades of experience, VistaGen's stem cell technology can potentially save billions of dollars in the healthcare industry while recapturing prior R&D investment in once-promising new drug candidates."

"We are pleased to bring MissionIR on board as our external investor relations partner," said Shawn Singh, VistaGen's Chief Executive Officer. "The crucial work our company is doing can fundamentally change the way medicine is developed. Paired with MissionIR's global presence and sound investor relations programs, we can further grow our shareholder base and accelerate internal initiatives already in place to bring our stem cell technology platform to the forefront of drug development."

About MissionIR

MissionIR is committed to connecting the investment community with companies that have great potential and a strong dedication to building shareholder value. Through a full suite of investor relations and consultancy services, we help public companies develop and execute a strategic investor awareness plan as we've done for hundreds of others. Whether it's capital raising, increasing awareness among the financial community, or enhancing corporate communications, we offer a variety of solutions to meet the objectives of our clients.

For more information, visit http://www.MissionIR.com

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube™, with modern medicinal chemistry to generate new chemical variants of once-promising small-molecule drug candidates. These are once-promising drug candidates discontinued by pharmaceutical companies during development due to heart toxicity, despite positive efficacy data demonstrating their potential therapeutic and commercial benefits. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen plans to initiate Phase 2 clinical development of AV-101 in the fourth quarter of 2012. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

Visit VistaGen at http://www.VistaGen.com, follow VistaGen at http://www.twitter.com/VistaGen or view VistaGen's Facebook page at http://www.facebook.com/VistaGen.

Continued here:
VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Posted in Cell Therapy | Comments Off on VistaGen Therapeutics Engages MissionIR as Its Investor Relations Advisor

Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video

Posted: February 21, 2012 at 2:29 am

20-12-2011 08:50 If you would like more information please call us Toll Free at 877-578-7908. Or visit our website at http://www.usastemcells.com Or click here to have a Free Phone Constultation with Dr. Matthew Burks usastemcells.com Real patient testimonials for USA Stem Cells. Adult stem cell therapy for COPD, Emphysema, and Pulmonary fibrosis.

More here:
Adult Stem Cell Treatments for COPD - Real patient results, USA Stem Cells - Marian H. Testimonial - Video

Posted in Cell Therapy | Comments Off on Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video

Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video

Posted: February 21, 2012 at 2:06 am

20-12-2011 08:50 If you would like more information please call us Toll Free at 877-578-7908. Or visit our website at http://www.usastemcells.com Or click here to have a Free Phone Constultation with Dr. Matthew Burks usastemcells.com Real patient testimonials for USA Stem Cells. Adult stem cell therapy for COPD, Emphysema, and Pulmonary fibrosis.

Read the rest here:
Adult Stem Cell Treatments for COPD - Real patient results, USA Stem Cells - Marian H. Testimonial - Video

Posted in Cell Therapy | Comments Off on Adult Stem Cell Treatments for COPD – Real patient results, USA Stem Cells – Marian H. Testimonial – Video

China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video

Posted: February 17, 2012 at 5:26 pm

16-02-2012 20:19 Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, travel arrangements and language assistance. If you want to know more about our services, please browse the web:htttp://www.medicaltourism.hk/ or mail to us: giels-x@medicaltourism.hk firstcare-china@hotmail.com Adult stem cells provide real improvement for cirrhosis patients Breakthrough adult stem cell research has shown that stem cells are able to regenerate and repair damaged or destroyed liver cells. For patients with cirrhosis, this means improved liver function, decreased pain and a significantly improved quality of life. Stem cell therapy offers the safest and most effective treatment alternative for liver cirrhosis and it is quickly becoming a preferred treatment in Asia. China medical tourism offers unique access to the best stem cell therapies available at leading medical facilities. Supporting data and statistics Three out of every four patients treated experienced a significant improvement in their condition following stem cell treatment. The following clinical results were observed: •Improved liver function •Decreased pain •Improved values for liver function, PLT (blood platelet) and blood ammonia You may see improvements during your hospitalization due to neurotrophic factors released during the stem cell transplantation, which stimulate nerve activity; new cells will grow for up to six months after you ...

More:
China medicdal tourism-- Cirrhosis--Stem cells therapy 1.mp4 - Video

Posted in Cell Therapy | Comments Off on China medicdal tourism– Cirrhosis–Stem cells therapy 1.mp4 – Video

Page 228«..1020..227228229230..240..»