Page 17«..10..16171819..3040..»

Category Archives: Genetic Engineering

Thailand says XE variant of COVID-19 ‘likely to be mild’ – Khmer Times

Posted: April 6, 2022 at 2:28 am

Thailands Public Health Ministry on Sunday played down concerns raised by the detection of the first case of the XE Covid-19 strain in the country, saying there is no need to panic as it is not believed to result in as many complications as some previous mutations.

The head of the Centre for Medical Genomics (CMG) at Ramathibodi Hospital, which diagnosed the patient found with the strain, said the individual had already made a full recovery.

The rising number of Covid-19 strains only fuels the rapidity of genomic variation as has been evidenced recently by the emergence of Deltacron, a recombinant virus that contains genes from both Delta and Omicron variants, said Dr Supakit Sirilak, director-general of the Department of Medical Sciences (DMS).

In this case, XE is a recombinant virus of two sublineages of the Omicron variant, BA.1 and BA.2, he said, in response to reports about the detection of the first XE case, which was revealed on Saturday by the CMG.

The DMS is performing genomic sequencing on about 500 virus samples a week, he said, adding the DMS will hold a press briefing today to provide more information about the XE case and its broader implications.

The World Health Organization (WHO) had also on Saturday issued a warning over the XE Omicron variant that many in the medical field fear could be the most transmissible yet.

The XE recombinant was first detected in the UK on Jan 19 and less than 600 sequences have been reported and confirmed since, the WHO said.

Wasun Chantratita, the head of the CMG, said they normally receive virus samples for testing about a week after an infection is confirmed, which explains why by the time the results are known, most patients have already nearly recovered.

Anan Jongkaewwattana, an expert with the National Centre for Genetic Engineering and Biotechnology (Biotec), meanwhile, said those who had already been infected with the sub-variant BA.2 of Omicron may already carry some immunity due to the similarities between the pair BA.2. Dont be more afraid of XE than BA.2 as that strain has already been around town, he said.

Considering a rise in number of patients developing severe symptoms when infected with Covid-19 after a fourth booster shot, he said he recommends delaying seeking further appointments for booster shots until a newer generation of the vaccine is available.

Immunity generated by multiple vaccines may even have an adverse effect and lead to more severe inflammation in those who catch the virus after their shots, he said.

For those who already had two rounds of an inactivated type of Covid-19 vaccine, two more booster shots of other types may be needed, while those who had started with two shots of other types of the vaccine may need only one booster shot for now, he said.

The Centre for Covid-19 Situation Administration (CCSA) on Sunday recorded 26,840 new cases and 97 deaths.

In another development, the National Health Security Office (NHSO) said it is preparing for an expected rise in the number of new Covid-19 patients in the coming weeks. The Songkran festival is thought to be a risk factor in leading to an increase in cases.

Priority in terms of both times given by doctors and specialists as well as access to treatment will be given to new elderly patients, particularly those with underlying health conditions that may exacerbate their symptoms, and children, said NHSO secretary-general Dr Jadej Thammatacharees.

Cambodia has been put on alert for the new variant as the fast approaching Khmer New Year celebration which kicks off next week is likely to see an exodus of Cambodians back from Thailand by migrant workers. Bangkokpost/Khmer Times

Read more here:
Thailand says XE variant of COVID-19 'likely to be mild' - Khmer Times

Posted in Genetic Engineering | Comments Off on Thailand says XE variant of COVID-19 ‘likely to be mild’ – Khmer Times

How Obesity Can Change the Immune System and Its Link to Allergic Inflammation – Genetic Engineering & Biotechnology News

Posted: April 6, 2022 at 2:28 am

When mice with atopic dermatitis are treated with drugs that target the immune system, their itchy skin generally heals quickly. However, scientists have now discovered that the same treatment in obese mice makes their skin worse instead. A new study sheds light on how obesity can change the immune system and how clinicians might be able to better treat allergies and asthma in obese people.

The new study is published in the journalNature in a paper titled, Obesity alters pathology and treatment response in inflammatory disease, and led by researchers at Gladstone Institutes, the Salk Institute for Biological Studies, and the University of California, San Francisco (UCSF).

Decades of work have elucidated cytokine signaling and transcriptional pathways that control T-cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic, and inflammatory diseases, the researchers wrote. Recent evidence indicates that obesity and metabolic disease can also influence the immune system although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses.

Were living in an era when the rate of obesity is increasing around the world, said Alex Marson, MD, PhD, director of the Gladstone-UCSF Institute of Genomic Immunology and a senior author of the study. Changes in diet and body composition can affect the immune system, so we have to think about how diseases that involve the immune system might differ between individuals.

Our findings demonstrate how differences in our individual metabolic states can have a major impact on inflammation, and how available drugs might be able to improve health outcomes, said Ronald Evans, PhD, senior author of the study, and director of Salks Gene Expression Laboratory and the March of Dimes chair in molecular and developmental biology at Salk.

During his graduate studies at Salk and subsequent research in the Marson lab, Sagar Bapat, MD, PhDnow a pathologist and faculty at UCSFwanted to know, at a molecular level, how obesity affected atopic dermatitis. He discovered that when mice were made obese by eating a high-fat diet prior to the induction of dermatitis, they developed more severe disease than lean animals.

What we were expecting to see in the obese mice was just a greater degree of the same kind of inflammation, said Bapat. Instead, we saw a completely different kind of inflammation.

Scientists had considered atopic dermatitis a TH2 disease; that means the TH2 cells are the ones causing the skin inflammation.

In mice with atopic dermatitis, the researchers observed that the TH2 cells were active. In obese mice with the same condition, however, TH17 cells were activated, which meant at a molecular level, atopic dermatitis was completely different in the obese mice.

When Bapat and his colleagues treated obese mice with a drug known to lessen atopic dermatitis, it made the disease significantly worse.

The treatment became a robust anti-treatment, said Bapat. This suggests that you can have identical twins show up to the hospital with the same disease, but if one is obese and one is lean, maybe the same drug wont work on both.

The researchers suspected that dysfunction in a protein called PPAR-gamma might be mediating the link between obesity and inflammation. In 1995, Evans and his team discovered that PPAR-gamma was a master regulator of fat cells and a target of an approved drug for diabetes.

When the scientists treated obese mice with atopic dermatitis with one of these PPAR-gamma activating drugs, called rosiglitazone, the animals skin improved and the molecular profile of their disease switched back from TH17 to TH2 inflammation. Moreover, the drugs aimed at the TH2 inflammation were then, almost as in lean mice, able to improve the obese animals atopic dermatitis.

Essentially, we immunologically de-fattened obese mice without changing their body weight, said Bapat.

More studies are needed but the study demonstrates how obesity causes a switch in inflammation that has consequences for the pathology of allergic disease and the effectiveness of immune therapies that target TH2-associated inflammation.

What wed like to know more about now is exactly how the T-cell switch happens, said senior author Ye Zheng, PhD, an associate professor in the NOMIS Center for Immunobiology and Microbial Pathogenesis at Salk. There are more details here to uncover that could have relevance for a host of diseases related to allergy and asthma.

This is a case where our scientific discovery could have a very safe and quick application to therapy in people, said Evans. Our preclinical findings suggest that these already FDA approved drugs may have a unique co-treatment benefit in certain patients.

Read more from the original source:
How Obesity Can Change the Immune System and Its Link to Allergic Inflammation - Genetic Engineering & Biotechnology News

Posted in Genetic Engineering | Comments Off on How Obesity Can Change the Immune System and Its Link to Allergic Inflammation – Genetic Engineering & Biotechnology News

Genetic Engineering – Courses, Subjects, Eligibility …

Posted: December 24, 2021 at 2:31 am

Genetic Engineering is a technology that alters the genetic structure of an organism either by removing or adding DNA.Genetic Engineering, also called genetic modification or genetic manipulation controls the living being's genes using biotechnology. It is an arrangement of innovations used to change the hereditary forms of cells, including the exchange of qualities inside and across species limits to create enhanced or novel living beings. Genetic engineering could potentially fix severegenetic disorders in humans by replacing the defective gene with a functioning one.

Genetic Engineering has been connected in various fields of research, medicine, industrial biotechnology, and agriculture. In research, GMOs are utilized to contemplate quality capacity and articulation through loss of function, gain of function, tracking and expression experiments. By thumping out genes responsible for specific conditions it is possible to create animal model organisms of human diseases. And in addition to producing hormones, immunizations and different drugs genetic engineering can fix hereditary diseases through quality treatment. Similar strategies that are utilized to create medications can likewise have mechanical applications, for example, producing enzymes for detergents, cheeses, and different products.

Genetic engineering as a course is studied at the graduate, postgraduate and doctoral levels. Genetic Engineering is rather a new field of science but with the recent advancement in Biotechnology and the interest of scientists in this particular field, the course in Genetic Engineering is present in almost every major science university. The B.Sc in Genetics or B.Tech in Genetic Engineering course deals with multiple types of problems related to the medical field like the human genome and agriculture. Several institutes also offer Genetic Engineering as an elective course of study in B.Tech Biotechnology programs.

Delhi Technological University, Delhi

Aryabhatta Knowledge University, Patna

SRM University, Chennai

Bharat University, Chennai

Indian Institute of Science, Bangalore

Sharda University, Greater Noida

India has some of the very prestigious institutes engaged in research in the field of Genetics. Candidates can pursue research in these institutes in Genetic Engineering and its various sub-fields.

Genetic engineering is the study of genes and the science of heredity. Genetic engineers or geneticists study living organisms ranging from human beings to crops and even bacteria. These professionals also conduct researches which is a major part of their work profile. The experiments are conducted to determine the origin and governing laws of a particular inherited trait. These traits include medical conditions, diseases, etc. The study is further used to seek our determinants responsible for the inherited trait.

Genetic engineers or Geneticists keep on finding ways to enhance their work profile depending on the place and organization they are working with. In manufacturing, these professionals will develop new pharmaceutical or agricultural products while in a medical setting, they advise patients on the diagnosed medical conditions that are inherited and also treat patients on the same.

Skill sets for Genetic engineers or Geneticists

Strong understanding of scientific methods and rules

complex problem solving and critical thinking

ability to use computer-aided design (CAD)

graphics or photo imaging

PERL, Python

word processing software programs

excellent mathematical, deductive and inductive reasoning, reading, writing, and oral comprehension skills

ability to use lasers spectrometers, light scattering equipment, binocular light compound microscopes, benchtop centrifuges, or similar laboratory equipment

Typical responsibilities of a Genetic Engineering or Geneticist includes:

When a genetic engineer gains a year of experience, one of the regions they can indulge in is hereditary advising, which includes offering data, support, and counsel on hereditary conditions to your patients.

An individual aspiring to pursue a professional degree in Genetic Engineering can begin the B.Sc in Genetics or B.Tech course after his/her 10+2 Science with Physics, Chemistry, Maths, and Biology.

Admission to BTech in Genetic Engineering is made through entrance tests conducted by various universities or through the scores of national engineering entrance examinations like JEE for IITs/NITs & CFTIs across the country.

Genetic Engineering professionals require a bachelors or masters degree in Genetic Engineering or Genetic Sciences for entry-level careers. In any case, a doctoral qualification is required for those looking for free research professions. Important fields of study in Genetic Engineering incorporate natural chemistry, biophysics, or related fields.

Genetic Engineers require a solid comprehension of logical techniques and guidelines, and in addition complex critical thinking and basic reasoning aptitudes. Phenomenal scientific, deductive, and inductive thinking aptitudes, and in addition perusing, composing, and oral cognizance abilities are additionally expected to work in this field.

A semester-wise breakup of the B.Tech Genetic Engineering course is tabulated below

SEMESTER I

SEMESTER II

Mathematics 1

Mathematics 2

English

Material Science

Physics

Principles of Environmental Science

Chemistry

Biochemistry

Basic Engineering 1

Basic Engineering 2

-

Cell Biology

-

Value Education

SEMESTER III

SEMESTER IV

Enzyme Technology

Basic Molecular Techniques

Genetics & Cytogenetics

Molecular Biology

Immunology

Stoichiometry and Engineering Thermodynamics

Microbiology

Bio-press Principles

Mechanical Operations & heat Transfer

Biostatistics

German Language Phase 1/French Language Phase 1/Japanese Language Phase 1

German Language Phase 2/Japanese Language Phase 2/French Language Phase 2

-

SEMESTER V

SEMESTER VI

Advanced Molecular Techniques

Recombinant DNA Technology

Functional Genomics and Microarray Technology

Bioinformatics

Momentum Transfer

Chemical Reaction Engineering

Bioprocess Engineering

Gene Therapy

Biophysics

Biosensors and Biochips

Plant Tissue Culture and Transgenic Technology

-

Personality Development

-

SEMESTER VII

SEMESTER VIII

Bio-separation Technology

Project Work

Animal Cell Culture and Transgenic Technology

Bio-Safety, Bio-ethics, IPR & Patients

Nano-biotechnology in Healthcare

-

Stem Cell Biology

-

Aspirants who wish to join the engineering industry as genetic engineers can apply for the following jobs profiles available:

JOB PROFILE

JOB DESCRIPTION

Genetic Engineer

They apply their knowledge of engineering, biology, and biomechanical principles to the design, development, and evaluation of biological and health systems and products, such as artificial organs, prostheses, instrumentation, medical information systems, and health care and management.

Lecturer/Professor

They teach at the undergraduate and graduate levels in areas allocated and reviewed from time to time by the Head of Department.

Research Scientist

They are responsible for designing, undertaking, and analyzing information from controlled laboratory-based investigations, experiments and trials.

Scientific/Medical Writer

The research, prepare and coordinate scientific publications. The medical writer is responsible for researching, writing, and editing clinical/statistical reports and study protocols, and summarizing data from clinical studies.

Most of the engineering educational institutes shortlist candidates for admission into the BTech in Genetic Engineering course based on engineering entrance exams. These entrance exams are either conducted at the national level like JEE or held in-house by various engineering institutes in the country. Some of the popular engineering entrance examinations aspirants should consider appearing for admissions to UG and PG level Automobile engineering courses are:

Genetic Engineering is particularly the newly evolving field of science with enormous job opportunities. India has become a global hub of research in genetic engineering owing to its vast prospect of treating diseases of genetic disorders. Genetic engineering professionals can work in the filed of medicine, research, industry, and agriculture. Fresh graduates working as research associates can earn anything between INR 3-5 lakh per annum while the salary of scientists generally lies in the range of 9-15 lakh per annum.

India is home to some of the best companies working in the field of Genetic Engineering. Below is provided a list of some of the companies with which candidates can work in the field of research.

Q. Which college is best for genetic engineering?

Visit link:
Genetic Engineering - Courses, Subjects, Eligibility ...

Posted in Genetic Engineering | Comments Off on Genetic Engineering – Courses, Subjects, Eligibility …

Editing the produce gene – Produce Blue Book

Posted: December 24, 2021 at 2:31 am

I spent part of my workday on Wednesday watching a rerun. It was of a Virtual Town Hall meeting entitled Gene Editing: The Future of the Produce Industry?, by the Produce Marketing Association BB #:153708, originally broadcast July 28.

PMA broadcast it again because of its popularity.

It answered one of the proverbial dumb questions that journalists, if no one else, should ask. In this case, whats the difference between genetic engineering and gene editing?

A rigorous answer to this question would depend on your location because various nations define (and regulate) the two differently.

This is essentially the difference: if an organism has been modified by the insertion of foreign DNA, its genetically modified (a GMO, for short).

Gene editing, on the other hand, is modifying genes in a way that could be achieved by plant breeding, except gene editing takes much less time. (For details, see here).

The United States regulates the two methods differently.

USDA issued this statement in March 2018: USDA does not regulate or have any plans to regulate plants that could otherwise have been developed through traditional breeding techniques as long as they are not plant pests or developed using plant pests. This includes a set of new techniques that are increasingly being used by plant breeders to produce new plant varieties that are indistinguishable from those developed through traditional breeding methods.

As an example of gene editing, panelist Haven Baker, cofounder and chief business officer of Pairwise, points to one of his companys current projects: the pitless cherry.

With conventional breeding, it would take 150 years, he remarks. But his company is three years into the project. He predicts that pitless cherries will be on the market by the end of the decade.

Seedless blackberries are further along: Baker estimates they will be available in a couple of years.

Another item: a watermelon that produces a natural zero-calorie sweetener, which panelist Fayaz Khazi, CEO of Bio Life Systems, says is producing to scale now.

Gene editing, panelist Gilad Gershon, CEO of Tropic Biosciences, says, is very specific. You maybe only change one nutrient, or disease resistance.

One example is TR4 Fusarium wilt, which afflicts Cavendish bananas and, if not checked, can destroy the world banana industry as it is now known.

We try to identify genes that affect Fusarium resistance, and try to fit them to consumer needs, Khazi says.

The panel kept returning to one major theme: the importance of consumer wants in gene editing crops. We try not to guess what the market needs, stresses Khazi.

Indeed, the disconnect between real and perceived consumer needs is the biggest bottleneck, Khazi adds. Surprisingly, the biology of the plant is never the bottleneck.

Currently, no produce items are on the market in this country that are products of gene editing, the panelists noted, although Japan has introduced a tomato with a high GABA content that is available there.

Eventually, Khazi predicts, the two categories of GMO and gene editing will merge.

In any case, gene editing is part of the produce industrys present and will become an increasingly important element of its future. Think of it as plant breeding on fast forward.

And never forget to ask dumb questions.

Read the original post:
Editing the produce gene - Produce Blue Book

Posted in Genetic Engineering | Comments Off on Editing the produce gene – Produce Blue Book

Human genetic enhancement – Wikipedia

Posted: December 24, 2021 at 2:31 am

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease[1] (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence.These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community).[2]

Genetic modification in order to cure genetic diseases is referred to as gene therapy. Many such gene therapies are available, made it through all phases of clinical research and are approved by the FDA. Between 1989 and December 2018, over 2,900 clinical trials were conducted, with more than half of them in phase I.[3] As of 2017, Spark Therapeutics' Luxturna (RPE65 mutation-induced blindness) and Novartis' Kymriah (Chimeric antigen receptor T cell therapy) are the FDA's first approved gene therapies to enter the market. Since that time, drugs such as Novartis' Zolgensma and Alnylam's Patisiran have also received FDA approval, in addition to other companies' gene therapy drugs. Most of these approaches utilize adeno-associated viruses (AAVs) and lentiviruses for performing gene insertions, in vivo and ex vivo, respectively. ASO / siRNA approaches such as those conducted by Alnylam and Ionis Pharmaceuticals require non-viral delivery systems, and utilize alternative mechanisms for trafficking to liver cells by way of GalNAc transporters.

Some people are immunocompromised and their bodies are hence much less capable of fending off and defeating diseases (i.e. influenza, ...). In some cases this is due to genetic flaws[clarification needed] or even genetic diseases such as SCID. Some gene therapies have already been developed or are being developed to correct these genetic flaws/diseases, hereby making these people less susceptible to catching additional diseases (i.e. influenza, ...).[4]

In November 2018, Lulu and Nana were created.[5] By using clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9, a gene editing technique, they disabled a gene called CCR5 in the embryos, aiming to close the protein doorway that allows HIV to enter a cell and make the subjects immune to the HIV virus.

Athletes might adopt gene therapy technologies to improve their performance.[6] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[7]

Other hypothetical gene therapies could include changes to physical appearance, metabolism, mental faculties such as memory and intelligence.

Some congenital disorders (such as those affecting the muscoskeletal system) may affect physical appearance, and in some cases may also cause physical discomfort. Modifying the genes causing these congenital diseases (on those diagnosed to have mutations of the gene known to cause these diseases) may prevent this.

Also changes in the mystatin gene[8] may alter appearance.

Behavior may also be modified by genetic intervention.[9] Some people may be aggressive, selfish, ... and may not be able to function well in society.[clarification needed] There is currently research ongoing on genes that are or may be (in part) responsible for selfishness (i.e. ruthlessness gene, aggression (i.e. warrior gene), altruism (i.e. OXTR, CD38, COMT, DRD4, DRD5, IGF2, GABRB2[10])

There is some research going on on the hypothetical treatment of psychiatric disorders by means of gene therapy. It is assumed that, with gene-transfer techniques, it is possible (in experimental settings using animal models) to alter CNS gene expression and thereby the intrinsic generation of molecules involved in neural plasticity and neural regeneration, and thereby modifying ultimately behaviour.[11]

In recent years, it was possible to modify ethanol intake in animal models. Specifically, this was done by targeting the expression of the aldehyde dehydrogenase gene (ALDH2), lead to a significantly altered alcohol-drinking behaviour.[12] Reduction of p11, a serotonin receptor binding protein, in the nucleus accumbens led to depression-like behaviour in rodents, while restoration of the p11 gene expression in this anatomical area reversed this behaviour.[13]

Recently, it was also shown that the gene transfer of CBP (CREB (c-AMP response element binding protein) binding protein) improves cognitive deficits in an animal model of Alzheimers dementia via increasing the expression of BDNF (brain-derived neurotrophic factor).[14] The same authors were also able to show in this study that accumulation of amyloid- (A) interfered with CREB activity which is physiologically involved in memory formation.

In another study, it was shown that A deposition and plaque formation can be reduced by sustained expression of the neprilysin (an endopeptidase) gene which also led to improvements on the behavioural (i.e. cognitive) level.[15]

Similarly, the intracerebral gene transfer of ECE (endothelin-converting enzyme) via a virus vector stereotactically injected in the right anterior cortex and hippocampus, has also shown to reduce A deposits in a transgenic mouse model of Alzeimers dementia.[16]

There is also research going on on genoeconomics, a protoscience that is based on the idea that a person's financial behavior could be traced to their DNA and that genes are related to economic behavior. As of 2015, the results have been inconclusive. Some minor correlations have been identified.[17][18]

George Church has compiled a list of potential genetic modifications based on scientific studies for possibly advantageous traits such as less need for sleep, cognition-related changes that protect against Alzheimer's disease, disease resistances, higher lean muscle mass and enhanced learning abilities along with some of the associated studies and potential negative effects.[19][20]

Original post:
Human genetic enhancement - Wikipedia

Posted in Genetic Engineering | Comments Off on Human genetic enhancement – Wikipedia

Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups – Singularity Hub

Posted: December 24, 2021 at 2:31 am

Do you want a boy or a girl? can be an awkward question.

But in certain circles, its a question thats asked every day. Take agriculture. In a perfect world, most cows would only birth females. Chicks would grow up to be all hens. Sexing a farm animal when theyre at a young age wouldnt be a thingespecially when it means male animals, without the ability to produce milk or eggs, are often culled at a young age to preserve resources.

There might be a better way. This month, a team tapped into the power of CRISPR to control the sex of the offspring in mice. By splicing CRISPR components into the parents genome, the team was able to flip onor offa switch that nearly perfectly determined the sex of their litters.

Unlike previous attempts, the baby mice could go on to have litters of their own of both sexes. The targeted gene used for the edit is conserved across evolution, suggesting the technique could work in more animals than just mice.

But its controversial. Essentially, the technique selectively kills off embryos of a certain sex, which immediately raises ethical red flags. For now, scientists arent concerned about the technology being used in humans due to its complexity. But the study is the latest to showcase biotechs increasing ability to manipulate reproduction.

Its an impressive result and a state-of-the-art solution to producing single-sex species, said Dr. Ehud Qimron at Tel Aviv University, who was not involved in the work.

Skewing the sex of offspring is nothing new. For over a decade, scientists have gradually hijacked the mosquito genome with gene drives to rewrite evolution. The idea is that the genetic edit would override natural selection, spreading across subsequent generations into a dominant gene. Instead of a genes usual 50-50 chance of inheritance, artificial gene drives have a far higher chance of infiltrating the next generation, fundamentally changing a species genetic code. When its a gene that biases the sex of their offspring, a species could gradually only have one sex, leading to their extinction.

Its a doomsday plan with potentially massive benefits, such as curbing malaria. Because female mosquitoes are generally the carrier for the disease, a gene drive that leads to only males is a sure-fire way to reduce transmission. In one study, within a dozen generations, the genetic edit was sufficient to collapse a whole colony of mosquitoes in the lab. Similar studies have been tried in mice.

Its not a perfect solution. The gene edit is powerfulmaybe too much so. With farm animals, the goal isnt to eradicate a species, but rather to bias the sex of the animal towards one side and increase animal welfare. Animal and animal products are used globally, and ethical discussions regarding animal usage are ongoing, said the authors. Over 100,000 male calves are culled each year, and stats for other common farm animals paint a similarly uncomfortable picture.

The new study took a different approach. With CRISPR, the team skewed the sex of only the next generation in mice, allowing the same-sex litters to eventually reproduce normally.

CRISPR has two parts: an RNA guide (the bloodhound that sniffs out the target gene) and Cas9 (a scissor protein that physically cuts the gene). Usually, the two components are encoded into a single carrier, dubbed a vector, and inserted into a cell or animal. By targeting a gene that is essential for reproduction, for example, its then possible to trigger spontaneous failed pregnancies in animals.

But how does that help with sex selection? Let me explain.

The first step was to find a gene critical for embryo survivalone that when disrupted causes synthetic lethality. The team honed in on Top1, well known for its role in DNA repair. Cutting the gene triggers embryos to fail at a very early stage, when theyre just 8 to 16 cells, not yet implanted into the uterine wall and far from viable.

The team then engineered a CRISPR system that targets the start codons of Top1a chunk of DNA that acts as an on switch to activate the gene. Heres the clever part. They split the two components of CRISPR into two vectors.

One part, which carries the genetic code for a guide RNA that targets Top1, was then inserted into a female mouses X chromosome. The other vector, carrying the code for Cas9 scissors, was edited into the males Y chromosome.

When combined, the two components meet up like peanut butter and jelly, forming the full recipe to disrupt Top1. This can only happen in X/Y embryosthose that define maleand so selectively interrupt these embryos from developing. X/X, or genetically female embryos, are spared, as they only contain half of the CRISPR mechanism. The system is flexible. If Cas9 scissors were attached to the males X chromosome, all X/X embryos were eliminated before they grew to 16 cells.

The efficiency of the edit was crazy at 100 percent. Mice born from these genetically-edited parents were completely normal, with a hefty body size and in larger numbers than normally expected, suggesting the edit may cause less stress on the mother. Unlike those born using gene drives, the mice grew up to have perfectly normal litters with both male and female offspring.

The results are a long time in the making. Back in 2019, a team led by Dr. Udi Qimron at Tel Aviv University used CRISPR to produce mice in which 80 percent of the offspring were females. With the new study, the efficacy leaps to 100 percent, with the choice towards either sex. If further tested in farm animals, the technique could be a boost to both animal welfare and conservation.

Its not an entirely comfortable solution for some. To Sue Leary, president of the non-profit Alternatives Research & Development Foundation, You cant solve an ethical problem with another ethical problem, which is genetic engineering. And given the animosity towards GMOs, the new technology, regardless of efficacy, may be dead in the water.

For now, the CRISPR edits arent feasible in humans due to their complexity. Whats clear, though, is that weve begun parsing the biological machinery behind gender selection. Add in recent work on genetically-engineered embryos, or eggs and sperm from stem cells, and were on the fast track for CRISPR to completely change our current conception of reproduction.

Image Credit: Graphic Compressor/Shutterstock.com

View post:
Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub

Posted in Genetic Engineering | Comments Off on Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups – Singularity Hub

Opinion: Allow Golden Rice to save lives – pnas.org

Posted: December 24, 2021 at 2:31 am

Vitamin A deficiency (VAD) has killed millions of children in less-developed countries for at least the last three decadesroughly 2 million annually in the early 1990s alone (14). Although the number is declining, it was estimated to be 266,200 (4) at the start of the millennium.

Widespread consumption of the genetically modified rice variety known as Golden Rice offers a potent and cost-effective strategy to combat vitamin A deficiency. Image credit: International Rice Research Institute; photo licensed under CC BY 2.0.

The consumption of the genetically modified rice variety known as Golden Rice (GR) offers a potent and cost-effective strategy to combat VAD. But this innovation has been cast aside owing to fear or false accusations, resulting in numerous lives needlessly lost (13). With the recent exception of the Philippines, governments have not approved the cultivation of GR (5). We believe it should be broadly approved and given the opportunity to save and improve lives.

In high-income nations where populations have access to a diversity of foods, VAD is rare. In many low-income nations, however, populations have limited access to foods rich in vitamin A or beta-carotene, a vitamin A precursor; hence, VAD rates can be dangerously high in children. There have been recent improvements: from 1991 to 2013, the VAD rate among children in low- and middle-income countries declined from 39% to 29%, with notable improvements among children in East and Southeast Asia (4). However, children in sub-Saharan Africa and South and Southeast Asia continue to disproportionately experience VAD and its associated risks: infectious and diarrheal diseases, irreversible blindness and other sensory losses, and premature death (1, 4, 6).

VAD has not been eradicated despite a variety of strategies used globally, including education on the value of dietary diversity, promotion of home gardens and maternal breastfeeding of infants, and community health programs including vitamin A supplementation with syrups or capsules (7). Principally, VAD is caused by insufficient dietary diversity, a result of poverty and agronomic and market constraints. Animal source foods and many kinds of produce are unavailable or expensive in local markets. Conversely, white rice or other cereal grains are easily available and inexpensive but primarily contain carbohydrates while lacking sufficient micronutrient levels.

GR, developed first in the 1990s and then modified in 2004 with transgenes from maize and a common soil bacterium Erwinia uredovora, could be an important public health intervention for VAD populations worldwide. This transgenic, or genetically modified, rice produces beta-carotene, a precursor to vitamin A, in the normally white endosperm (8) and has proven an effective source of vitamin A in humans (9). GR* is now awaiting final approval in Bangladesh. In July 2021, it was approved for cultivation in the Philippines. Other countries will likely follow.

A recent study has estimated that substituting GR for conventional rice could provide 89% to 113% and 57% to 99% of the recommended vitamin A requirement for preschool children in Bangladesh and the Philippines, respectively (10). Even if there were no other sources of vitamin A in the diets, this boost in dietary beta-carotene could do much to prevent diseases associated with VAD.

GR is also financially viable. In Bangladesh, the current practice of fortifying rice with vitamin A and zinc using food additives, although supported by the World Food Programme, increases the cost of rice by 5% to 6% and is applied to only about 1 million metric tonnes of rice of the roughly 25 million metric tonnes produced in Bangladesh per year (11). GR, by contrast, poses no extra cost to governments, growers, or consumers in comparison with white rice.

Meanwhile, VAD has continued to cause severe illness and death among certain populations worldwide, especially children (12). The total estimated deaths from VAD-related diarrheal diseases and measles in children under five years of age in 2013 was 94,500 and 11,200, respectively, totaling 105,700 deaths across the world (4). Had GR become a part of diets in vulnerable populations worldwide, a portion of these lives might have been saved. Hopefully, approval of the commercialization of GR in the Philippines will provide impetus for Bangladesh and other nations with high VAD rates to provide poor consumers with an option that may save lives and improve health.

Those who oppose transgenic or genetically modified organisms raised concerns that led policymakers to delay the approval of the technologies (13). One argument relates to biotechnology company profits. But because the GR technology to the public sector is available at no cost for humanitarian uses, this concern is irrelevant. There are no limitations, except export, on GR use: replanting or selling or giving away seed, or polishing for consumption or sale.

Greenpeace summarized a food security-related objection to GR in a 2012 statement (14): If introduced on a large scale, GR can exacerbate malnutrition and ultimately undermine food security. The implication: GR will worsen malnutrition because it leads to a diet based on one staple. However, the replacement of traditional rice with GR would not exclude the development of diversified diets; in the meantime, vitamin A status could improve for many in the population. And optimizing vitamin A delivery could improve public health in at-risk populations.

A reasonable objection concerns possible human or environmental health risks. The United Nations (UN) Cartagena Protocol on Biosafety (15) provides a framework for the regulation of genetically engineered crops in many countries, emphasizing the Precautionary Principle in assessing risks, and leaving out assessment of benefits. This Protocol was signed in 2000 and became effective in 2003, in the relatively early days of agricultural genetic engineering. Since then, multiple studies have reported on benefits of genetically modified organism (GMO) adoption through increased yields, reduced pesticide use, improved farmer income, reduced prices to consumers, and in some cases even improved food safety (16). Meanwhile, there have been no confirmed incidents of adverse human health or environmental effects from genetically engineered crops during nearly three decades of global use (16).

Transgenic crops are subject to many required regulatory tests before approval, including animal feeding and invitro studies for toxicity and allergenicity. Yet opponents of these crops have continued to amplify suspicion on the long-term health effects of genetically engineered crops (17). Protection against such risks can be achieved through monitoring of the performance and the impacts of technologies and intervening when setbacks occur. However, the food safety assessments for transgenic crops in many countries are more demanding than for conventionally bred varieties. In fact, often less is known about the properties of plants developed by conventional mutagenesis than those developed by transgenic methods.

Another concern is that GR genes may intermingle with those of conventionally bred rice varieties. This uncertainty, however, applies not just to GR but also to any other new rice variety. Humans have consumed rice for more than 4,000 years, including varieties that have been crossed genetically across multiple strains. Transgenic methods of introducing novel genes is not inherently of greater concern, unless those genes produce proteins with potential adverse health effectssomething that food safety tests for approval can determine. Clearly the lives saved with VAD outweigh concerns about these so-called unknown risks. In response to such criticisms, in 2016 more than 150 Nobel Laureates have signed an open letter to the UN, governments of the world, and Greenpeace, urging a more balanced approach toward genetically modified crops in general and GR in particular: Scientific and regulatory agencies around the world have repeatedly and consistently found crops and foods improved through biotechnology to be as safe as, if not safer than, those derived from any other method of production. Opposition based on emotion and dogma contradicted by data must be stopped (18).

The arguments used by organizations to delay adoption of GR often resemble the arguments of anti-vaccination groups, including those protesting vaccines to protect against COVID-19. Some of the opponents of GR and agricultural biotechnology more generally see the introduction of GR as forcing the consumption of GMOs on the population. However, for the case of GR, consumers have the option of easily avoiding consumption because GR is very easily identifiable by its color.

The tragedy of GR is that regulatory delays of approval have immense costs in terms of preventable deaths, with no apparent benefit (13). The approval of GR is even more urgent with the ongoing pandemic, which has made access to healthcare services more difficult in vulnerable populations worldwide. The World Bank has recommended that micronutrient biofortification of staple crops, including specifically GR, should be the norm and not the exception in crop breeding (19).

Golden rice can effectively control VAD. Delaying the uptake of a genetically modified product shown to have clear health benefits has and will cost numerous lives, frequently of the most vulnerable individuals. Policymakers must find ways to overcome this resistance and accelerate the introduction and adoption of Golden Rice.

December 23, 2021: The article text has been updated.

Author contributions: J.W., D.Z., and A.D. designed research; F.W., J.W., C.C., and A.D. performed research; F.W., J.W., and C.C. analyzed data; and F.W., J.W., D.Z., R.R., C.C., and A.D. wrote the paper.

Competing interest statement: A.D. is a member and the Executive Secretary of the Golden Rice Humanitarian Board. He is a volunteer, unpaid and without grants. R.R. is a member of the Golden Rice Humanitarian Board. He is a volunteer, unpaid and without grants. The Golden Rice Humanitarian Board (http://www.goldenrice.org) holds the rights for humanitarian applications of the nutritional technology created by Professors Ingo Potrykus and Peter Beyer and related licensed technology. The Board is not legally incorporated in any way. It is a group of individuals who voluntarily share the objective of making Golden Rice available to resource-poor populations as a public good, delivered by the public sector in locally adapted and preferred rice varieties, at no greater cost than white rice and with no use limitations except export. All other authors declare no competing interests.

Any opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Academy of Sciences.

*Many transformation events were produced (8), from which event GR2E has been selected on the basis of molecular structure and insertion in the rice genome, together with agronomic performance. It is the basis of the regulatory data generated and is the only form of GR which is offered for approval and use.

Excerpt from:
Opinion: Allow Golden Rice to save lives - pnas.org

Posted in Genetic Engineering | Comments Off on Opinion: Allow Golden Rice to save lives – pnas.org

2021: when the link between the climate and biodiversity crises became clear – The Guardian

Posted: December 24, 2021 at 2:31 am

Bats sweltering in their boxes, polar bears and narwhals using up to four times as much energy to survive, birds starving as Turkeys lakes dry up, and unique island species at high risk of extinction as the planet warms. If there was ever any doubt about the inextricable link between the climate emergency and the biodiversity crisis, those doubts were well and truly dispelled in 2021.

The science is clear: climate, biodiversity and human health are fully interdependent, Frans Timmermans, the European Commission vice-president who heads the European Green Deal; Achim Steiner, of the UN Development Programme; and Sandrine Dixson-Declve, of the Club of Rome, wrote before the Cop26 climate conference.

While the much-anticipated Cop15 Kunming biodiversity conference was delayed yet again, Cop26 brought together leaders from across the globe to discuss the climate emergency. Although the pledges on emissions cuts fell short of those required to limit the increase in temperatures to 1.5C, there were promises to halt and reverse global deforestation over the next decade.

Meanwhile, dozens of countries have committed to protecting 30% of the planets land and oceans by 2030, and in September, nine philanthropic foundations pledged $5bn (3.75bn) to finance the 30x30 pledge.

Despite the coronavirus pandemic and the many lockdowns, 2021 saw the worlds scientists, volunteers and conservationists continuing their efforts to protect nature. The International Union for Conservation of Nature launched its new green list of protected and conserved areas, researchers at the Natural History Museum worked on digitising its vast collection, Kenya held its first animal census, and a multimillion-pound project was launched that aims to describe and identify the web of life in large freshwater ecosystems with game-changing DNA technology.

In September, the IUCN world conservation congress in Marseille brought together innovators and policymakers from across the world for talks and debates on subjects as diverse as the universal declaration of the rights of the river, alien species, human-wildlife conflict, the use of smart technology in conservation, genetic engineering and much more.

Not all conservation efforts are down to scientists and policymakers though. There is growing recognition of the vital role communities and indigenous people play in conserving biodiversity and building livelihoods and this year we highlighted projects that included a shade-grown coffee initiative in Peru, islanders rallying to save the coco de mer nut in Seychelles and an army of nature recorders and seed conservers in the UK.

There was good news elsewhere. The flatpack homes for animals that fall victim to wildfires that we highlighted in April have since been trialled in Sydney, where a housing estate of the biodegradable cardboard pods has been put up to give shelter to wildlife after the bushfires.

In response to our piece on conservationists criticising Marks & Spencer for releasing 30 million honeybees, the British retailer filled 500 stores with little signs telling shoppers about the importance of native bumblebees in producing a number of foods. M&S has been really open to learning, said Gill Perkins, chief executive of the Bumblebee Conservation Trust, who believes it is the first UK supermarket to introduce bumblebee labels highlighting the work of these pollinators. She hopes others will follow suit.

Andrew Kerr, who spoke to the Guardian about wanting to create a UK eel rewilding programme, is having discussions with the relevant government ministry in January about the feasibility of getting rewilding permits sorted for this coming eel season.

Since we reported on the proposals to extend Barcelona airport, threatening neighbouring wetlands and a wealth of biodiversity, the plans have been put on hold. The future of the red wolf in North Carolina still hangs in the balance but the US Fish and Wildlife Service says it is planning to release nine wolves from captivity this winter. And an experimental feeding programme has been approved for Floridas manatees, after a record year of deaths.

Over the coming weeks, we will follow up on some of the stories that we covered during 2021 in more depth, but in the meantime, you might like to take a look at some of our favourite articles from the year that celebrate the planets beautiful and intricate biodiversity: why we need to stop treating soil like dirt; the wonderful world of fungi; the value of dead wood; how a wild night out could help you reconnect with nature; and, lastly, a lesson in why some things are worth waiting for, especially when they turn out like this

Find more age of extinction coverage here, and follow biodiversity reporters Phoebe Weston and Patrick Greenfield on Twitter for all the latest news and features

Read the rest here:
2021: when the link between the climate and biodiversity crises became clear - The Guardian

Posted in Genetic Engineering | Comments Off on 2021: when the link between the climate and biodiversity crises became clear – The Guardian

RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry – BioSpace

Posted: December 24, 2021 at 2:31 am

RNA and DNA extraction plays a crucial role in cancer genetic studies, which involves mutation analysis, comparative genomic hybridization, and microsatellite analysis. The rising incidences of cancer globally are creating a need for the advanced RNA and DNA extraction kit and are expected to drive market growth in the coming years.

Based on the product, the market is expected to segregate into RNA extraction kit and DNA extraction kit. Of these, the DNA extraction kit segment is expected to account for the leading share in the overall RNA and DNA extraction kit market. Additionally, the applications of DNA extraction kits mainly in the genetic engineering of animals and plants in pharmaceutical manufacturing. This is expected to fuel growth of RNA and DNA extraction kit market.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=5600

Global RNA and DNA Extraction Kit Market: Notable Developments

Some of the most prominent competitors operating in the competitive landscape of global RNA and DNA extraction kit market include

Global RNA and DNA Extraction Kit Market: Drivers and Restraints

The rise and progress in customized drug have helped social insurance experts create exact sub-atomic focused on treatment dependent on a person's hereditary cosmetics and prescient information explicit to patients. The advancement of customized medication requires genome-mapping investigations of separated cells, which can be completed with the assistance of DNA and RNA extraction kits. DNA extraction kits are utilized to recognize quality polymorphisms identified with sickness or medication digestion though RNA extraction kits are utilized to break down RNA combination in separated cells. With the expanding appropriation of customized prescription, the demand for RNA and DNA extraction kits will likewise develop.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=5600

There is a developing rate of malignant growth over the globe. The inside and out understanding of tumor hereditary qualities given by trend-setting innovations in malignant growth research has empowered the advancement of novel treatments to battle disease-causing qualities. The virtue, amount, and nature of separated RNA assume a huge job in the accomplishment of RNA examination and examination and consequent capacity of specific quality articulation. RNA extraction likewise helps in recognizing circulating tumor cells (CTCs) and non-intrusive observing of cutting edge malignant growths.

Global RNA and DNA Extraction Kit Market: Regional Outlook

On the basis of region, the RNA and DNA extraction kit market is segmented into North America, Europe, Latin America, Asia Pacific, and the Middle East & Africa. Of these, North America is expected to dominate the global RNA and DNA extraction kit market owing to robust innovation procedures running in the region. This factor is expected to offer robust growth opportunities to key players in RNA and DNA extraction kit market. Additionally, increasing demand for the automated systems coupled with the rising need for the RNA and DNA extraction kit across the extraction kits especially in the medical diagnosis is expected to drive growth of the market in coming years.

TMR Research is a leader in developing well-researched reports. The expertise of the researchers at TMR Research makes the report stand out from others. TMR Research reports help the stakeholders and CXOs make impactful decisions through a unique blend of innovation and analytical thinking. The use of innovation and analytical thinking while structuring a report assures complete and ideal information of the current status of the market to the stakeholders.

TMR Research has rich experience in developing state-of-the-art reports for a wide array of markets and sectors. The brilliance of the experts at TMR Research and their alacrity to conduct thorough research and create phenomenal reports makes TMR Research better than others.

Get Discount on the Latest Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=5600

5-Point Growth Formula

The 5-point growth formula developed by TMR Research provides an insight to the stakeholders and CXOs about the current situation in the market. The growth formula makes the report a perfect companion for the stakeholders and CXOs.

The 5-point growth formula includes the following points:

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Originally posted here:
RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace

Posted in Genetic Engineering | Comments Off on RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry – BioSpace

Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19…

Posted: December 24, 2021 at 2:31 am

LOS GATOS, Calif., Dec. 21, 2021 /PRNewswire/ -- Aridis Pharmaceuticals, Inc. (Nasdaq: ARDS), a biopharmaceutical company focused on the discovery and development of novel anti-infective therapies to treat life-threatening infections, announced today that its fully human monoclonal antibody (mAb) cocktail AR-701 is broadly reactive against the Omicron and other COVID-19 (SARS-CoV-2) variants, SARS (Severe Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome Coronavirus), and seasonal ('common cold') human coronaviruses.

"Omicron has rendered current COVID-19 vaccines and monoclonal antibodies substantially less effective, and likely future COVID 19 variants will arise that continue this trend" said Vu Truong, Ph.D., Chief Executive Officer of Aridis Pharmaceuticals. "AR-701 is the result of our successful search for a mAb therapy that is directed against a conserved region of the virus that would be less vulnerable to mutations and new variants such as Omicron. Our laboratory data suggest that AR-701 has the potential to be a future-proof COVID-19 therapy that can protect against SARS-CoV-2, SARS, or MERS pandemics," continued Dr. Truong. "To our knowledge AR-701 is the only COVID-19 therapy that targets two distinct viral mechanisms of action, making it much harder for the virus to generate resistance, and exhibits an unmatched combination of broad reactivity and high efficacy," continued Dr. Truong.

About AR-701AR-701 is a cocktail of two fully human immunoglobulin G1 (IgG1) mAbs discovered from screening the antibody secreting B-cells of convalescent SARS-CoV-2 infected (COVID-19) patients. AR-701 consists of AR-703 and AR-720 mAbs, each neutralizes coronaviruses using distinct mechanisms of action, namely inhibition of viral fusion and entry into human cells (AR-703) and blockage of viral binding to the human 'ACE2' receptor (AR-720). The two mAbs complement and enhance each other in a synergistic fashion, creating a potent first-in-class cocktail. AR-703 binds to the 'S2' stalk region of spike proteins from betacoronaviruses, including the SARS-CoV2 variants (beta, gamma, delta, epsilon), and binds to the Omicron variant with no loss in affinity compared to the original Wuhan strain. Multiple animal challenge models widely used to evaluate COVID-19 treatments support AR-701's broad efficacy, including:

The AR-701 mAbs are engineered to be active for 6-12 months in the blood. AR-701 is being developed as a long-acting intramuscular as well as a self-administered inhaled formulation for the treatment of COVID-19 patients who are not yet hospitalized. AR-701 mAbs were discovered through a collaboration with researchers at the University of Alabama in Birmingham and Texas Biomedical Research Institute (San Antonio, TX).

About Aridis Pharmaceuticals, Inc.

Aridis Pharmaceuticals, Inc. discovers and develops novel anti-infective therapies to treat life-threatening infections, including anti-infectives to be used as add-on treatments to standard-of-care antibiotics. The Company is utilizing its proprietary PEXTM and MabIgX technology platforms to rapidly identify rare, potent antibody-producing B-cells from patients who have successfully overcome an infection, and to rapidly manufacture monoclonal antibody (mAbs) for therapeutic treatment of critical infections. These mAbs are already of human origin and functionally optimized for high potency by the donor's immune system; hence, they technically do not require genetic engineering or further optimization to achieve full functionality.

The Company is advancing multiple clinical stage mAbs targeting bacteria that cause life-threatening infections such as ventilator associated pneumonia (VAP) and hospital acquired pneumonia (HAP), in addition to preclinical stage antiviral mAbs. The use of mAbs as anti-infective treatments represents an innovative therapeutic approach that harnesses the human immune system to fight infections and is designed to overcome the deficiencies associated with the current standard of care which is broad spectrum antibiotics. Such deficiencies include, but are not limited to, increasing drug resistance, short duration of efficacy, disruption of the normal flora of the human microbiome and lack of differentiation among current treatments. The mAb portfolio is complemented by a non-antibiotic novel mechanism small molecule anti-infective candidate being developed to treat lung infections in cystic fibrosis patients. The Company's pipeline is highlighted below:

Aridis' Pipeline

AR-301 (VAP). AR-301 is a fully human IgG1 mAb targeting gram-positive Staphylococcus aureus (S. aureus) alpha-toxin and is being evaluated in a global Phase 3 clinical study as an adjunctive treatment of S. aureus ventilator associated pneumonia (VAP).

AR-320 (VAP). AR-320 is a fully human IgG1 mAb targeting S. aureus alpha-toxin that is being developed as a preventative treatment of S. aureus colonized mechanically ventilated patients who do not yet have VAP. Phase 3 is expected to be initiated in 2Q22.

AR-501 (cystic fibrosis). AR-501 is an inhaled formulation of gallium citrate with broad-spectrum anti-infective activity being developed to treat chronic lung infections in cystic fibrosis patients. This program is currently in Phase 2a clinical development in CF patients.

AR-701 (COVID-19). AR-701 is a cocktail of fully human mAbs discovered from convalescent COVID-19 patients that are directed at multiple protein epitopes on the SARS-CoV-2 virus. It is formulated for delivery via intramuscular injection or inhalation using a nebulizer. AR-701 replaces AR-712 as the company's leading COVID mAb candidate.

AR-401 (blood stream infections). AR-401 is a fully human mAb preclinical program aimed at treating infections caused by gram-negative Acinetobacter baumannii.

AR-101 (HAP). AR-101 is a fully human immunoglobulin M, or IgM, mAb in Phase 2 clinical development targeting Pseudomonas aeruginosa (P. aeruginosa) liposaccharides serotype O11, which accounts for approximately 22% of all P. aeruginosa hospital acquired pneumonia cases worldwide.

AR-201 (RSV infection). AR-201 is a fully human IgG1 mAb out-licensed preclinical program aimed at neutralizing diverse clinical isolates of respiratory syncytial virus (RSV).

For additional information on Aridis Pharmaceuticals, please visit https://aridispharma.com/.

Forward-Looking Statements

Certain statements in this press release are forward-looking statements that involve a number of risks and uncertainties. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Aridis' expectations, strategy, plans or intentions. These forward-looking statements are based on Aridis' current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, the need for additional financing, the timing of regulatory submissions, Aridis' ability to obtain and maintain regulatory approval of its existing product candidates and any other product candidates it may develop, approvals for clinical trials may be delayed or withheld by regulatory agencies, risks relating to the timing and costs of clinical trials, risks associated with obtaining funding from third parties, management and employee operations and execution risks, loss of key personnel, competition, risks related to market acceptance of products, intellectual property risks, risks related to business interruptions, including the outbreak of COVID-19 coronavirus, which could seriously harm our financial condition and increase our costs and expenses, risks associated with the uncertainty of future financial results, Aridis' ability to attract collaborators and partners and risks associated with Aridis' reliance on third party organizations. While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Actual results could differ materially from those described or implied by such forward-looking statements as a result of various important factors, including, without limitation, market conditions and the factors described under the caption "Risk Factors" in Aridis' 10-K for the year ended December 31, 2020 and Aridis' other filings made with the Securities and Exchange Commission. Forward-looking statements included herein are made as of the date hereof, and Aridis does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Contact:Media Communications:Matt SheldonRedChip Companies Inc.Matt@redchip.com1.917.280.7329

Investor RelationsDave GentryRedChipDave@redchip.com1-800-733-2447

View original content to download multimedia:https://www.prnewswire.com/news-releases/aridis-pharmaceuticals-announces-a-pan-coronavirus-monoclonal-antibody-cocktail-that-retains-effectiveness-against-the-omicron-variant-other-covid-19-variants-sars-mers-and-the-common-cold-human-coronaviruses-301448791.html

SOURCE Aridis Pharmaceuticals, Inc.

Company Codes: NASDAQ-NMS:ARDS

Continue reading here:
Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19...

Posted in Genetic Engineering | Comments Off on Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19…

Page 17«..10..16171819..3040..»