Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetic Engineering
Genetic Engineering – humans, body, used, process, plants …
Posted: March 29, 2020 at 6:58 pm
Photo by: Gernot Krautberger
Genetic engineering is any process by which genetic material (the building blocks of heredity) is changed in such a way as to make possible the production of new substances or new functions. As an example, biologists have now learned how to transplant the gene that produces light in a firefly into tobacco plants. The function of that genethe production of lighthas been added to the normal list of functions of the tobacco plants.
Genetic engineering became possible only when scientists had discovered exactly what is a gene. Prior to the 1950s, the term gene was used to stand for a unit by which some genetic characteristic was transmitted from one generation to the next. Biologists talked about a "gene" for hair color, although they really had no idea as to what that gene was or what it looked like.
That situation changed dramatically in 1953. The English chemist Francis Crick (1916 ) and the American biologist James Watson (1928 ) determined a chemical explanation for a gene. Crick and Watson discovered the chemical structure for large, complex molecules that occur in the nuclei of all living cells, known as deoxyribonucleic acid (DNA).
DNA molecules, Crick and Watson announced, are very long chains or units made of a combination of a simple sugar and a phosphate group.
Amino acid: An organic compound from which proteins are made.
DNA (deoxyribonucleic acid): A large, complex chemical compound that makes up the core of a chromosome and whose segments consist of genes.
Gene: A segment of a DNA molecule that acts as a kind of code for the production of some specific protein. Genes carry instructions for the formation, functioning, and transmission of specific traits from one generation to another.
Gene splicing: The process by which genes are cut apart and put back together to provide them with some new function.
Genetic code: A set of nitrogen base combinations that act as a code for the production of certain amino acids.
Host cell: The cell into which a new gene is transplanted in genetic engineering.
Human gene therapy (HGT): The application of genetic engineering technology for the cure of genetic disorders.
Nitrogen base: An organic compound consisting of carbon, hydrogen, oxygen, and nitrogen arranged in a ring that plays an essential role in the structure of DNA molecules.
Plasmid: A circular form of DNA often used as a vector in genetic engineering.
Protein: Large molecules that are essential to the structure and functioning of all living cells.
Recombinant DNA research (rDNA research): Genetic engineering; a technique for adding new instructions to the DNA of a host cell by combining genes from two different sources.
Vector: An organism or chemical used to transport a gene into a new host cell.
Attached at regular positions along this chain are nitrogen bases. Nitrogen bases are chemical compounds in which carbon, hydrogen, oxygen, and nitrogen atoms are arranged in rings. Four nitrogen bases occur in DNA: adenine (A), cytosine (C), guanine (G), and thymine (T).
The way in which nitrogen bases are arranged along a DNA molecule represents a kind of genetic code for the cell in which the molecule occurs. For example, the sequence of nitrogen bases T-T-C tells a cell that it should make the amino acid known as lysine. The sequence C-C-G, on the other hand, instructs the cell to make the amino acid glycine.
A very long chain (tens of thousands of atoms long) of nitrogen bases tells a cell, therefore, what amino acids to make and in what sequence to arrange those amino acids. A very long chain of amino acids arranged in a particular sequence, however, is what we know of as a protein. The specific sequence of nitrogen bases, then, tells a cell what kind of protein it should be making.
Furthermore, the instructions stored in a DNA molecule can easily be passed on from generation to generation. When a cell divides (reproduces), the DNA within it also divides. Each DNA molecule separates into two identical parts. Each of the two parts then makes a copy of itself. Where once only one DNA molecule existed, now two identical copies of the molecule exist. That process is repeated over and over again, every time a cell divides.
This discovery gave a chemical meaning to the term gene. According to our current understanding, a specific arrangement of nitrogen bases forms a code, or set of instructions, for a cell to make a specific protein. The protein might be the protein needed to make red hair, blue eyes, or wrinkled skin (to simplify the possibilities). The sequence of bases, then, holds the code for some genetic trait.
The Crick-Watson discovery opened up unlimited possibilities for biologists. If genes are chemical compounds, then they can be manipulated just as any other kind of chemical compound can be manipulated. Since DNA molecules are very large and complex, the actual task of manipulation may be difficult. However, the principles involved in working with DNA molecule genes is no different than the research principles with which all chemists are familiar.
For example, chemists know how to cut molecules apart and put them back together again. When these procedures are used with DNA molecules, the process is known as gene splicing. Gene splicing is a process that takes place naturally all the time in cells. In the process of division or repair, cells routinely have to take genes apart, rearrange their components, and put them back together again.
Scientists have discovered that cells contain certain kinds of enzymes that take DNA molecules apart and put them back together again. Endonucleases, for example, are enzymes that cut a DNA molecule at some given location. Exonucleases are enzymes that remove one nitrogen base unit at a time. Ligases are enzymes that join two DNA segments together.
It should be obvious that enzymes such as these can be used by scientists as submicroscopic scissors and glue with which one or more DNA molecules can be cut apart, rearranged, and the put back together again.
Genetic engineering requires three elements: the gene to be transferred, a host cell into which the gene is inserted, and a vector to bring about the transfer. Suppose, for example, that one wishes to insert the gene for making insulin into a bacterial cell. Insulin is a naturally occurring protein made by cells in the pancreas in humans and other mammals. It controls the breakdown of complex carbohydrates in the blood to glucose. People whose bodies have lost the ability to make insulin become diabetic.
The first step in the genetic engineering procedure is to obtain a copy of the insulin gene. This copy can be obtained from a natural source
Phototake
(from the DNA in a pancreas, for example), or it can be manufactured in a laboratory.
The second step in the process is to insert the insulin gene into the vector. The term vector means any organism that will carry the gene from one place to another. The most common vector used in genetic engineering is a circular form of DNA known as a plasmid. Endonucleases are used to cut the plasmid molecule open at almost any point chosen by the scientist. Once the plasmid has been cut open, it is mixed with the insulin gene and a ligase enzyme. The goal is to make sure that the insulin gene attaches itself to the plasmid before the plasmid is reclosed.
The hybrid plasmid now contains the gene whose product (insulin) is desired. It can be inserted into the host cell, where it begins to function just like all the other genes that make up the cell. In this case, however, in addition to normal bacterial functions, the host cell also is producing insulin, as directed by the inserted gene.
Notice that the process described here involves nothing more in concept than taking DNA molecules apart and recombining them in a different arrangement. For that reason, the process also is referred to as recombinant DNA (rDNA) research.
The possible applications of genetic engineering are virtually limitless. For example, rDNA methods now enable scientists to produce a number of products that were previously available only in limited quantities. Until the 1980s, for example, the only source of insulin available to diabetics was from animals slaughtered for meat and other purposes. The supply was never large enough to provide a sufficient amount of affordable insulin for everyone who needed insulin. In 1982, however, the U.S. Food and Drug Administration approved insulin produced by genetically altered organisms, the first such product to become available.
Since 1982, the number of additional products produced by rDNA techniques has greatly expanded. Among these products are human growth hormone (for children whose growth is insufficient because of genetic problems), alpha interferon (for the treatment of diseases), interleukin-2 (for the treatment of cancer), factor VIII (needed by hemophiliacs for blood clotting), erythropoietin (for the treatment of anemia), tumor necrosis factor (for the treatment of tumors), and tissue plasminogen activator (used to dissolve blood clots).
Genetic engineering also promises a revolution in agriculture. Recombinant DNA techniques enable scientists to produce plants that are resistant to herbicides and freezing temperatures, that will take longer to ripen, and that will manufacture a resistance to pests, among other characteristics.
Today, scientists have tested more than two dozen kinds of plants engineered to have special properties such as these. As with other aspects of genetic engineering, however, these advances have been controversial. The development of herbicide-resistant plants, for example, means that farmers are likely to use still larger quantities of herbicides. This trend is not a particularly desirable one, according to some critics. How sure can we be, others ask, about the risk to the environment posed by the introduction of "unnatural," engineered plants?
The science and art of animal breeding also are likely to be revolutionized by genetic engineering. For example, scientists have discovered that a gene in domestic cows is responsible for the production of milk. Genetic engineering makes it possible to extract that gene from cows who produce large volumes of milk or to manufacture that gene in the laboratory. The gene can then be inserted into other cows whose milk production may increase by dramatic amounts because of the presence of the new gene.
One of the most exciting potential applications of genetic engineering involves the treatment of human genetic disorders. Medical scientists know of about 3,000 disorders that arise because of errors in an individual's DNA. Conditions such as sickle-cell anemia, Tay-Sachs disease, Duchenne muscular dystrophy, Huntington's chorea, cystic fibrosis, and Lesch-Nyhan syndrome result from the loss, mistaken insertion, or change of a single nitrogen base in a DNA molecule. Genetic engineering enables scientists to provide individuals lacking a particular gene with correct copies of that gene. If and when the correct gene begins functioning, the genetic disorder may be cured. This procedure is known as human gene therapy (HGT).
The first approved trials of HGT with human patients began in the 1980s. One of the most promising sets of experiments involved a condition known as severe combined immune deficiency (SCID). Individuals with SCID have no immune systems. Exposure to microorganisms that would be harmless to the vast majority of people will result in diseases that can cause death. Untreated infants born with SCID who are not kept in a sterile bubble become ill within months and die before their first birthday.
In 1990, a research team at the National Institutes of Health (NIH) attempted HGT on a four-year-old SCID patient. The patient received about one billion cells containing a genetically engineered copy of the gene that his body lacked. Another instance of HGT was a procedure, approved in 1993 by NIH, to introduce normal genes into the airways of cystic fibrosis patients. By the end of the 1990s, according to the NIH, more than 390 gene therapy studies had been initiated. These studies involved more than 4,000 people and more than a dozen medical conditions.
In 2000, doctors in France claimed they had used HGT to treat three babies who suffered from SCID. Just ten months after being treated, the babies exhibited normal immune systems. This marked the first time that HGT had unequivocally succeeded.
Controversy remains. Human gene therapy is the source of great controversy among scientists and nonscientists alike. Few individuals maintain that the HGT should not be used. If we could wipe out sickle cell anemia, most agree, we should certainly make the effort. But HGT raises other concerns. If scientists can cure genetic disorders, they can also design individuals in accordance with the cultural and intellectual fashions of the day. Will humans know when to say "enough" to the changes that can be made with HGT?
Photo Researchers, Inc.
Despite recent successes, most results in HGT since the first experiment was conducted in 1990 have been largely disappointing. And in 1999, research into HGT was dealt a blow when an eighteen-year-old from Tucson, Arizona, died in an experiment at the University of Pennsylvania. The young man, who suffered from a metabolic disorder, had volunteered for an experiment to test gene therapy for babies with a fatal form of that disease. Citing the spirit of this young man, researchers remain optimistic, vowing to continue work into the possible lifesaving opportunities offered by HGT.
The commercial potential of genetically engineered products was not lost on entrepreneurs in the 1970s. A few individuals believed that the impact of rDNA on American technology would be comparable to that of computers in the 1950s. In many cases, the first genetic engineering firms were founded by scientists involved in fundamental research. The American biologist Herbert Boyer, for example, teamed up with the venture capitalist Robert Swanson in 1976 to form Genentech (Genetic Engineering Technology). Other early firms like Cetus, Biogen, and Genex were formed similarly through the collaboration of scientists and businesspeople.
The structure of genetic engineering (biotechnology) firms has, in fact, long been a source of controversy. Many observers have questioned the right of a scientist to make a personal profit by running companies that benefit from research that had been carried out at publicly funded universities. The early 1990s saw the creation of formalized working relations between universities, individual researchers, and the corporations founded by these individuals. Despite these arrangements, however, many ethical issues remain unresolved.
View post:
Genetic Engineering - humans, body, used, process, plants ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering – humans, body, used, process, plants …
Scientist says anti-epilepsy drug can be repurposed for Covid-19, writes to ICMR to test it – ThePrint
Posted: March 29, 2020 at 6:58 pm
Text Size:A- A+
New Delhi:A leading scientist at the International Centre for Genetic Engineering and Biotechnology (ICGEB) in New Delhi has found that valproic acid, an anti-epilepsy drug, can be repurposed and used for acute cases of Covid-19.
The scientist, Neel Sarovar Bhavesh, has written to the director general of the Indian Council of Medical Research (ICMR), the apex body in the field, to test valproic acid at the National Institute of Virology in Pune or any ICMR lab to find a quick solution to the coronavirus crisis.
The ICGEB is part of the research consortium working to find a cure and vaccine for Covid-19.
Valproic acid is an approved drug, whose patent expired recently. It is sold under brand names such as Depacon and Stavzor to treat epilepsy. The University of California has also validated the ICGEBs research findings it lists valproic acid as one of the molecules for repurposing and testing for use against the Covid-19 virus.
Also read: AI identifies potential drugs and a DNA vaccine in the works latest on Covid-19
Bhavesh, the head of transcriptional regulation at ICGEB, told ThePrint: We have performed high-throughput virtual screening (HTVS) of 1.2 million small molecules from the four databases, and later performed Energy calculation and molecular binding simulation. We found that valproic acid CoA may be repurposed to inhibit the RNA-dependent RNA polymerase of the virus.
We have written to the DG ICMR to test this molecule on cell culture and animal testing facilities, in combination with potent binding blocking molecules. Currently no one in India outside the NIV and ICMR has access to the Covid-19 virus, Bhavesh said.
About 1,100 strains of the novel coronavirus have been sequenced from around the world. We (in India) have around 700 confirmed positive cases, but only two virus sequences are available at the NIV. These sequences are different from each other, he explained.
Bhavesh revealed that after the publication of the ICGEB research, multinational pharmaceutical company GlaxoSmithKline contacted them.
However, Bhavesh said theres an urgent need for cooperation from government bodies like the ICMR and the NIV in terms of giving researchers access to the virus strains in India to test on.
There should be synchronisation in testing and developing. If NIV or any another research institution finds success, lots of patients can be cured and saved. The need of the hour is to find the solution. The NIV must cooperate with other institutions more generously, he said.
A day before, Union Biotechnology Secretary Renu Swarup also said in an interview that early solutions for the novel coronavirus can be found from repurposed drugs, and that developing new drugs would take time.
Also read: Old drugs, new trials hopes pinned on HIV, malaria, ebola, TB vaccines to fight Covid-19
ThePrint is now on Telegram. For the best reports & opinion on politics, governance and more, subscribe to ThePrint on Telegram.
Subscribe to our YouTube channel.
Read the original:
Scientist says anti-epilepsy drug can be repurposed for Covid-19, writes to ICMR to test it - ThePrint
Posted in Genetic Engineering
Comments Off on Scientist says anti-epilepsy drug can be repurposed for Covid-19, writes to ICMR to test it – ThePrint
Planet Earth Report Scientists Stranded at Sea to Unknown Limits of Human Athletic Performance – The Daily Galaxy –Great Discoveries Channel
Posted: March 29, 2020 at 6:58 pm
Planet Earth Report provides descriptive links to headline news by leading science journalists about the extraordinary discoveries, technology, people, and events changing our knowledge of Planet Earth and the future of the human species.
We Are Nowhere Close to the Limits of Athletic Performance Genetic engineering will bring us new Bolts and Shaqs. For many years I lived in Eugene, Oregon, writes Stephen Hsu for Nautil.us, also known as track-town USA for its long tradition in track and field. Each summer high-profile meets like the United States National Championships or Olympic Trials would bring world-class competitors to the University of Oregons Hayward Field. It was exciting to bump into great athletes at the local cafe or ice cream shop, or even find myself lifting weights or running on a track next to them. One morning I was shocked to be passed as if standing still by a woman running 400-meter repeats. Her training pace was as fast as I could run a flat out sprint over a much shorter distance.
Significance of Pangolin Viruses in Human Pandemic Remains Murky Scientists havent found evidence that the new coronavirus jumped from pangolins to people, but they do host very similar viruses, writes James Gorman for the New York Times. Pangolins, once suspected as the missing link from bats to humans in the origin of the coronavirus pandemic, may not have played that role, some scientists say, although the animals do host viruses that are similar to the new human coronavirus.
The Pandemic Has Grounded Humankind Space missions around the world are on holda poignant reminder of how COVID-19 has upended civilization, writes Marina Koren for The Atlantic.
The spread of the coronavirus will be exponential which is bad. But its inevitable decline will also be exponential, which is good, writes Seth Shostak, Senior Astronomer at SETI.org. In the case of the coronavirus, the growth in the number of infected persons will inevitably be exponential, at least for a while. Thats because the rate of new infections clearly depends on the number of people who are already contagious. The resulting tally of the infected will increase very rapidly as is typical of exponential growth. Note that its not that the number is large, but only the behavior of the growth rate that merits the designation exponential.
Scientists Are Stuck on an Ice-Locked Ship in the Arctic Due to Coronavirus Organizers of the MOSAiC expedition are determining the best way to bring a relief crew to the ship without spreading the virus, which could leave roughly 100 scientists and crew on board for an extra six weeks, reports Maddie Stone for Motherboard Science.
Pablo Escobars Hippos Fill a Hole Left Since Ice Age Extinctions -Invasive herbivore mammals seem to restore functions missing in some food webs and ecosystems since the Pleistocene era, writes Asher Elbein for the New York Times. When Pablo Escobar died in 1993, the Colombian drug kingpins four adult African hippopotamuses were forgotten. But the fields and ponds along the Magdalena River suited them. One estimate puts their current population at 50 to 80 animals: By 2050 there may be anywhere from 800 to 5,000 in a landscape that never before knew hippos.
Stranded at sea cruise ships around the world are adrift as ports turn them away, reports The Guardian. A Guardian analysis of ship tracking data has found that, as of Thursday, at least ten ships around the world carrying nearly 10,000 passengers are still stuck at sea after having been turned away from their destination ports in the face of the Covid-19 pandemic. Some of the ships are facing increasingly desperate medical situations, including one carrying hundreds of American, Canadian, Australian and British passengers, currently off the coast of Ecuador and seeking permission to dock in Florida.
Recent Planet Earth Reports
CIA & Birth of Conspiracy Theories to Mystery of Coronavirus Origins
Melting Tibetan Glacier Could Release Ancient Unknown Viruses to Epic Stone-Age Voyage
Graveyard of Giant Spaceships to Fourth Atomic Spy at Los Alamos
Cyborgs Will Lead Us to an Intelligent Universe to a New Force of Nature
Russias Futuristic Tech to Tiny Lab-Size Wormhole Could Shatter Our Sense of Reality
The rest is here:
Planet Earth Report Scientists Stranded at Sea to Unknown Limits of Human Athletic Performance - The Daily Galaxy --Great Discoveries Channel
Posted in Genetic Engineering
Comments Off on Planet Earth Report Scientists Stranded at Sea to Unknown Limits of Human Athletic Performance – The Daily Galaxy –Great Discoveries Channel
How far should genetic engineering go to allow this couple to have a healthy baby? – Sydney Morning Herald
Posted: March 26, 2020 at 8:42 pm
Normal text sizeLarger text sizeVery large text size
One morning in 2005, Shelley Beverley woke up to find that she had gone deaf. She was 21, and living in Johannesburg with her older brother Neil. I was very scared, she says. It was just so sudden. She struggled through the rest of the day, hoping that her hearing would come back, but it didnt. In one sense, her hearing loss wasnt entirely a surprise: Beverleys grandmother had been deaf, Neil had lost his hearing when he was 13, and her mum, Mary, had lost hers when she was 32. We knew it ran in the family, she says, but I thought Id been lucky and not inherited it.
Beverley, 35, lives in Margate, a semi-rural district south of Hobart, with her husband James. The couple migrated to Australia from South Africa in 2010, looking for space, buying 2 hectares of lush green grass at the foot of a forested ridge near the mouth of the Derwent River. We love the wildlife here, says James, looking out the living room window. Weve seen pademelons, echidnas, quolls, blue-tongue lizards, even a Tassie devil. At dusk, hundreds of kangaroos emerge from the forest to gorge on the grass. Its very peaceful, says James. Its really helped us after everything thats happened.
Apart from their deafness, Beverleys family had largely enjoyed good health. Then, in September 2015, her mother, Mary, then 62, started experiencing fatigue and stomach pain. Doctors in Durban ordered a colonoscopy, but the procedure made her worse. Her feet became swollen and purple. Because of their hearing problems, Shelley and Mary had communicated mainly in text messages. But soon I began noticing that her wording got a bit funny, says Beverley. It didnt always make sense.
Loading
Beverley flew to Durban in February 2016, but by that time her mother could no longer talk or walk. She was so weak that she couldnt move her hands or lift her neck. Two days after Beverley arrived in Durban, her mother caught a virus that caused fluid to build up on her lungs. The doctors tried unsuccessfully to drain it. Shortly afterwards, she died. She weighed just 36 kilograms. It was so fast, Beverley says. And we were still in the dark about what she had.
Shortly before Marys death, Neil had also fallen ill. He developed a number of mysterious symptoms, including facial twitches and seizures. He kept falling over and tripping, and experienced vomiting and headaches so severe he lost his vision for weeks at a time. His behaviour became strange showering with his clothes on, and hallucinating.
One day, Dad was driving him around and Neil started talking to all these little people he thought were around his feet, says Beverley. Doctors in Durban had trouble diagnosing him, so they sent a biopsy to London, where he was found to have a type of mitochondrial cytopathy one of a large family of chronic and progressive diseases that affect the muscles, brain and nervous system. As the family soon learnt, the condition has no cure and no effective therapies. One of the common early symptoms is hearing loss.
Neil died in June 2017, aged 34, by which time Beverley had discovered she also had the condition. It was fear, so much fear, she says. She began experiencing symptoms, including migraines and vision loss. She has since developed diabetes, hypertension, gastro-paresis (when your stomach muscles dont work), and pharyngeal dysphagia (difficulty swallowing). Every time I get sick now, the flu or something, I think, When am I going to need a wheelchair or a feeding tube? When will my legs stop working?
Mito has taken everything from me, she says. If I die, at least James will still have a part of me.
Beverley has bright blue eyes and long, straight, ash-brown hair. Shes got a lazy left eye and uncommonly pale skin, which she attributes to her condition. Oh, and I had bunions out in 2010, she says, laughing wryly.
She doesnt know how long shes got left, but she is determined to make it count. She has joined mito awareness groups, and is an active member of the Mito Foundation, which supports sufferers, and funds research. She has exhaustively researched the condition and takes every opportunity to educate doctors. Youd be surprised by how little they know about it, she says.
But her overriding focus has been on a cutting-edge, and currently illegal, procedure called mitochondrial donation, a form of IVF which would allow those with the condition to have children, safe in the knowledge they would not be passing it on. Mito has taken everything from me, she says. If I die, at least James will still have a part of me. I would like him to look at our child, and say, You have your mums smile or your mums eyes.
An IVF treatment known as mitochondrial donation could potentially save up to 60 Australian children a year from being born with the condition. Credit:
Mitochondrial donation has been labelled immoral and unethical, a slippery slope to designer babies, not to mention potentially unsafe. The only country in the world to have legalised it is the UK. A report by medical experts into the technologys potential application in Australia is due to be delivered to Health Minister Greg Hunt this month.
This fight is really personal to me, Beverley says. Short of a cure, people with mito should at least have the option of having healthy children.
Mitochondria are microscopic structures in human cells that provide the body with energy. For this reason, they are often described as the cells powerhouse. They are crucially important: if your mitochondria fail or mutate, your body will be starved of energy, causing multiple organ failure and premature death.
A stylised representation of a mitochondrion, which provides the body with energy. Malfunction can lead to organ failure and death.Credit:Josh Robenstone
Mito, which is maternally inherited, usually affects the muscles and major organs such as the brain, heart, liver, inner ears, and eyes. But it can cause any symptom in any organ, at any age. Indeed, the term mito includes more than 200 disorders, the symptoms of which are maddeningly varied and seemingly unrelated, leading to delayed diagnoses or incorrect diagnoses or, indeed, no diagnosis.
Many of these people have been fobbed off by doctors or laughed off by people who think they are hypochondriacs, says Dr David Thorburn, a mitochondrial researcher at the Murdoch Childrens Research Institute, in Melbourne, who has diagnosed some 700 cases over the past 28 years. Most people are relieved to finally know what it is, because that is the end of that part of their journey.
Its sometimes said babies produced as a result of mitochondrial donation would have three parents the mother, the father, and the donor.
Up to two million people worldwide have some form of mito. - Others, like Beverley, who have a less severe type of the disease, will get adult onset, and can expect to become ill in their 30s, 40s or 50s.
According to Thorburn, One of the things that most dismays families with mito is the lack of control they have over passing the condition down to future generations of their family.
Remaining childless is one way to stop the condition from being passed down, as is adopting, but as Thorburn acknowledges, There is an innate desire in many individuals to have their own children. For these people, mito donation offers the very real prospect that the condition is eliminated from future generations.
Mitochondrial replacement is a highly specialised procedure, requiring a level of manual dexterity sufficient to manipulate a womans egg, which is roughly the width of a human hair. Within that egg is a nucleus, where a persons genes are located, and the cytoplasm, the jelly-like substance that surrounds it. Mitochondria are found in the cytoplasm.
Mitochondrial replacement involves taking a donor females healthy egg, removing its nucleus and replacing it with the nucleus of the woman affected by mitochondrial disease, but whose nucleus is healthy. The egg is then fertilised using her partners sperm. (Another option is to fertilise the egg first, and then swap the nucleus.) The resulting embryo is then implanted into the mother.
Researcher David Thorburn: "Mito donation offers the very real prospect that the condition is eliminated from future generations."Credit:Josh Robenstone
Since more than 99.9 per cent of our genes are found in the eggs nucleus, which remains unaffected, the procedure will have no impact on the childs height, hair colour or mannerisms. Despite that, its sometimes said that babies produced as a result of mitochondrial donation would have three parents the mother, the father, and the donor.
The technology has been tested in mice for more than 30 years, but only since 2009 has research been done on human embryos, mainly in the UK. Almost from the start, the research was subject to sensational headlines about scientists playing God, and the possibility of genetic engineering, with much of the hysteria being fuelled by anti-abortion groups. The Catholic Church described it as a further step in commodification of the human embryo and a failure to respect new individual human lives.
In 2012, the Human Genetics Alert, an independent watchdog group in London, wrote a paper comparing any baby produced with mitochondrial replacement to Frankensteins creation, since they would be produced by sticking together bits from many different bodies. According to the Conservative British MP Jacob Rees-Mogg, the procedure was not a cure for disease, it is the creating of a different person.
Regulators subjected the technology to four separate scientific reviews, together with rounds of ethical debate and community consultation. In 2015, the UK Parliament voted to legalise the technology for use in humans, on the proviso that it only be available to those women at high risk of passing on the disease. Since then, 13 couples in the UK have received the go-ahead to undergo the procedure.
Its unclear how many children, if any, have been born: the parents have asked that details not be published. Meanwhile, scientists like Thorburn wait eagerly for news of any developments. I know the UK researchers well and have asked several of them, and they are keeping completely quiet about it in respecting the families wishes, he says.
Loading
If there have been babies born in the UK using the procedure, they arent the first. In April 2016, a child was born using the technique in Mexico, to a Jordanian mother who carried a fatal mitochondrial condition known as Leigh syndrome. The doctor in charge, an American fertility specialist called Dr John Zhang, later admitted that he had gone to Mexico because the procedure is illegal in America. In Mexico, he admitted, There are no rules.
Even those who want mitochondrial donation legalised in Australia concede that much remains unknown about the procedure. Its long-term risks can only be understood through lifelong health check-ups, but this is impossible until any children conceived via this procedure become adults. Implications for subsequent generations also remain unclear.
No medical procedure is 100 per cent safe, says Sean Murray, CEO of the Mito Foundation. But we think we are at the stage now where the benefits of the technology are greater than the risks.
One of the issues around safety concerns the compatibility of the donors mitochondria with the recipients nuclear genes. A 2016 study in mice suggested that mismatched mitochondria affected their metabolism and shortened their lives. Another concern is known as carryover, whereby a tiny amount of mutant mitochondria is inevitably transferred from the affected mothers egg into the donor egg during the procedure.
Instead of it being wiped out, the mutation might then reappear in the descendants of any girls born as a result. For this reason, some people have proposed that the procedure be restricted to male embryos only, but this raises all kinds of ethical issues around selective breeding and sex selection.
Loading
Indeed, it often seems as if the term ethical minefield was coined especially with mitochondrial donation in mind.
My primary ethical concern has to do with the sanctity of human life, says Father Kevin McGovern, a Catholic priest and member of the National Health and Medical Research Councils Mitochondrial Donation Expert Working Committee.
If mitochondrial donation is permitted here, the technique most likely to be used is pronuclear transfer, which requires that both the donors egg and the affected mothers egg be fertilised. [This is to ensure that both eggs are at the same developmental stage.] But once the nucleus is removed from the donors fertilised egg, it is discarded. For people who believe that life begins at conception, this is akin to murder. You are creating two lives and destroying one for spare parts.
The Catholic Church has consistently opposed mitochondrial donation. In a Senate inquiry into the technology in 2018, Dr Bernadette Tobin, director of the Plunkett Centre for Ethics at the Australian Catholic University, suggested the process was intrinsically evil.
The inquiry also heard from Father Anthony Fisher, Catholic Archbishop of Sydney, who raised concerns about the moral right of the child to know how he or she was conceived the problem of what he called genealogical bewilderment and the donors right to remain anonymous. He also worried that women might effectively become egg vending machines: The availability of human ova is often assumed when people talk about reproductive technology as if they were somehow there in a cupboard to be used. In fact, it means women have to be used to obtain these eggs. They are extracted by invasive procedures that do carry some risk.
A report by medical experts into mitochondrial donation and its potential application in Australia is due to be delivered to Health Minister Greg Hunt this month. Credit:Alex Ellinghausen
Equally troubling for the Australian Catholic Bishops Conference, the peak national body for the churchs bishops, was the fact that mitochondrial donation involved conceiving babies not by marital intercourse [but by] a technical procedure.
Most of these concerns are redundant, argues the Mito Foundations Sean Murray. We already have a well defined regulatory framework for dealing with all this, he says. As far as the donors right to remain anonymous, we would defer to the appropriate federal or state and territory regulations that apply for sperm or egg donations. In regard to a kids right to know they had a mitochondrial donor, societally there seems to be a preference to inform kids. Its important for them to understand their genetic lineage.
Then theres the matter of consent. The parents can wrestle with the ethical issues and weigh up all the risks, but the only person who cant consent to the procedure is the unborn child. Well, says Murray, they cant consent to being born with mito, either.
The Mito Foundations Sean Murray: "In regard to a kids right to know they had a mitochondrial donor, societally there seems to be a preference to inform kids."Credit:Joshua Morris
Murray, 47, is one of the founding directors of the Mito Foundation, which was established in Sydney in 2009. Mito runs in my family, he says. My older brother, Peter, died of it in 2009 at 45, and my mum passed away in 2011, at 70. What people often dont understand is that even in families that have mito, each member can have different mutational loads basically, different amounts of bad mitochondria. Peter got a high load, but I didnt. Thats why Im still here.
A computer scientist by training, Murray now works full-time on the foundation. Much of his job involves travelling around the country, explaining mito to politicians, journalists and philanthropists, raising funds for research and, most crucially, advocating for a change to the laws.
Mitochondrial donation falls foul of two pieces of legislation: the Research Involving Human Embryos Act 2002, and the Prohibition of Human Cloning for Reproduction Act 2002. The laws prohibit the implantation of a human embryo that contains more than two peoples genetic material. The laws were subject to a mandatory review in 2010, but the then Labor government recommended they remain the same.
In 2013, the Mito Foundation urged the government to revisit its decision. Two years later, it began lobbying in earnest. What we tried to get across was that the science around mito donation has come a long way since 2010, says Murray. Also, the process that the UK went through to legalise it really reassured us that the procedure is safe and effective.
Loading
In the past five years, Murray and his colleagues have consulted with more than 100 MPs and senators. Only one of them, according to Murray, said I dont like this. They have also talked to dozens of industry experts, including academics and medical and research bodies, about the benefits of mitochondrial donation. Most of them get it straight away, he says. We are talking about a technique that will prevent the chance of having a morbidly ill child.
Now, a breakthrough appears imminent. In February 2019, Health Minister Greg Hunt asked the National Health and Medical Research Council to look into the matter, review the science and conduct public consultation. The NHMRC is due to hand its report to Hunt this month. The expectation among the mito community is that he will recommend the laws be changed. Any proposals would then need to be debated in Parliament, where issues around reproductive medicine have, in the past, been hotly contested.
Murray expects some opposition from more conservative MPs, but nothing like the rancour seen in the NSW Parliament during last years debate over legalising abortion. Shadow health minister Chris Bowen has, for his part, said that Labor will support changing the laws.
Mitochondrial sufferer Shelley Beverley at home in Tasmania. This fight is really personal to me. Credit:Peter Mathew
Whether this will help people like Shelley Beverley is unclear. If Hunt gives it the green light, it will take two years at least for mitochondrial donation to become available to prospective parents, given the time involved in drafting and passing legislation, establishing a regulatory regime and getting doctors up to speed with the technology.
This will probably be too late for Beverley. I really only have about a year left to give it a go, she tells me. After that, my symptoms may progress and biologically things get worse after 35. She says she would consider going to the UK for the treatment, but that at present they are not accepting international patients.
Loading
In the meantime, she watches TV, and reads a little, but not too much. (It puts me to sleep.) She gardens: she has a bed of huge white and pink roses out the back of her house, as a memorial to her mother and brother. And she eats. James cooks for me. He lets me choose the best meat and potatoes! Ive put on weight since I met him. She describes James as something close to an angel. He will listen to every problem I have or feeling I experience. He will always put me first.
Beverley started going out with James when she was 21, right around the time she first went deaf. I was so scared that he wouldnt like me as much. I remember calling him and saying I was scared he would leave me. But James is still here. Im very lucky to have him, she says. If I go, I want him to have a part of me.
To read more from Good Weekend magazine, visit our page at The Sydney Morning Herald, The Age and Brisbane Times.
Tim Elliott is a senior writer with Good Weekend.
See more here:
How far should genetic engineering go to allow this couple to have a healthy baby? - Sydney Morning Herald
Posted in Genetic Engineering
Comments Off on How far should genetic engineering go to allow this couple to have a healthy baby? – Sydney Morning Herald
Books about pandemics to read in the time of coronavirus – Milford Daily News
Posted: March 26, 2020 at 8:42 pm
What to read while youre self-isolating to avoid the coronavirus? How about books about all the various plagues humankind has survived before?
There are classics like Giovanni Boccaccios 1353 classic The Decameron, about Italian aristocrats who flee the bubonic plague in Florence, or Daniel Defoes 1722 novel A Journal of the Plague Year, an account of the Black Death in London half a century before.
There are many more recent works about pandemics, some nonfiction, some historical fiction, some speculative fiction. On March 8, Stephen King resisted comparisons of the current crisis to his 1978 novel The Stand, set in a world where a pandemic has killed 99% of the population. King tweeted, No, coronavirus is NOT like THE STAND. Its not anywhere near as serious. Its eminently survivable. Keep calm and take all reasonable precautions.
Despite Kings protestations, readers often look to books to help explain real-world phenomena, especially in bewildering times like these. Here are a few more plague books to consider.
Fiction
Pale Horse, Pale Rider (1939) by Katherine Ann Porter is a short novel set during the influenza pandemic of 1918, which killed five times as many Americans as did World War I. Its main character, Miranda, is a young reporter who falls in love with a soldier; the books fever-dream style captures the experience of the disease.
The Andromeda Strain (1969) by Michael Crichton is a bestselling techno-thriller that begins when a military satellite crashes to earth and releases an extraterrestrial organism that kills almost everyone in a nearby small town. Then things get bad.
Love in the Time of Cholera (1985) by Gabriel Garca Mrquez is the great Colombian authors beguiling tale of a 50-year courtship, in which lovesickness is as debilitating and stubborn as disease.
The MaddAddam Trilogy by Margaret Atwood, which includes Oryx and Crake (2003), The Year of the Flood (2009) and MaddAddam (2013), is a masterwork of speculative fiction by the author of The Handmaids Tale. Set in a near future in which genetic engineering causes a plague that almost destroys humanity, its savagely satirical, thrilling and moving.
The Road (2006) by Cormac McCarthy is a bleak, beautifully written, Pulitzer Prize-winning novel set after an unspecified extinction event has wiped out most of humanity. An unnamed man and boy travel on foot toward a southern sea, fending off cannibals and despair.
Nemesis (2010) by Philip Roth is the authors 31st and last novel, a sorrowful story set in Newark, N.J., in 1944, as the United States is in the grip of the polio epidemic that killed and disabled thousands of children.
Station Eleven (2014) by Emily St. John Mandel is a bestselling novel about a group of actors and musicians traveling through the Great Lakes region in future years after a mysterious pandemic called the Georgian flu has killed almost everyone.
The Old Drift (2019) by Namwalli Serpell is a dazzling debut novel set in Zambia, spanning a century but focusing in part on the disaster wrought in that country by the HIV/AIDS epidemic.
Nonfiction
The Coming Plague: Newly Emerging Diseases in a World Out of Balance (1995) by Laurie Garrett is a Pulitzer Prize-winning reporters clear-eyed look at how rapidly the modern world has changed the nature of disease, how important preparedness is and how endangered we are without it.
Spillover: Animal Infections and the Next Human Pandemic (2013) by David Quammen is the great science writers fascinating look at zoonotic diseases, such as AIDS and Ebola (and now coronavirus), that jump from animal species to ours.
Read more:
Books about pandemics to read in the time of coronavirus - Milford Daily News
Posted in Genetic Engineering
Comments Off on Books about pandemics to read in the time of coronavirus – Milford Daily News
Is the Indian COVID-19 strain weaker? – Times of India
Posted: March 26, 2020 at 8:42 pm
COVID-19 has not only caused a worldwide disruption but has also infected large numbers of people around the world. While scientists are trying their best to find a cure or vaccine to the disease, a report on the study of the COVID-19 (SARS-CoV2) strain is doing rounds on Twitter. Dr. Subramanian Swamy, Rajya Sabha MP recently tweeted that his US based friends have informed him that the COVID-19 strain in India is a less virulent mutation. The tweet also stated that the Indian immune system can more effectively target it. Here is his tweet: After this a lot of people questioned the authenticity of the tweet and also trolled him for the same. In response to the trolls, many people tweeted the link to the report which is a Comparative analyses of SAR-CoV2 genomes from different geographical locations. Link to the report:
https://www.biorxiv.org/content/10.1101/2020.03.21.001586v1.full.pdf
Disclaimer: The below given findings are from a preliminary report which has not been peer-reviewed. These abstracts are directly taken from the report.
The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Various researchers from Translational Bioinformatics Group, International Center for Genetic Engineering & Biotechnology (ICGEB) and Department of Biochemistry, Jamia Hamdard, New Delhi, performed an integrated sequence-based analysis of SARS-CoV2 (2019 virus) genomes from different geographical locations in order to identify its unique features absent in SARS-CoV (2003 virus) and other related coronavirus family genomes, conferring unique infection, facilitation of transmission, virulence and immunogenic features to the virus.
See the original post here:
Is the Indian COVID-19 strain weaker? - Times of India
Posted in Genetic Engineering
Comments Off on Is the Indian COVID-19 strain weaker? – Times of India
Timeline Shows 3 Paths To COVID-19 Treatment And Prevention (INFOGRAPHIC) – Forbes
Posted: March 26, 2020 at 8:42 pm
In uncertain times, we are witnessing one of the greatest moments in the history of science.
A projected timeline for treatment and prevention of the novel coronavirus. Although we are living ... [+] through uncertain times, we are also witnessing one of the greatest moments in science history.
Scientists are breaking speed records in their race to develop treatments for the new coronavirus. Some are panning through old molecules hoping to find effective drugs. Others are applying the latest breakthroughs in synthetic biology to engineer sophisticated treatments and vaccines.
Ive previously talked about some synthetic biology companies are racing to create treatments. Others like Mammoth Biosciences are developing much-needed testing. Every day brings additional reports of the latest breakthroughs from around the world. But how can we make sense of all this information?
To provide a big-picture perspective, SynBioBeta and Leaps by Bayer have partnered to help visualize the overall progress of the research community. At the heart of the project is an infographic showing the timeline to the various treatments and preventions (click here to download it). Its based on data from The Milken Institute, which recently released a detailed tracker to monitor the progress of each of the more than 60 known COVID-19 treatments and preventions currently in development.
One takeaway: the progress to develop coronavirus treatments and preventions is moving at an unprecedented pace, with historic records being broken nearly every week.
The crisis response from the global biotech community has been truly inspiring, says Juergen Eckhardt, SVP and Head of Leaps by Bayer, a unit of Bayer AG that leads impact investments into solutions to some of todays biggest challenges in health and agriculture. We are excited to partner on this visual timeline to help a broader audience understand how and when scientific innovation may bring us through this deeply challenging time.
COVID19: Projected timeline for treatment and prevention. Three paths: pre-existing drugs, antibody ... [+] therapies, and vaccines.
There are standard stages to getting a drug approved. In Phase 1 trials, a drugs safety is assessed in a small group of healthy subjects. In later stages (Phase II & III), efficacy is measured in a larger number of people, often versus a placebo. The situation with COVID-19 is predicted to become so dire so quickly, however, that many are looking to fast-track testing. This could include granting experimental drugs expanded access, for compassionate use, which would allow physicians to give them to patients who are critically ill before testing is complete.
The fastest way to safely stop COVID-19 would be to discover that an already-approved medication works against it. Repurposed drugs do not require the same extensive testing as novel medicines and may already be available in large quantities. The Milken Institutes tracker identifies 7 candidate drugs in this category.
One is the malarial medicine chloroquine, which in recent days has been touted by some as a possible miracle drug against the coronavirus. German pharmaceutical company Bayer last week donated three million tablets of chloroquine to the U.S. The FDA and academics are together investigating whether it can provide relief to COVID-19 patients.
There are hundreds if not thousands of other FDA-approved drugs on the market that are already proven safe in humans and that may have treatment potential against COVID-19, so many scientists are rapidly screening the known drug arsenal in hopes of discovering an effective compound.
Antibodies are proteins that are a natural part of the human immune system. They work around the clock in blood to block viruses and more. The problem at the moment is that because the novel coronavirus (known as SARS-CoV-2) is new, no one has had time to develop antibodies against it.No one, that is, except those who have recovered from COVID-19.
Antibodies taken from those people could help patients who are still infected. Such patient-to-patient transfers can be performed without extensive testing or lengthy approval processes so long as standard protocols are followed. It is yet unknown whether this treatment option will work for COVID-19, nor whether there will be enough recovered donors to deal with the infection at scale.
To improve this process, companies like Vancouver, Canada-based AbCellera are applying new biotechnologies.
AbCellera is using proprietary tools and machine learning to rapidly screen through millions of B cells from patients who recovered from COVID-19. B cells are responsible for producing antibodies. The company has announced a partnership with Eli Lilly on this project and aims to bring its hottest antibodies those that neutralize the virus to the clinic.
AbCellera's platform has delivered, with unprecedented speed, by far the world's largest panel of anti-SAR-CoV-2 antibodies," said Carl Hansen, Ph.D., CEO of AbCellera, in a statement. "In 11 days, we've discovered hundreds of antibodies against the SARS-CoV-2 virus responsible for the current outbreak, moved into functional testing with global experts in virology, and signed a co-development agreement with one of the world's leading biopharmaceutical companies. We're deeply impressed with the speed and agility of Lilly's response to this global challenge. Together, our teams are committed to delivering a countermeasure to stop the outbreak."
James Crowe at Vanderbilt University is also sifting through the blood of recovered patients. Using a new instrument called Beacon from a company called Berkeley Lights. Crowes team has been scouring through B cells to find antibodies that neutralize SARS-CoV-2. The technology behind this project was developed in recent years with funds from the Department of Defense.
Normally this would be a five year program, Crowe told me. But in the rapid process his team is following, animal studies could be done in as fast as two months.
This morning, Berkeley Lights announced a Global Emerging Pathogen Antibody Discovery Consortium (GEPAD) to attack COVID-19 and other viruses. It is partnering with Vanderbilt University, La Jolla Institute for Immunology, and Emory University to accelerate the work above to the broader research community.
This collaboration also included commercial partners, including Twist Bioscience, who synthesized DNA for the project.
Our mission is to provide the raw material needed for biologists to make breakthroughs, said Twists CEO Emily Leproust. If DNA is needed, we want to make it, quickly and perfectly
Another company that specializes in DNA synthesis, SGI-DNA, is offering its tools at much reduced cost to researchers developing COVID-19 treatments. The company said that people from around the world are coming to them for help.
"There is zero time to waste," said Todd R. Nelson, Ph.D., CEO of SGI-DNA. He said that researchers need synthetic DNA and RNA, which its Bio-XP machine can provide in as little as eight hours.
Nelson continued, "In a matter of a day or two, we have built the genes thought to be critical to the development of successful vaccines against SARS-CoV-2. SGI-DNA has made them available in the form of different genetic libraries, which researchers can use to find druggable targets in a matter of hours, dramatically accelerating the time to market for therapeutics and vaccines.
Beyond searching for antibodies in recovered patients, biotechnologists have other tricks up their sleeves.
One approach involves genetically engineering laboratory mice to mimic the human immune system. These animals can then be presented with the virus or parts of the virus and allowed to recover. The hope is that their B cells would then produce effective antibodies. Because this happens in a controlled setting, biologists can better understand and engineer the process.
A company called GenScript was pursuing this strategy as early as February 4, when police escorted 8 transgenic mice immunized with the 2019 nCoV antigen to research labs in China. In 12 hours, its researchers successfully found specific antibodies in the mice that could recognize the novel virus and potentially block it from binding to cells. In less than 24 hoursagain using Berkeley Lights new Beacon instrument for working with thousands of individual, live cellsGenScript completed a series of steps that would have taken three months using previous technology.
Yet another approach involves computational approaches and artificial intelligence. Firms like Distributed Bio are using computers to reengineer antibodies to better target SARS-CoV-2. The company is optimizing antibodies that are known to target SARS-CoV-1, the virus behind the 2003 outbreak of SARS.
We believe broadly neutralizing antibodies with engineered biophysical properties will become key weapons to win the war against all coronaviruses said Jake Glanville, CEO of Distributed Bio.
Vaccines work by simulating infection, which allows the body to mount its own defense against a virus. Effective vaccines take time to develop, and they can take even longer to test. But recent progress in biotechnology is again accelerating these efforts.
Notably, Moderna has launched a Phase 1 vaccine trial against COVID-19 in record time. Patients in Seattle have already begun receiving injections of an experimental mRNA vaccine. Moderna cranked out doses of this and won approval from the FDA for testing in just 44 days an all-time record.
These programs show a massive focus on a common enemy, and a coming together of disparate firms.
Ginkgo Bioworks, a giant in the emerging field of synthetic biology, has announced a $25 million fund to help spur even more collaboration. The company is offering its laboratory equipment and know-how to anyone with a good idea of how to stop COVID-19. We dont want any scientists to have to wait. The pandemic has already arrived, so the time for rapid prototyping and scale-up is right now, said Jason Kelly, CEO of Ginkgo.
These effortsand the infographic aboveshould give you hope. Although we are all now living in uncertain times, we are also witnessing one of the greatest moments in the history of science.
It's a terrible time, and simultaneously a fantastic time to see the global science community working together to conquer this very hard and challenging disease, said Berkeley Lights CEO Eric Hobbs. We are also learning and developing the tools and technologies to ensure that we can react faster to the next threat, so that we don't get to this point again in the future.
Follow me on twitter at @johncumbers and @synbiobeta. Subscribe to my weekly newsletters in synthetic biology.
Thank you to Ian Haydon and Kevin Costa for additional research and reporting in this article. Im the founder of SynBioBeta, and some of the companies that I write aboutincluding Leaps by Bayer, Mammoth Biosciences, Distributed Bio, Twist Bioscience, SGI-DNA, Genscript, Berkeley Lights, and Ginkgo Bioworksare sponsors of the SynBioBeta conference and weekly digest heres the full list of SynBioBeta sponsors.
More:
Timeline Shows 3 Paths To COVID-19 Treatment And Prevention (INFOGRAPHIC) - Forbes
Posted in Genetic Engineering
Comments Off on Timeline Shows 3 Paths To COVID-19 Treatment And Prevention (INFOGRAPHIC) – Forbes
Cannabis Compound CBD Acts as Helper to Boost Antibiotic Effectiveness – Genetic Engineering & Biotechnology News
Posted: March 26, 2020 at 8:42 pm
Research by a University of Southern Denmark team has found that the cannabis compound cannabidiol (CBD) may act as a helper compound to boost the effectiveness of antibiotics against drug-resistant Gram-positive bacteria. A study headed by Janne Kudsk Klitgaard, PhD, associate professor, clinical microbiology, found that combining CBD with the antibiotic bacitracin (BAC) had a more powerful effect against bacteria including Staphylococcus aureus, than BAC alone. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic-resistant Gram-positive bacteria, the researchers stated in their published paper in Scientific Reports, titled, Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.
Since the discovery of penicillin by Sir Alexander Fleming in 1928, antibiotics have saved millions of lives from fatal infections worldwide, the authors wrote. However, over time, bacteria have developed mechanisms to escape the effects of one or more antibioticsmultidrug resistance (MDR)leading to an increasing global health threat. With fewer antibiotics available to treat MDR bacterial infections, the possibility of entering a pre-antibiotic era is looming ahead, the team stated.
Among alternative strategies that are being explored to help address antibiotic resistance, helper compounds, also known as antibiotic potentiators or resistant breakers, are gaining attention. Such helper compounds are non-antibiotic compounds that act as adjuvants for antibiotics, operating synergistically through mechanisms including efflux pump inhibition, enzyme inhibition, or changing membrane permeability, which can contribute to improving antibiotic efficacy.
Given that overuse of antibiotics is the main cause of antibiotic resistance, the combination of an antibiotic with a helper compound could reduce the amount of antibiotic needed to achieve bacterial growth inhibition or killing than if the antibiotic was used alone. This strategy may, therefore, decrease the likelihood of resistance development, and investigations to identify efficient helper compounds are thus important, the investigators suggested.
CBD, from the cannabis plant Cannabis sativa, acts as an antagonist of both the cannabinoid type 1 and 2 (CB1 and CB2) receptors, and has been shown to have anti-sedative, anti-psychotic, and anxiolytic effects, the team noted. The compound has also been linked with a variety of effects, including inhibiting cancer cell growth, neuroprotection in neurodegenerative diseases such as Parkinsons disease, and post-ischemia, and anti-inflammatory effects, as in type 1 diabetes.
CBD has also been observed to inhibit bacterial growth, but the use of cannabidiol as an antibiotic adjuvant hasnt yet been investigated, the team continued. Not much is known regarding antimicrobial effects of cannabinoids and even less on the mechanism of action the use of cannabidiol as an antibiotic adjuvant has not been studied so far.
For their reported study, the researchers evaluated whether CBD could act as a potential helper compound to increase the effectiveness of the antibiotic bacitracin, which is a mixture of cyclic peptides that interfere with the bacterial cell wall and interrupt biosynthesis of peptidoglycan, leading to cell lysis. The team first validated the antimicrobial effect of cannabidiol against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus (MRSA), and also against Enterococcus faecalis, Listeria monocytogenes, and methicillin-resistant Staphylococcus epidermidis (MRSE). They then tested the effects of combining CBD and BAC against different Gram-positive bacteria, providing initial indication that CBD could potentiate the antimicrobial effects of the antibiotic.
Further tests with the combination of CBD and BAC against S. aureus showed that dual treatment caused morphological changes in the bacterial cells that affected cell division, so that the bacteria could no longer divide normally. the combination of CBD and BAC affects the cell envelope causing irregular cell division visualized by multiple septa formations and irregular cell membrane. These effects werent seen with either treatment on its own; CBD and BAC alone caused no morphological changes, they wrote.
The combined treatment was also found to decrease autolysis in S. aureus, while CBD was shown to cause depolarization of the cytoplasmic membrane. Gene expression analysis confirmed that treatment using CBD in combination with BAC resulted in reduced expression of key cell division and autolysis genes in the bacteria. The combination of BAC and CBD was, however, and as expected, not effective in Gram-negative bacteria. As a mixture of cyclic peptides that interrupt cell wall synthesis in Gram-positive bacteria, the antibiotic is probably unable to cross the outer membrane in Gram-negative bacteria, the researchers pointed out.
In this study, we found that the antibacterial effects of BAC against S. aureus as well as other Gram-positive bacteria can be enhanced by cannabidiol originating from the cannabis plant, the scientists concluded. They acknowledged that further work will be needed to understand the mechanisms of action of combined CBD and BAC treatment on Gram-positive bacteria. Changes observed in morphology were not caused by compositional changes in the cell wall muropeptide composition. Membrane potential changes for the combination of CBD and BAC compared to either CBD or BAC treatment alone did not reveal the mechanism of action for the combination of CBD and BAC, they wrote. Future studies are therefore focused on the cell division and cell envelope to identify the mechanism of action.
Original post:
Cannabis Compound CBD Acts as Helper to Boost Antibiotic Effectiveness - Genetic Engineering & Biotechnology News
Posted in Genetic Engineering
Comments Off on Cannabis Compound CBD Acts as Helper to Boost Antibiotic Effectiveness – Genetic Engineering & Biotechnology News
If and when it has time, the UK must ponder its post-Brexit biotech options – just-food.com
Posted: March 26, 2020 at 8:42 pm
Johnson has championed deregulation and divergence from the EU on GM
In the three years after the UK's referendum on EU membership, it was often said Brexit had monopolised the political agenda leaving precious little "bandwidth" for anything else. But who would have imagined an issue of such magnitude was about to emerge that would consign Brexit to the "and in other news" section of TV bulletins?
That the biggest Brexit story last week was that EU negotiator Michel Barnier had tested positive for coronavirus and David Frost, his UK counterpart, is self-isolating after showing symptoms, tells its own story.
A few critical and challenging issues had dominated the long debates over the UK's membership of the EU, while undeniably important topics, including the country's differences with Brussels over genetic modification and biotechnology, were relatively little discussed. However, UK prime minister Boris Johnson is going some way to correcting that.
Boris backs British biotech
Since securing his premiership and withdrawal from the EU, Johnson has repeatedly made a point of championing deregulation and divergence from the EU on GM as a Brexit boon for the UK and a priority for his administration. Johnson also appointed George Eustice, a longstanding and vocal critic of the EU approach, as Secretary of State at the Department for the Environment, Food and Rural Affairs (Defra).
Based rigidly on the precautionary principle, EU regulations both on planting GM crops and commercialising foods made from GMO ingredients are consideredby many scientists overly restrictive and lengthy. Over the years, governments and policymakers from across the political divide have sympathised with that view but could do no more than push for reform in Brussels.
Johnson now has the opportunity to put the UK on a different footing. His intended direction of travel is clear, though GM is a highly contentious issue that could challenge even his libertarian instincts.
There has been strong support for deregulation on biotech in the scientific community for many years, so Johnson's remarks have been welcomed enthusiastically by crop scientists.
Professor Jonathan Jones of The Sainsbury Laboratory crop research institute, a practitioner and energetic proponent of GM technology for three decades, bemoans the "glacial" progress of GM regulation, but says the Johnson rhetoric is "exciting".
However, he cautions: "Of course, he's not delivered everything he's promised in the past but I think he's serious on this one. How rapidly we get there from here I don't know. It's complicated."
Consumer fears easily provoked
A prime challenge is the consumer concern and suspicion GM has always attracted. This has engendered a highly cautionary approach by retailers, as reflected in a comment from Andrew Opie, director of food and sustainability at UK food retail trade body The British Retail Consortium, for this article. "Retailers do not currently sell genetically-modified food under their own brands and would not do so unless there is a change in consumer demand," Opie says.
"Activist groups often behave irresponsibly in terms of inflaming public fears about something that is totally benign"
Others would say consumer fears which, while borne partly out of the understandable natural caution people have about technology related to food, are stoked by misinformation and sensationalised reporting, resulting in the retailers' and public policy being led by the least well informed on the topic. "Activist groups often behave irresponsibly in terms of inflaming public fears about something that is totally benign," Prof. Jones contends.
Food manufacturers have also been somewhat reticent about supporting GM publicly, even if they recognise the benefits of the technology.
Asked by just-food for its view on where the UK should go on biotech, the UK food manufacturing representative body The Food and Drink Federation, states: "FDF believes that modern biotechnology, including genetic modificationand new breeding techniques, offers considerable potential to improve the quality and quantity of [the] food supply and could contribute to sustainability by helping to produce more food using fewer resources and with less impact on the environment. FDF recognises that the impact of biotechnology must be objectively assessed, based on sound science and evidence, and be underpinned by an effective regulatory landscape."
The recognition of the potential benefits but a reluctance to go into battle on behalf of GM can clearly be seen in that statement. While Prof. Jones brands current policies on GM as the "tyranny of the more risk-averse", he says he "totally understands the brand reputation pressures both manufacturers and retailers are under". They see "a little bit of upside in terms of cost reduction but a vast amount of downside in terms of risking damage to my precious brand".
All this means biotech has been somewhat friendless, not receiving the widespread support from the private sector that technological innovation in other fields often can. Its backing by "Big Agri" has obviously been significant globally but the associations within that sector help foster some of the distrust, giving environmental campaigners a potent focus for their activities that has resonated with the public.
Farmer support
The National Farmers Union has generally been more publicly supportive of GM, however. Helen Ferrier, chief science and regulatory affairs adviser at the NFU, says it supports a "proportionate and enabling" regulatory framework on GM.
Vicki Hird of food and environment pressure group Sustain, however, suggests the picture is more mixed. "There's a lot of farmers I know who aren't members of the NFU [who] have a position on GM and biotech which is quite different from the NFU," Hird says, adding that protection of their European market will be a prime concern for many, underlining the influence ongoing negotiations could have on the UK's biotech ambitions.
"The UK currently remains aligned with the EU in its approach to genetically modified food. The UK's stance beyond January 2021 will depend very much on the outcome of trade negotiations," the BRC's Opie says.
Gene-editing move?
Where there could be more immediate progress is in the field of new gene-editing techniques. Dr Richard Harrison, director of Cambridge Crop Research, part of the National Institute of Agricultural Botany (NIAB), is leading research utilising modern gene-editing techniques, including CRISPR-Cas9, to modify the genetic make-up of the Fusarium venenatum fungus, the mycoprotein source for meat substitute brand Quorn, owned by Philippines group Monde Nissin.
"We're trying to understand how the fungus uses different carbon sources, and also how it regulates responses to nitrogen as well, because if we could understand that, then we'd be able to use a far greater range of crop-based carbon sources to produce mycoprotein," Harrison explains.
Being able to vary what mycoprotein is fed on could broaden the options for how and where mycoprotein can be sustainably produced as a meat alternative. The research is funded by the Biotechnology and Biological Sciences Research Council, with Quorn manufacturer Quorn Foods, a subsidiary of Monde Nissin,as a project partner and co-funder.
However, Harrison stresses the objective is not to produce a genetically engineered Fusarium venenatum that Marlow Foods might then commercialise, but that the gene-editing techniques are being used as "a research tool to validate our hypotheses".
Speaking to just-food last year, then Quorn Foods CEO Kevin Brennan said the company would "never go anywhere near genetic modification". This is not surprising and is common position among food companies. Owing to a 2018 European Court of Justice ruling, any food produced from ingredients derived from the gene-editing processes Harrison's team is employing would be subject to the EU's GM regulations and would have to be labelled as containing GMOs.
Brennan said the research "provides underpinning science for alternative carbohydrates but also to support feed optimisation". He continued: "If we can understand at a granular level what the organism reacts to we can optimise feedstock to encourage the ideal growth".
Ironically, some older and less accurate mutagenesis techniques, such as using gamma radiation and chemicals to alter genetic profile, fall outside the EU regulation. "All scientists are asking for is an objective evaluation rather than emotive one," Harrison adds.
In common with many scientists, Harrison believes EU regulations on genetic modification and gene editing to be overly restrictive and an impediment to scientific progress, not least as it discourages private-sector investment. So, would there be greater commercial opportunities for food companies, and consequently more investment in research, if the UK were to diverge from EU biotech regulations?
"Would a more proportionate regulatory framework bring in more investment? I think the answer is yes"
Harrison has no doubt there would, and Prof. Jones concurs. "Would a more proportionate regulatory framework bring in more investment? I think the answer is yes."
The NFU's Ferrier also believes regulatory reform will boost investment. "What we're interested in as an organisation is that you're able to move from the research into private-sector R&D and then commercialisation, because as long as seed companies don't see the EU and the UK as somewhere that they want to invest in, then you can do as much brilliant science as you like but the UK, farmers, society, environment, won't get any of the benefit because it will just stay in the research community."
Climate emergency
With regard to the regulation of genetic technologies in food production overall, Harrison urges a strictly evidence-led approach, not least given the challenges posed by climate change.
"There is enormous potential to grow crops with fewer pesticides by using naturally-occurring, disease-resistance genes. You could do that through traditional breeding but that takes a long time and costs a lot of money. Genetic technology makes it a lot faster and we should really have access in the 21st century to those technologies because we rapidly need to reduce our greenhouse gas emissions. Genetic technology could really be a powerful tool to accelerate our decarbonisation of the foodchain."
Prof. Jones adds: "We need every tool in the toolbox to address the perfect storm of rising temperatures, greenhouse gas emissions and rising population."
While recognising the benefits of separating gene-editing technology from GM, Prof. Jones is concerned arguing in favour of this may unintentionally lend weight to the view that there is still something to be feared in genetic engineering. "There are literally dozens of technologies like that that would be fantastic for the sustainability of agriculture, that you can only really accomplish by moving genes from one plant to another or by moving genes between bacteria and plants which is something that's happened naturally in evolution scores of times," he says, strongly urging the government to follow through on its supportive stance on GM.
Nevertheless, gene editing could be the more immediate movethat is easier to negotiate politically and practically. It is also almost impossible to imagine the UK moving out of the transition period with an ECJ ruling featuring in its legislation. Ferrier believes the UK could also work with other member states, many of which were concerned by the ECJ ruling, to move EU opinion on the issue. "This is the opportunity to work with other member states who are similarly concerned about it. That is an area that the UK research sector can have a strength in and it is a really exciting area for developing products that farmers could grow."
While the UK government is so far holding to its December deadline, the coronavirus pandemic seems highly likely to result in the extension of the transition period. When it does finally leave the EU, the UK is likely, at the very least, to have a different regulatory approach to gene editing, if not immediately on GM overall.
When exactly the transition period will now end, however, may depend more on how successful scientists have been at understanding the genome of Covid-19 than the genetic composition of any food crop.
Read this article:
If and when it has time, the UK must ponder its post-Brexit biotech options - just-food.com
Posted in Genetic Engineering
Comments Off on If and when it has time, the UK must ponder its post-Brexit biotech options – just-food.com
2020-2025 Global and Regional Genetic Engineering Industry Production, Sales and Consumption Status and Prospects Professional Market Research Report…
Posted: March 26, 2020 at 8:42 pm
The global Genetic Engineering market report by HNY Research offers users a detailed overview of the market and all the main factors affecting the market. The study on global Genetic Engineering market, offers profound understandings about the Genetic Engineering market covering all the essential aspects like revenue growth, supply chain, sales, key players and regions. There is a target set in market that every marketing strategy has to reach. This report on Genetic Engineering focusses on different categories that define this market with a systematic approach that addresses the consumer base, researchers and market experts like the stakeholders. It also gives a clear perspective towards the competition and demand and supply chain.
Request a sample of this report @ https://www.orbisresearch.com/contacts/request-sample/4360374
Manufacturer Detail
By Market Players:Thermo Fisher Scientific Inc., GenScript, Amgen Inc., Genentech, Inc., Merck KGaA, Horizon Discovery Group plc, Sangamo Therapeutics, Inc., Transposagen Biopharmaceuticals, Inc., OriGene Technologies, Inc.
By Application
By TypeArtificial Selection, Cloning, Gene Splicing, Others
The Genetic Engineering market report also offers some presentations and illustrations about the market that comprises pie charts, graphs, and charts which presents the percentage of the various strategies implemented by the service providers in the global Genetic Engineering market. This report on Genetic Engineering has been very well drafted to benefit anyone studying it. There are different marketing strategies that every marketer looks up to in order to ace the competition in the Global market. Some of the primary marketing strategies that is needed for every business to be successful are Passion, Focus, Watching the Data, Communicating the value To Your Customers, Your Understanding of Your Target Market. Every market research report follows a robust methodology to define its market value. By doing so, the Genetic Engineering research study by HNY Research offers collection of information and analysis for each facet of the Genetic Engineering market such as technology, regional markets, applications, and types.
Browse the complete report @ https://www.orbisresearch.com/reports/index/2020-2025-global-and-regional-intraductal-papilloma-industry-production-sales-and-consumption-status-and-prospects-professional-market-research-report
This study can benefit investors and business owners in many ways. It studies the business models, strategies, growth, innovations and every information about manufacturers that can help make business predictions and fetch good results. Making right business decisions is an undeniable measure that needs to be taken for market growth. Every market has a set of manufacturers, vendors and consumers that define that market and their every move and achievements becomes a subject of studying for market researchers and other stakeholders. One of the most important aspects focused in this study is the regional analysis. Region segmentation of markets helps in detailed analysis of the market in terms of business opportunities, revenue generation potential and future predictions of the market. For Genetic Engineering report, the important regions highlighted are North America, South America, Asia, Europe and Middle East. Another important aspect of every market research report by HNY Research is the study of the key players or manufacturers driving the market forward. The process helps to analyze the opponent thoroughly.
Make an enquiry of this report @ https://www.orbisresearch.com/contacts/enquiry-before-buying/4360374
About Us:
Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.
Contact Us: Hector CostelloSenior Manager Client Engagements4144N Central Expressway,Suite 600, Dallas,Texas 75204, U.S.A.Phone No.: USA: +1 (972)-362-8199 | IND: +91 895 659 5155Email ID: [emailprotected]
The rest is here:
2020-2025 Global and Regional Genetic Engineering Industry Production, Sales and Consumption Status and Prospects Professional Market Research Report...
Posted in Genetic Engineering
Comments Off on 2020-2025 Global and Regional Genetic Engineering Industry Production, Sales and Consumption Status and Prospects Professional Market Research Report…