Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetic Engineering
In ‘The Cultivar Series,’ Uli Westphal Gets to the Root of Crop Diversity and Agricultural Modification – Colossal
Posted: October 13, 2022 at 2:12 am
FoodPhotography #climate crisis#farming#flat lay#plants#Uli Westphal#vegetables
Lycopersicum III (2013). All images Uli Westphal, shared with permission
Earlier this year, Russias war in Ukraine obstructed the global food supply in a way that exposed just how precarious the entire system is. The conflict confined25 million tons of corn and wheatto the country, making such a crucial stock inaccessible and compounding the effects of an already urgent crisis.
Combined with disruptions from the COVID-19 pandemic and the continual issues of the climate crisis, the war helped propel global food insecurity to levels unseen in decades. Itsestimated thatapproximately 800 million people around the world dont have enough to eat due to skyrocketing prices caused by increased demand for a reduced supply. These problems are predicted to decimate local economies and prompt widespread unrestin the coming years.
Part of combating such an emergency involves understanding the core of modern production and how growing practices have evolved over time. Back in 2010,artistUli Westphaltook an interest in the ways farming and cultivation were affecting the availability of certain plants after a visit to VERN e.V. The German nonprofit cares for thousands of specimens, makes obscure or rare varieties available to the public, and is also aregional network of gardeners, farmers, and local garden sites. They have a large garden plot in a tiny village two hours north of Berlin, where they grow a kaleidoscope of rare and forgotten crop varieties, he shares. I walked into a greenhouse full of tomato plants bearing fruits that I had never seen in my life.
Cucurbita I (2014)
This encounter prompted whats become a years-long project of documenting the planets incredible agricultural diversity. Encompassing both the wild and the domestic, Westphals ongoing and endlessCultivar Seriesilluminates a vast array of specimens through striking flat-lay photos. Fruits, vegetables, legumes, and other produce arranged by color capture the breadth of the worlds crops, comparing their shapes, sizes, and molecular makeuphigher levels of chlorophyll promote the verdant pigments of leafy greens, for example, while carotenoids are responsible for bright orange carrots.
FromAmsterdam and Potsdam, Germany, to Mexico City and Tucson, the sources of Westphals subject matter are broad, with some fare coming fully grown from farmers and others as seeds to be cultivated.Cucumis sativus I features fifty cucumber varieties the photographer grew in a greenhouse once connected to his Berlin-based studiofrom seeds gifted bya Dutch organization, for example, while the pumpkins and peppers in two of his other works were a collaboration withPeaceful Belly Farm in Boise, Idaho.
Zea Mays II (2022)
Whether depicting potatoes or pears, the imagesoffer a rare glimpse of species that often arent available in the grocery store or markets. Since the industrialization of agriculture, our focus has shifted to only a few modern, high-yielding, robust, good looking, uniform, and predictable varieties. This change has led to the displacement of traditional crop varieties, Westphal writes, noting that when a plant isnt actively cultivated, it often falls under threat of extinction, and such strains tend to be protected by conservation organizations like the seed banks hes collaborated with in the past. A majority of all varieties developed by humans have already become extinct during the last 50 years. With them, we not only lose genetic diversity but also a living cultural and culinary heritage.
The photos also elicit questions about contemporary domestication practices that are of increasing concern as biodiversity dwindles. Westphal tells Colossal:
Synthetic biology is evolving at a rapid speed, out-pacing public awareness, debate, and regulation and is altering life in ways that are unprecedented.My main concerns about synthetic biology (and genetic engineering) are the havoc that the inevitable release of significantly altered organisms into ecosystems can cause and the increasing consolidation of corporate control over what we grow and eat.
Three photos fromThe Cultivar Series are on view as part of the group exhibitionFood in New Yorkthrough September 30, 2023, at the Museum of the City of New York, andWestphal is currently working to document the worlds edible plants, of which hes culled a shortlist of 3,000 species.Prints of his flat lays are available on his site, along with similar collections centered on fruits and other consumables, and you can follow his practice on Instagram. (via Present & Correct)
Cucumis sativus I (2014)
Pyrus I (2018)
Capsicum I (2016)
Phaseolus vulgaris I (2013)
Brassica oleacea I (2018)
Solanum tuberosum II (2020)
Do stories and artists like this matter to you? Become a Colossal Member today and support independent arts publishing for as little as $5 per month. You'll connect with a community of like-minded readers who are passionate about contemporary art, read articles and newsletters ad-free, sustain our interview series, get discounts and early access to our limited-edition print releases, and much more. Join now!
See the original post here:
In 'The Cultivar Series,' Uli Westphal Gets to the Root of Crop Diversity and Agricultural Modification - Colossal
Posted in Genetic Engineering
Comments Off on In ‘The Cultivar Series,’ Uli Westphal Gets to the Root of Crop Diversity and Agricultural Modification – Colossal
Genomic Research Aids in the Effort to Understand How Best to Treat Deadly Infections Caused by a Fungus – UMass News and Media Relations
Posted: October 13, 2022 at 2:12 am
A research team led by a University of Massachusetts Amherst scientist has made a significant genetic discovery that sheds light on the use of the drug caspofungin to treat a deadly fungal infection, Aspergillus fumigatus, which kills some 100,000 severely immunocompromised people each year.
Typically, healthy people inhale about 50 to 100 spores of A. fumigatus every day when outdoors. Our body does a great job of identifying them and destroying them, says UMass Amherst associate professor of food science John Gibbons, whose microbial genomics lab studies the fungus.
But in people with compromised immune systems from cancer treatment, organ transplants, HIV, COVID-19 and other conditions, A. fumigatus can cause a really nasty infection, invasive pulmonary aspergillosis, with a 50% mortality rate, Gibbons says. And theres a limited way to treat these infections.
To complicate matters, when given in high concentrations as a treatment for an A. fumigatus infection, the anti-fungal drug sometimes creates a caspofungin paradoxical effect [CPE], which increases the fungal growth rather than eradicating it.
In research published in the journal Microbiology Spectrum, senior author Gibbons, Shu Zhao, a former graduate student in the Gibbons lab, and colleagues describe a first important step in the effort to understand when and why treatment with caspofungin could be more harmful than beneficial. The team, including scientists from Vanderbilt University, the University of Tennessee Science Health Center and the University of So Paolo in Brazil, completed the first genomic and molecular identification of two genes that contribute to the paradoxical effect in A. fumigatus.
This is one of the first studies to apply genome-wide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype, the paper states.
The team sequenced the genome of 67 clinical samples, about half of which had CPE, spotting genetic differences between the groups and then using GWA, a statistical method, to determine how these genetic variants are associated with growth patterns at high concentrations of caspofungin. We identified a few candidate genes that we thought might contribute to this paradoxical effect, Gibbons says.
The scientists then used the genetic engineering technology, CRISPR, to delete those candidate genes from the genome, creating gene-deletion mutants and enabling the researchers to determine that two of the genes were involved in the paradoxical effect.
It looks like there are many genes and many genetic variants that contribute to this phenotype, Gibbons says. We arent done yet. One idea is that we could potentially generate new drug targets if we find the full collection of genes. We dont understand the mechanisms yet.
Ultimately the team hopes they can use DNA sequencing to understand the genetic basis of different phenotypes in general and to predict for clinical benefits if a patient sample of A. fumigatus has a genotype that is associated with the paradoxical effect.
That would be an important tool that could really improve treatment, Gibbons says.
Posted in Genetic Engineering
Comments Off on Genomic Research Aids in the Effort to Understand How Best to Treat Deadly Infections Caused by a Fungus – UMass News and Media Relations
Synthetic Biology Market is Expected to Report a CAGR of ~21% from 2021 to 2029: Industry Size, Growth & Forecast at Douglas Insights – Yahoo…
Posted: October 13, 2022 at 2:12 am
Douglas Insights
The key players in the market currently include Scientific Genomics Inc, Thermo Fischer Scientific, Blue Heron, TeselaGen, GenScript, DNA2.0, Integrated DNA Technologies, Eurofins Scientific, Inc, Editas Medicine Inc., among others.
Isle of man, Oct. 10, 2022 (GLOBE NEWSWIRE) -- The Douglas Insights Search Engine is the worlds first engine that offers comparative market analysis, and it has also recently addedSynthetic Biologyto the database. Market analysts, industry specialists, business personnel, and all relevant entities can make use of this comparative engine to identify the drivers, hindrances, obstacles, limitations, and opportunities for growth in each market. With the help of these insights, future market predictions can also be made. The engine users will be able to sort the relevant information by price, publication date, publisher rating, and table of contents, all of which will make access easier.
Synthetic biology refers to using lab-generated technology to help with biological processes and concerns. Synthetic biology refers to the development of testing kits, vaccines, treatments, and infectious diseases. In fact, synthetic biology played a key element in the Covid-19 pandemic as well. The development of the vaccine was accelerated, and new technology was used for vaccine development, showing how Synthetic integral biology was to the ordeal. Other than medical applications, the industry also helps to further develop the food and agriculture industry through genetic engineering and genome synthesis and helps industries by manufacturing Biofuels, biomaterials, industrial enzymes, and other useful products.
There are many drivers in the field of synthetic biology due to its need in the current era. For example, the wide range of applications of synthetic biology is one of the main factors driving the market growth. Synthetic biology can be applied to various industries, including food and agriculture, industrial work, and of course, many medical applications. The medical applications of synthetic biology will be driving the market the most.
Story continues
Compare the report and make your decision - https://douglasinsights.com/synthetic-biology-market
Need a Custom Report? Not to worry, you can create your own project using our service.
Create you own custom project here- https://douglasinsights.com/projects
Other than that, the market will also continue to grow due to the increased funding of research and development projects by many governments. This funding will fuel research into the industry and allow for more applications of synthetic biology to arise moving forward. One example is biofuels, which will be much more common and necessary for the environment in the coming years as well.
However, there are still quite a few factors that are currently restricting market growth. These include biosafety, ethical, and security concerns regarding biological safety. One example of ethical and safety concerns is the possible intentional or unintentional introduction of synthetic organisms into ecosystems which can cause great disruption. These organisms can also breed with naturally occurring microorganisms, causing hybrid species to be released and hampering the environment as we know it. In fact, this is one of the ways in which antibiotic-resistant microorganisms can also be generated.
The largest market share of synthetic biology goes to North America. This is because it is the hub of most of the market's key players and has the most funding for medically forward projects. Other than that, Europe and the Asia Pacific also have large shares in the market and will use them for further development in the arena.
The key players in the market currently include Scientific Genomics Inc, Thermo Fischer Scientific, Blue Heron, TeselaGen, GenScript, DNA2.0, Integrated DNA Technologies, Eurofins Scientific, Inc, Editas Medicine Inc., among others. These players are working on further developments while also adding to the industry at present.
The tools currently used in the synthetic biology market include enzymes, Oligonucleotides, synthetic DNA, Synthetic cells, cloning technology, xeno nucleic acids, and chassis organisms. The technology being used in the market at present includes gene synthesis and genetic engineering, cloning, bioinformatics, sequencing, nanotechnology, micro fluids, among many others.
Key questions answered in this report
COVID 19 impact analysis on global Synthetic Biology industry.
What are the current market trends and dynamics in the Synthetic Biology market and valuable opportunities for emerging players?
What is driving Synthetic Biology market?
What are the key challenges to market growth?
Which segment accounts for the fastest CAGR during the forecast period?
Which product type segment holds a larger market share and why?
Are low and middle-income economies investing in the Synthetic Biology market?
Key growth pockets on the basis of regions, types, applications, and end-users
What is the market trend and dynamics in emerging markets such as Asia Pacific, Latin America, and Middle East & Africa?
Unique data points of this report
Statistics on Synthetic Biology and spending worldwide
Recent trends across different regions in terms of adoption of Synthetic Biology across industries
Notable developments going on in the industry
Attractive investment proposition for segments as well as geography
Comparative scenario for all the segments for years 2018 (actual) and 2031 (forecast)
Compare the report and make your decision - https://douglasinsights.com/synthetic-biology-market
Need a Custom Report? Not to worry, you can create your own project using our service.
Create you own custom project here- https://douglasinsights.com/projects
Follow Douglas Insights For More Industry Updates- @LinkedIn&Twitter
Explore More Press Releases -https://douglasinsights.com/press
Similar Market Research Report Comparisons:
Computational Biology Market: The computational biology market is growing rapidly due to the increasing demand for personalized medicine and drug development, and the need for early diagnosis of diseases. Computational biology is the study of biological processes using computational techniques.
Industrial Microbiology Market: Industrial microbiology is the study of microorganisms that are useful in the production of food, chemicals, pharmaceuticals, and other industrial products. The demand for industrial microbiology is driven by the need for efficient and eco-friendly production processes, as well as the need for improved product quality.
Automated Microbiology Market: This market is primarily driven by the increasing demand for rapid and accurate detection of microorganisms in food, water, and pharmaceuticals. The rising incidents of foodborne illnesses and the increasing stringent regulations regarding food safety are also fueling the growth of this market.
Pharmaceutical Rapid Microbiology Testing Market: The increasing demand for rapid microbiology testing in the pharmaceutical industry is driven by the need for faster and more accurate results. Rapid microbiology testing helps in reducing the time required for product release, which is a major advantage for pharmaceutical companies.
About Douglas Insights-
Douglas Insights UK limited is the first company to provide comparison of market research reports by Table of content, price, ratings and number of pages. We understand the value of time. Productivity and efficiency are possible when you take prompt and assured decisions. With our advanced algorithm, filters, and comparison engine, you can compare your preferred reports simultaneously, based on publisher rating, published date, price, and list of tables. Our data portal enables you to find and review the reports from several publishers. You can evaluate numerous reports on the same screen and select the sample for your best match.
See the original post here:
Synthetic Biology Market is Expected to Report a CAGR of ~21% from 2021 to 2029: Industry Size, Growth & Forecast at Douglas Insights - Yahoo...
Posted in Genetic Engineering
Comments Off on Synthetic Biology Market is Expected to Report a CAGR of ~21% from 2021 to 2029: Industry Size, Growth & Forecast at Douglas Insights – Yahoo…
Farmers, consumers will embrace GMOs if they understand them – The Standard
Posted: October 13, 2022 at 2:12 am
There is no doubt that GMOs are beneficial to us, but there is sufficient data to demonstrate that GMOs have great potential for harm too.[Istockphoto]
The debate on Genetically Modified Organisms (GMOs) is upon us again and is still emotive and quite divisive.
Although we have more research, we still cannot be absolutely certain that we have adequate science to fully support GM foods. Genetic engineering (also called genetic modification of organisms - GMOs) uses laboratory-based technologies to alter the DNA makeup of an organism. This may involve changing a single base pair (A-T or C-G), deleting a region of DNA or adding a new segment of DNA.
This happens when a scientist tweaks a gene to create a more desirable organism by taking DNA from organism A and inserting it in organism B to improve it. The result is known as recombinant (a combination of DNAs of two organisms) or in cases of drugs the modified drug is known as transgenic. There are many reasons why organisms are genetically modified. For example, to make them more resistant to diseases, insects/bugs or to make them mature/ripen faster, stronger, bigger, better, sweater. For example, food crops have been modified by food engineers to be resistant to specific bugs, bad weather or to grow faster.
Genetic engineering is very different from cloning. Cloning is the process of creating a genetically identical copy or duplication of a cell or an organism. It has far-reaching ethical concerns although people tend to confuse the two, especially when criticising GMOs.
There are many persuasive arguments for and against GMOs. There is no doubt that GMOs are beneficial to us, but there is sufficient data to demonstrate that GMOs have great potential for harm too. Those who support GMOs have advanced persuasive arguments that genetic engineering can help us cure diseases, ensure food security and nutrition, improve the quality of lives and well-being and even lengthen our lives. For example, most drugs such as insulin and vaccinations are all genetically modified or engineered, without which many people would die. There are also ethical, safety and environmental concerns about GMOs.
No side of the argument for or against, can state with absolute certainty that GMOs are devoid of risks and concerns or they are all bad for us. The question is, can scientists guarantee that there will be no side effects after consuming GM foods? Or that huge multinational companies will ensure environmental and safety requirements are complied with when they come to Kenya?
The potential for abuse of GMOs has necessitated very elaborate checks and controls at both international and national levels. The issue of concern now is, does Kenya have such elaborate and well-resourced checks and controls in place? According to the National Biosafety Authority (NBA), Kenya has robust policy, legislative and institutional mechanisms to implement biotechnology innovations having ratified the Cartagena Protocol on Biosafety in 2003 and approved the National Policy on Biotechnology Development in 2006 to guide research and commercialization of modern biotechnology products.
The Biosafety Act, 2009 provides for the legal and institutional frameworks governing modern biotechnology which are implemented by the NBA established under the Act in 2010. The NBA developed regulations in 4 areas; contained use, environmental release, export, import and transit; all three in 2011 and for labeling in 2012. The NBA says it has put in place GM safety assessment with the goal to provide assurance that GM foods do not cause harm based on their best available scientific knowledge, although, we are not so certain that we indeed have that best scientific knowledge available so far.
The NBA indicates that, research on genetic modification is done under appropriate experimental conditions; open cultivation of genetically modified crops is safe for human health and the environment; they ensure safe movement of genetically modified materials in and out of the country and ensure accurate consumer information and traceability of genetically modified products in the food supply chain.
They say that they do this through collaboration with other eight bodies in Kenya, including KEBs. Because GMOs require very careful scientific monitoring and control, it is important to ensure that open cultivation is done in phases and only on a case-by-case basis at a time.
Continued here:
Farmers, consumers will embrace GMOs if they understand them - The Standard
Posted in Genetic Engineering
Comments Off on Farmers, consumers will embrace GMOs if they understand them – The Standard
Emily Whitten: The limits of science and human intelligence – WORLD News Group
Posted: October 13, 2022 at 2:12 am
NICK EICHER, HOST: Today is Tuesday, October 11th. Good morning! This is The World and Everything in It from listener-supported WORLD Radio. Im Nick Eicher.
MARY REICHARD, HOST: And Im Mary Reichard. Next up: what are the limits of science when it comes to human intelligence?
WORLDs Emily Whitten says two recent books help Christians think through that question.
AUDIOBOOK: If you memorized all of Wikipedia, would you be more intelligent? It depends on how you define intelligence.
EMILY WHITTEN, REVIEWER: Thats a clip from the audiobook version of Robert J. Marks II new book, Non-Computable You: What You Do that Artificial Intelligence Never Will. Marks has thought a lot about how to define intelligence as an electrical engineer, computer engineer, and Distinguished Professor at Baylor University. Hes also spent his career creating computer programs that mimic human thinking. And while computers can do amazing thingshe says theyll never become human.
AUDIOBOOK: Basically, for computers or artificial intelligence, theres no other game in town. All computer programs are algorithms. Anything non-algorithmic is non-computable and beyond the reach of AI.
Marks takes readers deep into the science to prove his point, and casual readers may find his reasoning hard to follow at times. But he does aid readers with pop-culture references and a chapter on real world implicationsI found the section on killer robots especially intriguing.
Another new book that deals with similar themes in a more exciting wayBlake Crouchs sci-fi novel, Upgrade. Heres a FanfiAddict interview with Crouch.
CROUCH: This is about genetic engineering and what that means for humanity. Its about a guy named Logan Ramsay, its set in the near future. Hes with an agency called the Gene Protection Agency.
In the opening pages, Ramsay and his GPA partner track a potential criminal, Henrik Soren, to an airport in Denver.
AUDIOBOOK: My flights about to board. You arent going to Tokyo, not tonight. See the woman sitting at the high top behind us? Thats my partner, Agent Netman. Airport police are waiting in the wings. I can drag you out of here or you can walk on your own steam, but you have to decide right now.
The intel Ramsay gets from Soren leads to a secret lab, and there - in a powerful explosion - Ramsay gets exposed to a gene editing virus.
AUDIOBOOK: We know that someone infected me with a package designed to alter my DNA. We assumed, big mistake, it didnt work. But it was obviously a sleeper package remaining dormant for the first month or so.
Soon, Ramsay becomes stronger and sharper in nearly every way. This genetic upgrade opens new doorsbut it also isolates him from his family and makes him the enemy of those who want to force their upgrade on the rest of humanity.
Like a Jason Bourne movie, Crouch provides plenty of actionwith daring escapes and fights. Unfortunately, his characters use offensive language, and they think and live within an evolutionary framework that leads them to terrible misjudgments.
Still, read carefully, both Non-Computable You by Robert J Marks and Upgrade by Blake Crouch can help us think through important scientific and ethical challenges in our dayand the days to come.
Im Emily Whitten.
WORLD Radio transcripts are created on a rush deadline. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of WORLD Radio programming is the audio record.
Continued here:
Emily Whitten: The limits of science and human intelligence - WORLD News Group
Posted in Genetic Engineering
Comments Off on Emily Whitten: The limits of science and human intelligence – WORLD News Group
Earth materials in technology The National – The National
Posted: October 13, 2022 at 2:12 am
GEOSCIENCEMichael Uglo
By MICHAEL JOHN UGLOWELCOME all to our sixth lecture on the sciences of the earth.The sciences of the earth also involve living things of all sorts that contribute to the formation of the earth and its earth structures through geologic time.Hence working smarter in this time we call the technology age, we have to make greater use of what is available rather than letting it to the earth to allow the earths natural processes to take place through the lithification processes whereby once-living matter and non-living matter such as silts, shells, sediments and bones are turned into rocks.Materials in the living world are a major source of materials and resources that can be used applications to do with biogeotechnology or geobiotechnology in both the commutative and associative as well in their applications.For instance, in the biology of evolutionary applications, it is the huge area of biotechnology and genetic engineering that are a resource on the earth. Natural selection and genetic drift result in the species and populations of organisms and biodiversity seen on the planet earth both in the past for extinct life and in the present.
As a link, people have been doing artificial selections of organisms for so many years to contain the favourable characters of the organisms. There were cross-breedings done in plants to produce hybrid plants that produce good yields as well as producing plants that are drought-resistant and plants that can thrive in lengthy wet seasons and water-logged areas.Cross-breeding is also done in the rice plant as an example, to come up with the hybrid rice to grow in the dry ground instead of only water-logged areas and wetlands.The natural immunity to counter cancer is no longer effective. Cancers have evolved to decimate populations of organisms. Microbes such as bacteria, fungi and viruses have evolved to outpace the available effective drugs for their treatment. Soon microbes will become resistant to all the effective available drugs because they are continually evolving.In the field of agriculture, pests and weeds have become resistant to available pesticides and weedicides. The trend is continuing and the industry is going through a chemical treadmill to treat resistant weeds and pests.
Hence, understanding the evolutionary genetics at the molecular level in the nucleotides of the DNA and RNA is vital. Knowing how the genes programme the enzymes and proteins to produce parts of plants, animals and microbes will result in the understanding of the first-hand information on how the nitrogen bases and genes programme the synthesis of the organic polymers. This will also help in the understanding of the basis of genetic mutations and protein alterations to find a cure for cancer as well as the effective diagnosis of the problems arising in medicine, agriculture as well as in botany and other fields.For instance, in engineering an evolutionary computer-algorithm results in solving very complex and multi-faceted engineering problems. The algorithms programmed by man are not so multi-dimensional like the evolutionary algorithm in superiority.Materials found naturally on the earth are the rocks, soil, minerals and water. There are also metals and precious stones that are found on the earth such as gold, silver and gemstones. Other important materials are diamonds which are allotropes of carbon just like graphite and the fullerenes Buckminster as a resource base for carbon nanotubes.These materials become very important resources for life, agriculture, industry and technology.Specific areas have various resources of those earth materials. The rocks become a resource for construction work such as in buildings and roads. Materials such as sandstone, mud, soil, granite, limestone and marble are very important for civil works and engineering construction. For instance, marble can be quarried and cut at site for construction like a local resource.Caliche is a soft limestone material that can be used as a resource. It is found at the site of limestone bedrock as well as calcium carbonate soils. Caliche are collected and squashed to be mixed with cement for making building structures as well as structural walls.The rammed earth that is 30 per cent mud and 70 per cent sand is also made to be used for buildings and other structures in civil constructions and engineering. Like caliche, their porosity is very important for holding water and creating chemical bonds with the additives like the cement which are to be used as the structures of walls which adds the compression.
The caliche and rammed earth structures as well as stone products can be used as finishing characteristics of constructions. They can become good heat radiators or thermal bodies in winter. These structures can also be used for providing cool environments in summer. Further, these materials are fire-proof.At the sites of the clay soil, brick plants can be located to make and supply bricks for constructions. Bricks are made by conditioning and heating the clay or it is baked for uses such as structural tiles, roof tiles, pavers and floor tiles.The caliche block, rammed earth and stone with brick structures become very useful for structural constructions such as structural walls, road constructions as well as buildings.Soils are always tested in laboratories to see their structures for construction work. Some soils are not so suitable for constructions, especially soils with very high expansibility factor.s And example opf such soils is bentonite. AAll rocks and soil resources are good to use locally because these reduces the cost of transport. The material cost will come down because of the low transport costs. Also, non-renewable resources are to be used whereby the ecology of the site must not be affected with more extractions. They have to be used sustainably.My Prayer for PNG today is: I will proclaim to all your people, the wonders you have done for me. You are indeed a God of goodness, you draw me gently to your heartNext week: Physical events
Continue reading here:
Earth materials in technology The National - The National
Posted in Genetic Engineering
Comments Off on Earth materials in technology The National – The National
Behind this Nobel prize is a very human story: theres a bit of Neanderthal in all of us – The Guardian
Posted: October 13, 2022 at 2:12 am
The Neanderthals have won a Nobel prize. Well, almost. Even if most people havent heard of Svante Pbo, the Swedish geneticist whose work on ancient genomes and human evolution has landed him with 2022s award for physiology or medicine, or the exact science behind palaeogenomics and ancient DNA, they certainly have heard of Neanderthals.
Honouring his contribution to building this incredibly vibrant field of palaeogenomics, the award is much deserved: you need vision, persistence and pioneering methods to recover and sequence immensely old, fragile genetic material. But its also a recognition of the astonishing revelations about our deep history that have come from palaeogenomics, which holds many untapped secrets about who we are today, including settling the long-debated question of whether Neanderthals and Homo sapiens ever encountered each other and, lets say, warmed up those icy tundra nights (the answer is yes, many times).
For research communities, the prize also feels like a recognition of the relevance of work on palaeogenomics, human origin and archaeology more broadly and its continuing importance. Research in the 21st century on our hominin relations, including Neanderthals, is an entirely interdisciplinary, collaborative endeavour. All kinds of material analyses take place, in all sorts of ways. We use photogrammetry or lasers to record entire caves in 3D; trace how stone tools were moved across the land; examine microlayers within ancient hearths; even pick out the starches preserved in grot between ancient teeth. And the advent of the ability to retrieve palaeogenomics from extraordinarily old contexts was nothing short of revolutionary. Today, DNA can be extracted not only from bones, but even from cave sediments: the dust of long vanished lives, waiting for millennia to be found. It has made it possible to assess individual Neanderthals genetic profiles, and has opened windows into previously invisible population histories and interactions.
More than a decade on from the first big findings, today there is a huge community of palaeogenomics researchers, in large part thanks to Pbo, with many having trained with him. Among the younger generations at the front end of the sampling, processing and analytical work who may be the first to make and recognise key new discoveries many are women. They include Mateja Hajdinjak of the Crick Institute whose work has identified complex patterns of interbreeding among Neanderthals and the earliest Homo sapiens in Europe, and Samantha Brown from the University of Tbingen, whose meticulous work on unidentifiable bone scraps found the only known first-generation hybrid, a girl whose mother was Neanderthal and father Denisovan (closely related hominins from eastern Eurasia). Alongside wielding scientific clout, they are overturning outdated ideas that the hard sciences of statistics and white coats (or, in palaeogenomics, full-body protection) are male domains.
As an incredibly fast-moving field, palaeogenomics has achieved an enormous amount in a relatively short space of time. Innovative approaches are constantly being developed, and it must be admitted, even for those of us working in human origins, that keeping up with new methods and jargon can be challenging. The rapidity of advances, especially in competitive academic contexts, has also led to a number of ethical issues. While many are being tackled, the direction of some research may soon force the field to lay out official standards and draw ethical red lines when, for example, reconstructing the brains of Neanderthals using genetic engineering.
Ultimately, while decoding ancient hominin genomes has allowed us to identify which inherited genes we have today hence the physiology or medicine element of the Nobel prize the recognition of Pbos work seems more about much deeper themes, resonating with something of a Neanderthal zeitgeist. Since the discovery of their fossils more than 165 years ago, science has been engaged in dethroning Homo sapiens, demoting us from special creations to something still marvellous but not entirely unique.
Palaeogenomics bolstered this vision of an Earth that hosted many sorts of human, at least five of which were still walking around just 40,000 years ago; translate that figure to a generational scale, and youd see a chain of just 2,000 people linking hands. Ancient DNA has confirmed that we are both embedded within a rich history of hominin diversity, and that we still embody that history ourselves. Alongside the genetic material we acquired sideways through interbreeding with Neanderthals and other species, a recent study found that less than 10% of our genome is distinctive to Homo sapiens, evolved uniquely in us.
Most strikingly, popular understanding has shifted too. While some still drag out Neanderthal as a slur, it now seems somewhat abstracted from general public views. The archaeological evidence for Neanderthals complex, sophisticated minds, with genetic revelations of how close we really are to them, has transformed opinion on who they were, and what that means for us. The knowledge that the very stuff of Neanderthals is still present today in each human heart, thumping with fear or joy has forged a new emotional connection not just to them, but to all our other hominin relations. It also underlines the fact that they, and we, have always been part of a planetary web of life.
The most profound legacy of Pbos establishment of palaeogenomics is, or should be, humility. Because it turns out that many of the earliest Homo sapiens populations entering Eurasia eventually shared the same fate as the Neanderthals they met and mingled with. Their lineages vanished, culturally but also genetically, leaving behind no descendants among living humans. Perhaps the greatest inheritance they left us is understanding that our story is not one of predestined, exceptional success, but a blend of serendipity and coincidence; and that being the last hominin standing is not necessarily something to be proud of.
Read the rest here:
Behind this Nobel prize is a very human story: theres a bit of Neanderthal in all of us - The Guardian
Posted in Genetic Engineering
Comments Off on Behind this Nobel prize is a very human story: theres a bit of Neanderthal in all of us – The Guardian
Gene therapy brings hope to people with sickle cell, HIV – Monitor
Posted: October 13, 2022 at 2:12 am
Gene and cell-based treatment is promising solutions for the control and cure of some chronic and life-threatening diseases such as sickle-cell disease (SCD), haemophilia, blood cancers, and HIV. Most of the current gene therapy clinical trials on SCD and HIV are conducted in North America.The treatment is either by using someone elses cells or those of the patient. Gene therapy, also called genetic engineering, involves getting ones cells (a patient), improving them either by enhancing them to fight disease or as a replacement for the diseased cells and using them to treat the disease.
Unlike in agriculture where a lot of the genetic engineering is on seed, Dr Cissy Kityo, the executive director at Joint Clinical Research Centre (JCRC) says in medicine, the human seed (ova or sperm) or the embryo is not touched.Its not about engineering custom humans as this has no current ethical basis. Therefore, it presents a new treatment paradigm, Dr Kityo says.
Gene therapy is administered once in a lifetime. Therefore, for someone with HIV, that eliminates the burden of taking ARTs. It also has the potential to save the overall healthcare cost and increase the individuals productivity.Research is ongoing to ensure this treatment is effective, safe, and free from off-target effects and any contamination.
The processDr Francis Ssali, the deputy executive director in charge of clinical care and research at JCRC, says genetic modification involves a series of processes, the first of which is to collect specialised white blood cells called T-cells and blood-forming stem cells from the patients blood.These cells are then taken to a clean medical laboratory where they are counted, checked for viability, and purified. Thereafter, the gene to correct the disease is inserted into these cells and this is done by either using special enzymes called CRISPR or by the use of self-inactivating partial viruses called Lentiviral vectors. The lentiviral vector delivers the required gene into the cells without resulting in viral infection in the patients cells, he says.
The process of introducing the corrective gene into the patients cell is called transduction and it can take between four to seven days to perform in the laboratory. Once the cells have received this gene modification, they are checked for quality and safety before they are ready for reinfusion back into the patient.In some instances, the patient is given medical treatment to enable them to receive the gene therapy cells, he adds.However, Dr Ssali says the current approaches to gene-therapy cell manufacturing are labour intensive and take a relatively long time to prepare, and require a large clean laboratory space.
Thankfully, there are newer laboratory instruments that can automate this genetic engineering work in a single closed instrument, with efficiency, he says.Uganda has 1.4 million people living with HIV and 400,000 people living with sickle cells yet adherence to medicine is inconsistent for some.Some HIV-resistant viral variants have emerged which threaten the efficacy of the treatment programme. As such, genetic engineering will be a blessing.Globally, the first-generation cure trials for HIV were done, second-generation trials are coming up and there is hope that soon a short-term cure will be got.
Ugandan perspectiveIn Uganda, Dr Ssali says the hope is that by 2030, Uganda will have controlled HIV/Aids greatly and also contributed to finding a functional cure.Dr Kityo says JCRC hopes to start HIV gene therapy trials in Uganda in 2024.The other focus is technology transfer where these gene therapy products are produced where they are needed, more efficiently, and more cost-effectively. That is why there will be more compact systems rather than the large labs, she adds.
In Africa, Uganda ranks fifth among countries with sickle cell disease and whereas bone-marrow transplants can cure SCD, only 10 percent of the eligible patients can get a matched donor. Nonetheless, with gene therapy, this will not be an issue since the patients own cells are used.Thankfully, the current gene therapy treatment technologies for HIV are the same used in sickle cell cure research. That is why preparing to address HIV also works to tackle the sickle cell disease, Dr Kityo says.
The joint Clinical Research Centre is working towards building the research teams and creating the necessary infrastructure for this novel research and clinical care. Arthur Makara, the coordinator of Uganda Biotechnology and Biosafety Consortium, calls for several partnerships because even when JCRC creates these technologies, they need help to mass produce them for a bigger population. Gene therapy only works on an individual, not on the sperm or ovary. Therefore, Dr Kityo says even after treatment, a sickle cell patient will still have sickle cell gene but normal cells in their marrow and live a normal life.
View original post here:
Gene therapy brings hope to people with sickle cell, HIV - Monitor
Posted in Genetic Engineering
Comments Off on Gene therapy brings hope to people with sickle cell, HIV – Monitor
Eligo Bioscience Receives FDA Orphan Drug Designation (ODD) and Rare Pediatric Disease (RPD) Designation for EB003 for the Prevention of Hemolytic…
Posted: October 13, 2022 at 2:12 am
PARIS, Oct. 11, 2022 /PRNewswire/ -- Eligo Bioscience, a leading in vivo gene-editing company, today announced the U.S. Food and Drug Administration (FDA) has granted Orphan Drug Designation (ODD) and Rare Pediatric Disease (RPD) designation for its oral drug candidate EB003, for the treatment of Shiga-toxin producing bacterial infection as it relates to the prevention of hemolytic uremic syndrome (HUS).
"Granting of Orphan Drug Designation and Rare Pediatric Disease designation for EB003 highlights the FDA's recognition of the potential of how our unique CRISPR-based modalities can be used to address devastating diseases driven by the expression of bacterial genes, such as hemolytic uremic syndrome," said Xavier Duportet, Ph.D., Chief Executive Officer of Eligo Bioscience. "We are grateful that the FDA is providing additional support for the development of therapies geared towards rare pediatric diseases, and encourages us in our mission to propose highly innovative solutions to patients in need."
Children under 5 years of age are particularly sensitive to the expression of Shiga toxins from E. coli (STEC) bacteria after their ingestion from contaminated foods. Toxin production in the gut triggers bloody diarrhea, and its translocation and accumulation in the systemic compartment can lead to HUS, a life-threatening clinical syndrome involving destruction of blood platelets, anemia and acute kidney injury. There are currently no approved therapies for this rare disease.
Strong preclinical data in multiple animal models support EB003's capacity to efficiently and precisely eliminate Shiga-toxin genes from patients' gut, leading to a rapid decrease in toxin levels and associated symptoms, and preventing their evolution towards HUS. EB003 is IND-enabled with a robust manufacturing process at the 100L-scale, full preclinical package and a clear regulatory path-to-clinic.
Incentives attached to the ODD and RPD designation support the development of EB003 and are further validations of the proprietarygene editing platform that Eligo is leveraging to builda pipeline of high-value drug candidates in immuno-inflammation and oncology.
About ODD and RPD
The FDA grants Orphan Drug Designation to a drug or biologic intended to treat a rare disease or condition, which generally includes a disease or condition that affects fewer than 200,000 individuals in the U.S. ODD provides Eligo Bioscience with development incentives including tax credits for clinical testing, prescription drug user fee exemptions, and seven-year marketing exclusivity in the event of regulatory approval.
The FDA grants Rare Pediatric Disease designation for serious and life-threatening diseases primarily affecting individuals ages 18 or younger and fewer than 200,000 individuals in the United States. If EB003 is approved for a Biologics License Application (BLA) by the FDA, Eligo Bioscience may be eligible to receive a priority review voucher (PRV), redemption of which will result in priority review for any subsequent marketing application.
About EB003
EB003 is a first-in-class microbiome gene therapy designed, built, and optimized to target STEC bacteria in the gut of infected patients, leveraging Eligo's unique expertise in synthetic biology, phage biology, genetic engineering, and bioinformatics. As opposed to antibiotics which unfortunately lead to Shiga toxin overproduction in the process of killing the STEC bacteria, Eligo's proprietary sequence-specific CRISPR technology mechanism of action leads to the disruption of the genes coding for the Shiga toxin, and therefore offers a unique approach to this unmet need.
EB003's mechanism of action relies on the in-situ delivery of a non-replicative DNA payload encoding a CRISPR-Cas nuclease guided towards stx virulence genes. In bacteria where such genes are present, the nuclease mediates a DNA double-strand break, which leads to the inactivation of the stx genes, preventing any production of Shiga toxin and also causing death of the bacteria as their DNA repair mechanisms are highly inefficient.
About Eligo
Eligo Bioscience is the world leader in microbiome in vivo gene editing therapy and is advancing a highly differentiated pipeline of precision medicines to address unmet medical needs in immuno-inflammation and oncology caused by the expression of specific deleterious bacterial genes by our microbiome.
Eligo was founded by scientists from The Rockefeller University and from MIT. Eligo was named a Technology Pioneer by the World Economic Forum and has received venture capital funding from Khosla Ventures and Seventure Partners, and non-dilutive funding from GlaxoSmithKline, the European Commission, CARB-X, and Bpifrance.
For more information about Eligo visit https://www.eligo.bio/.
Logo - https://mma.prnewswire.com/media/1533529/Eligo_Bioscience_SA_Logo.jpg
Contact: Xavier Duportet , [emailprotected]
SOURCE Eligo Bioscience
Read the original:
Eligo Bioscience Receives FDA Orphan Drug Designation (ODD) and Rare Pediatric Disease (RPD) Designation for EB003 for the Prevention of Hemolytic...
Posted in Genetic Engineering
Comments Off on Eligo Bioscience Receives FDA Orphan Drug Designation (ODD) and Rare Pediatric Disease (RPD) Designation for EB003 for the Prevention of Hemolytic…
Skin Grafting, Cryopreservation, and Diseases: A Review Article – Cureus
Posted: October 13, 2022 at 2:12 am
The skin is a crucial part of the body and serves as a defense against external environmental elements such as exposure to sunlight, extreme heator cold, dust, and bacterial infection. Oxidative activity occurs during the metabolism of human tissues and is a natural and inevitable part of the aging process of the skin. Free radicals with one or more unpaired electrons and a reactive state are produced as a result of the oxidative process. The skin has its antioxidant defense against this oxidation process in the extracellular space, organelles, and subcellular compartments [1]. The use of donated skin from healthy homozygotic twins may help avoid these problems. Bauer published the first successful case of skin transplantation between homozygotic twins in 1927 [2]. One of the primary health problems that significantly affect many different groups of people and varies in age and intensity is burns. Despite improvements in nonsurgical and surgical burn treatments, the patient's look continues to be a public health concern. Skin transplantation is still regarded as the gold standard for surgical burn therapy. The availability of skin for grafting is one of the main challenges in burn surgery. Regarding nonsurgical treatment, a variety of skin dressings or alternatives are still an option [3].
Additionally, biologics have been used to treat kids with allergic skin conditions. Benralizumab and dupilumab are authorized for patients older than 12 years, whereas omalizumab and mepolizumab are authorized for youngsters as old as six years. Reslizumab is only permitted for patients older than 18 years. In eligible people, these identicalantibodies may be introduced if asthma or reactive skin conditions are not effectively controlled [4]. The expression of genes capable of immunoregulatory function may lessen allograft rejection. Recent research suggests that viral interleukin (IL)-10 is one of the most effective ways to prevent rejection since it can lower the immune response during allotransplantation[5].
Tissue donation is protected by the Medical (Therapy, Educational, and Research) Act in Singapore. Reviewing the demographic and psychosocial characteristics that may generate hesitancy or unwillingness among healthcare providers is the goal of this study. A questionnaire-based survey with 18 items was carried out at the National Heart Centre of Singapore and the Singapore General Hospital. A total of 521 people took part in the survey. There were descriptive statistics run for the participant's demographics, the motivating elements behind tissue donation, motivating factors for discussing tissue donation, and causes for doubt or reluctance to donate tissue to a close relative. Fisher's exact testand Pearson's chi-square testwere used to analyze any connections that may exist among various factors and the support for tissue donation [6].
The disease known as bacteremia, or the infection of bacteria in the blood, has a high mortality rate. High rates of morbidity are linked to it. The patient's age, underlying health, and aggressiveness of the infective organism all influence the prognosis. Transfusion-transmitted infections are a rare cause of bacteremia, notwithstanding how challenging it can be to pinpoint the origin of the condition. Between one per 100,000 and one per 1,000,000 pack red blood cells or between one per 900,000 and one per 100,000platelets are the expected incidences of bacterial spreading through donated blood. One in eight million red blood cells and one in 50,000 to 500,000 white blood cells result in fatalities. Because frozen platelets are thawed and kept at room temperature before being infused, there is a chance for any pathogens that may be present to grow before the substance is transfused, which is assumed to be the source of the greater rates of platelet transfusion. Making sure that blood used for transfusions is free of toxins is essential for further lowering infection rates. One method for accomplishing this is by meticulously preparing and washing a donor's skin at the location of the collection [7].
Across the world, skin allografts are used to temporarily replace missing or damaged skin. Skin contamination that occurs naturally might also be introduced during recovery or processing. The recipients of allografts may be at risk due to this contamination. Allografts must be cultured for bacteria and disinfected, although the specific procedures and methods are not required by standards. Twelve research publications that examined the bioburden reduction techniques of skin grafts were found in a comprehensive evaluation of the literature from three databases. The most commonly mentioned disinfection technique that demonstrated lower contamination rates was the utilization of broad-range antibiotics and antifungal medicines. It was found that using 0.1% peracetic acidor 25 kGy of mid-infraredirradiation at cooler temperatures resulted in the largest decrease in skin transplant contamination rates [8].
Skin, the uppermost organ that protects the human body, is the surface upon which different environmental signals have the most immediate impact [9]. The number, quality, and distribution of melanin pigments produced by melanocytes determine the color of human skin, eyes, and hair, as well as how well they shield the skin from harmful ultraviolet (UV) rays and oxidative stress caused by numerous environmental pollutants. Melanocyte stem cells in the region of the follicular bulge replace melanocytes, which are located in the skin's layer of the interfollicular epidermis. Skin inflammation is brought on by a variety of stressors, including eczema, microbial infection, UV light exposure, mechanical injury, and aging [10]. Skin surface lipid(SSL) composition primarily reflects sebaceous secretion in the skin regions with the highest intensity of sebum (forehead, chest, and dorsum), which also flows from those sites to regions with lower concentrations, where the participation of cellular molecules rich in linoleic and oleic acid becomes more important [11]. Surgically removed skin from individuals who underwent a body contouring procedure was combined with discarded skin from excess belt lipectomies, breast reductions, and body lifts. After applying traction to both ends of the excised section, meshing by 3:1 plates, and covering with Vaseline gauze coated in an antiseptic solution prepared for burn covering, it can be removed by a dermatome. All patients in group III received a skin allograft from a living first-degree family (father, mother, brother, or sister), as they share about 50% of their DNA [12].
The principal goal is to evaluate the results of skin care therapies, like emollients, for the primary prevention of food allergy and eczema in babies. A secondary goal is to determine whether characteristics of study populations, such as age, inherited risks, and adherence to interventions, are connected to the most beneficial or harmful treatment outcomes for both eczema and food allergies [13].
Vitamin C supports the skin's ability to scavenge free radicals and act as an infection barrier, possibly protecting against environmental oxidative stress. In phagocytic cells, such as neutrophils, an accumulation of vitamin C can encourage chemotaxis, phagocytosis, the generation of reactive oxygen species, and ultimately the death of microbes. Neutrophils eventually undergo apoptosis and are cleared by macrophages, resulting in the resolution of the inflammatory response. However, in chronic, non-healing wounds, such as those observed in diabetics, the neutrophils persist and instead undergo necrotic cell death, which can perpetuate the inflammatory response and hinder wound healing. Vitamin C's function in lymphocytes is less apparent; however, studies have indicated that it promotes B- and T-cell differentiation and proliferation, perhaps as a result of its gene-regulating properties. A lack of vitamin C lowers immunity and increases illness susceptibility [14]. The skin's distinctive form reflects the fact that its main purpose is to protect the body from the environment's irritants. The inner dermal layer, which ensures strength and suppleness, feeds the epidermis the nutrients, and also the outer epidermal layer, which is incredibly cellular and acts as a barrier, are the two layers that make up the skin. Normal skin contains high levels of vitamin C, which supports a variety of well-known and important activities, such as boosting collagen synthesis and helping the body's defense mechanisms against UV-induced photodamage. This information is occasionally used as support for introducing vitamin C to therapies; however, there is no evidence that doing so is more beneficial than just increasing dietary vitamin C intake [15].
Allograft donor selection has been affected by the worry that HIV could be transmitted through the skin of an allograft. To establish the potential presence of HIV at the period of donation, there is, however, no conclusive diagnostic test available. We examine the prevalence of HIV in human tissue, consider the potential for HIV transmission through the transplant of humanallograft skin, and talk about the validity of current HIV testing to uncover solutions to enhance skin banks' HIV donor screening procedures. The risk of HIV transmission to severely burned patients could be reduced by using the polymerase chain reactionsas a fast detection methodfor HIV, with skin biopsies in conjunction with standard regular HIV blood screening tests [16].
A total of 262 dead donor skin allograft contributions were made during the past 10 years. The response revealed a considerable improvement after the community received counseling. Most of the donors were over 70 years, and most of the recruitment was done at home. In 10 years, 165 patients received tissue allografts from 249 donors. With seven deaths out of 151 recipients who had burn injuries, the outcome was good [17]. An injury to the tissue caused by electrical, thermal,chemical, cold, or radiation stress is referred to as a "burn." The skin's ability to repair and regenerate itself is hampered by deep wounds that produce dermal damage. Skin autografting is currently the gold standard of care for burn excision, but if the patient lacks donor skin or the wound is not suitable for autografting, the use of temporary bandages or skin substitutes may be absolutely necessary to hasten wound healing, lessen discomfort, avoid infection, and minimize aberrant scarring. Among the options are xenografts, cultured epithelial cells, allografts from deceased donors, and bioartificial skin replacements [18].
In the "developed" world's burn units, "early closure" in burn wounds means removing the burned tissues and replacing them within the first "five" post-burn days with graft or their substitutes. Acceptability of this method, however, may be hampered by a general lack of education and a lack of health education among the citizens in "developing" countries. A lack of dedicated and well-trained burns surgeons might make things worse. One of the growing Gulf nations in the Middle East is the Sultanate of Oman, where in November 1997, the National Burns Center at Khoula Hospital debuted "early" surgery, which quickly became a standard technique for managing burn wounds [19]. Major burn wounds that are promptly excised heal faster, are less infectious, and have a higher chance of survival. The best way to permanently heal these wounds is with the immediate application of autograft skin. However, temporary closure using a number of treatments can assist lower evaporative loss, ward off infection, alleviate discomfort, and minimize metabolic stress when donor skin harvesting is not possible or wounds are not yet suitable for autografting. The gold for such closure is fresh cadaver allograft, although alternative materials are now available, including frozen cadaver tissue, xenografts, and a number of synthetic goods. This study examines the physiology, product categories, and applications [20].
Large burn wounds are challenging to treat and heal. To help with this procedure, several engineered skin replacements have been created. These alternatives were created with specific goals in mind, which define the situations in which they may and should be used to enhance healing or get the burn site ready for autograft closure in the end. This article analyses some of the current skin replacements in use and explores some of the justifications for their usage. According to current viewpoints, the usage of skin substitutes is still in the early stages, and it will take some time before it is evident how they should be used in therapeutic settings [21].
Each skin layer has a different width based on where in the body it is located due to differences within the thicknesses of the dermal and epidermal layers. The stratum lucidum, a second layer, is what gives the palms of the hand and the soles of the feet their thickest epidermis. Although it is thought that the upper back has the thickest dermis, histologically speaking, the upper back is regarded to just have "thin skin" since that lacks thestratum lucidum layer and has a thinner epidermis as hairless skin [22].
We provide a rare instance of an individual who underwent satisfactory allogeneic split-thickness skin graft (STSG) transplanting and had previously undergone a bone marrow stem cell transplant. Hodgkin's bone marrow transplant (BMT) had already been done on the patient because of the myelodysplasia and non-lymphoma. Human leukocyte antigen(HLA) typing performed prior to BMT allowed for the identification of the donor and recipient, who were siblings (not twins). We achieved complete donor chimerism. Scleroderma, ichthyosis-like dryness, and severe chronic graft-versus-host disease (cGvHD) were all present in the recipient. Scalp ulceration with full thickness resulted from folliculitis. An STSG was removed under local anesthesia from the donor sister's femoral area and then transplanted into the recipient's prepared scalp ulcer without any additional anesthesia [23]. We conducted an allogeneic donor skin transplant in seven adult patients following allogeneic hematopoietic stem transplant surgery for cGvHD-associated refractory skin ulcers. Serious cGvHD-related refractory skin ulcers continue to be linked with significant morbidity and mortality. While split skin grafts (SSG) were performed on four patients, a full-thickness skin transplant was performed on one patient for two tiny, refractory ankle ulcers, and one patient got in vitro extended donor keratinocyte grafts made from the original unrelated donor's hair roots. An extensive deep fascial defect of the lower leg was first filled with an autologous larger omentum-free graft in one more patient before being filled with an allogeneic SSG (Figure 1) [24].
Three skin grafting innovations led to significant improvements in the care for burn injuries. Firstly, it was discovered that the dermal layeris the most crucial component of graft in creating a new, durable, resilient surface. Secondly, it was shown that deep islands of hair follicles and sebaceous gland epithelium regrow at the donor site following the excision of a partial-thickness graft, allowing grafts to be cut thicker rather than as thin as feasible. The dermis might be transplanted without having to be as thin as feasible disrupting the areas of healing. When the grafts were thicker, it was possible to build tools for cutting bigger grafts. The split-thickness graftwas the name given to these bigger grafts, and for the first in terms of square feet, it took a long time to effectively resurface big regions instead of millimeters square [25]. Skin banking was introduced in 1994 by the Melbourne-based Donor Tissue Bank of Victoria (DTBV). It is still the only skin bank in operation in Australia, processing cadaveric skin that has been cryopreserved for use in treating burns. Since the program's creation, there has been a steady rise in the demand for transplanted skin in Australia. Several major incidents or calamities, in both Australia and overseas, required the bank to provide aid. Demand is always greater than supply, thus the DTBV had to come up with measures to enhance the availability of allograft skin on a national level since there were no other local skin banks [26]. The treatment of individuals with severe burns may benefit greatly from cadaveric allograft skin. Estimating the present popularity and levels of usage of transplant skin in the US, however, is challenging. In the American Burn Association's Directory of Burn Care Resources for North America 1991-1992, which lists 140 medical directors of US burn centers and 40 skin banks, a poll of these individuals was conducted. For skin bank and burn directors, respectively, the number of responses was 45% and 38%. At the participating burn centers, 12% of patients who were hospitalized received treatment with allograft skin. Although just 47% of skin banks could provide fresh cadaver skin, 69%of burn center directors opted to utilize fresh skin. This study, which was presented to a Tissue Bank Special Interest group at the American Burns Association annual meeting in 1993, tabulated survey results as well as a review and discussion of potential future directions of replacement andskin banking research [27].
A possible substitute for human cadaveric allografts (HCA)in the treatment of severely burned patients is pig xenografts that have undergone genetic engineering. However, if preservation and lengthy storage, without cellular viability loss, were possible, their therapeutic utility would be greatly increased. This study's goal was to determine the direct effects of cryopreservation and storage time on vital in vivo and in vitro characteristics that are required for an effective, perhaps equal replacement for HCA. In this study, viable porcine skin grafts that had been constantly frozen for more than seven years were contrasted with similarly prepared skin grafts that had been kept frozen for only 15 minutes [28]. When freshly collected allogeneic skin grafts are not available, it is thought that frozen humanallogeneic skin grafts are a viable substitute. However, there is little functional and histological knowledge on how cryopreservation affects allogeneic skin transplants, particularly those that overcome mismatched histocompatibility barriers. To compare fresh and frozen skin grafts across major and minor histocompatibility barriers, we used a small-scale pig model. Our findings are relevant to the existing clinical procedures requiring allogeneic grafting and they may enable future, transient wound treatments using frozen xenografts made of genetically engineered pig skin since porcine skin and human skin share several physical and immunological characteristics [29].
Peeling Skin Syndrome
The two types of peeling skin syndrome (PSS), i.e., acral PSS and generalized PSS, are uncommon autosomal recessive cutaneous genodermatoses. The general form now includes type A non-inflammatory, type B inflammatory, and type C. A single missense mutation in CHST8, the gene that codes for Golgi transmembrane N-acetylgalactosamine 4-O-sulphotransferase, results in PSS type A. As seen in our example, this mutation leads to the intracellular breakage of corneocytes, which results in asymptomatic skin peeling. Congenital ichthyosis or erythematous patches that migrate and have a peeling border are to blame for the clinical similarity between PSS type B and Netherton syndrome[30].
Chromhidrosis
Yonge described chromhidrosis for the first time in 1709. It is an uncommon disorder characterized by the discharge of colored sweat. There are three subtypes of chromhidrosis: apocrine, eccrine, and pseudochromhidrosis [31].
Necrobiosis Lipoidica
Necrobiosis lipoidica is a granulomaillness that frequently affects the lower limbs and manifests as indolent atrophic plaques. Several case studies detail various therapy options with varying degrees of effectiveness and propose potential correlations. Squamous cell carcinoma growth and ulceration are significant side effects. Despite therapy, the disease's course is frequently indolent and recurring [32].
Morgellons Disease
It is a stressful and debilitating illness to have Morgellons disease. Multiple cutaneous wounds that are not healing are a frequent presentation for patients. Patients frequently give samples to the doctor and blame the problem on protruding fibers or other things. The initial theories for the origin of this disorder ranged widely and were hotly contested, from infectious to mental [33].
Erythropoietic Protoporphyria
The final enzyme in the heme biosynthetic pathways and the cause of erythropoietic protoporphyria is ferrochelatase partial deficiency. After the first exposure to sunlight in early infancy or youth, photosensitivity develops inerythropoietic protoporphyria. There have been reports of erythropoietic protoporphyria all around the world; however, its epidemiology varies by locale. After age 10, it was discovered that 20% of the Japanese patients had erythropoietic protoporphyria symptoms [34].
Eruptive Xanthomas
Localized lipid deposits known as xanthomas are linked to lipid abnormalities and can be seen in the skin, tendons, and subcutaneous tissue. This disorder's hyperlipidemia may be brought on by a basic genetic flaw, a secondary condition, or perhaps both. Such a skin exanthem may be the initial indication of cardiovascular risk [35].
View original post here:
Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus
Posted in Genetic Engineering
Comments Off on Skin Grafting, Cryopreservation, and Diseases: A Review Article – Cureus