Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetic Engineering
Five technologies that may alter India in 2020 – Livemint
Posted: December 8, 2019 at 3:42 pm
Bengaluru: What must it have felt like to be a cotton spinner or an iron maker in England in the 1820s in the midst of an industrial revolution? Exactly 200 years later, we may be on the verge of another era of momentous change: the internet revolution. With internet access expanding dramatically post the early 1990s, a slew of new technologies have now matured to a point where fundamental change constantly seems to be right around the corner.
On the doorstep of a brand new decadethe 2020swhat new frontiers may Artificial Intelligence (AI) or gene editing open up? Will we soon have robot bosses? Will mixed reality change the way we consume entertainment and sports? Will we be able to cure 90% of all genetic diseases by the end of the decade? We take a look at five technologies that could alter India and the world. This may not be a definitive or even exhaustive list, but it is a list of things that could change the way we live, work, and play sooner than we think.
Mixed reality
Imagine watching a football match, not on your TV but on a virtual reality (VR) headset that streams the match live and projects interesting stats on the fly with the help of augmented reality (AR). Mumbai-based VR startup Tesseract, now owned by Mukesh Ambanis Reliance Jio, is promising a future like that with its Quark camera, Holoboard headset, and the high internet speeds of Jio Fiber. Similarly, a Hyderabad-based mixed reality startup called Imaginate enables cross-device communication over VR and AR wearables for better enterprise collaboration in the industrial sector.
Despite the much-hyped yet unmet expectations from the likes of Google Glass, Microsoft HoloLens and Facebooks Oculus, Tesseract and Imaginate simply underscore how the fusion of AR and VR technologies the combination of which is popularly known as Mixed Reality or MR is coming of age and is no longer in the realm of just sci-fi movies like Blade Runner 2049, where Officer K played by Ryan Gosling develops a relationship with his artificial intelligence (AI) hologram companion Joi.
For instance, AI-powered chatbots today can not only conduct a conversation in natural language via audio or text but they can be made more powerful with a dose of mixed reality. Last May, Fidelity Investments created a prototype VR financial advisor named Cora to answer client queries using a suite of tools from Amazon Web Services. Researchers in Southampton have built a device that displays 3D animated objects that can talk and interact with onlookers.
The Chinese government-run Xinhua News Agency has the worlds first AI-powered news anchor, whose voice has been modelled to resemble a real human anchor working for the agency. Going a step further, Japan-headquartered DataGrid Inc. uses generative adversarial networks (GANs) to develop its so-called whole body model automatic generation AI" that automatically generates full-length images of non-existent people with high resolutions.
Nevertheless, challenges abound when dealing MR-and AI-powered robots, humanoids, and human avatars. For one, whenever a company generates human bodies and faces, concerns over deep fakes and cheap fakes will always rear their heads. Second, data collection will continually raise concerns over security and privacy. Third, theres always the concern regarding the fairness of an AI algorithm when it is deployed to do human tasks like giving financial advice. Last, but not the least, theres also the question of whether AI bots should be allowed to pose as humans. This will continually pose a challenge and opportunity for technologists and policy makers.
Future of solar
Heliogen, a company that has billionaire philanthropist Bill Gates as one of its investors, says it has created the worlds first technology that can commercially replace fuels with carbon-free, ultra-high temperature heat from the sun. With its patented technology, Heliogens field of mirrors acts as a multi-acre magnifying glass to concentrate and capture sunlight.
This is just a case in point that solar technologies have evolved a lot since they first made their debut in the 1960s. For instance, solar roadwayspanels lining the surface of highwayshave already popped up in the Netherlands. Floating solar, on its part, is providing a credible option to address land use concerns associated with wide scale solar implementations. A French firm called Ciel et Terre, for instance, has projects set up in France, Japan, and England. Other parts of the world, including India and California in the US, are piloting similar floating solar initiatives.
Space-based solar technology is another exciting arena. India, China and Japan are investing heavily in these technologies right now. The Japan Aerospace Exploration Agencys (JAXA) Space Solar Power Systems (SSPS) aims to transmit energy from orbiting solar panels by 2030. Further, researchers at the VTT Technical Research Centre in Finland have used solar and 3D printing technologies to develop prototypes of what they have christened as energy harvesting trees".
With solar power cheaper than coal in most countries in the world, its worth scaling up these technologies.
Indians and robot bosses
Between 400 and 800 million individuals around the world could be displaced by automation and would need to find new jobs by 2030, predicted a December 2017 survey by consultancy firm McKinsey. The Future of Jobs 2018 report by the World Economic Forum (WEF) suggests that 75 million jobs may be lost to automation by 2022, but adds that another 133 million additional new roles will be created.
Given that many of the automated jobs are being taken away by AI-powered chatbots and intelligent robots, would humans eventually have to work for a robo boss? This, however, may not be as big a concern as it is made out to be. According to the second annual AI at Work study conducted by Oracle and Future Workplace, people trust robots more than their managers. The study, released this October, notes that workers in China (77%) and India (78%) have adopted AI over 2X more than those in France (32%) and Japan (29%). Further, workers in India (60%) and China (56%) are the most excited about AI, while men have a more positive view of AI at work than women.
Oracle and Future Workplace also found that 82% of the workers believe robot managers are better at certain tasks, such as maintaining work schedules and providing unbiased information, than their human counterparts. And almost two-thirds (64%) of workers worldwide say they would trust a robot more than their human manager. In China and India, that figure rises to almost 90%.
On the other hand, the respondents felt managers can outdo robots when it comes to understanding their feelings, coaching them, and creating a healthy work culture. Whether humans eventually serve a robo boss or not remains to be seen. However, we can be certain of one thing: in the near future, we will increasingly see humans collaborating with smart robots.
Future of payments
Everyone can be a merchant, and every device can be an acceptance device," Accenture noted in its 2017 Driving the Future of Payments report. This trend has only accelerated over the last two years, especially with banks coming to terms with the fact that young customers, especially those living in urban areas, prefer net banking and mobile banking and would seldom, or never, want to visit a bank branch if offered that choice.
Bitcoin and cryptocurrency investors, for instance, have not lost faith in this disruptive currency despite the run with volatility, and despite the industry being viewed with a lot of suspicion by most governments around the world, including India. Fintechs too, with their innovative technology solutions like AI-powered bots and contactless payments to name a few, have only made the payments ecosystem more inclusive, disruptive, and challenging. In India, especially, the governments Aadhaar-enabled payments system and the Unified Payments Interface (UPI) have revolutionized the payments ecosystem. The total volume of UPI transactions in the third quarter of calendar 2019 touched 2.7 billiona 183% rise over the same July-September quarter a year ago. In terms of value, UPI clocked 4.6 trillionup 189% over the same period a year ago, according to the Worldlines India Digital Payments Report-Q3 2019.
However, the number of transactions done on mobile wallets was 1.04 billiononly a 5% rise over the previous year period.
QR codes, according to the report, will continue to be used for payments, and the internet of things (IoT) is set to dominate micro payments by transforming connected devices into payment channels, though the pace of adoption of 5G by countries like India will be the key.
Nevertheless, cash that has been in existence for over 3000 years in different forms is not going to disappear in a hurry. Trust and security will continue to remain the operative words in digital payments.
Making sense of gene editing
When Dolly the sheep made news for becoming the first mammal ever to be cloned from another individuals body cell, many expected human cloning to follow soon. Dolly died over 16 years ago, and subsequently animals, including monkeys and dogs, continue to be cloned successfully. Yet, no human being has yet been cloned in real life.
While human cloning, which may or may not eventually happen, is bound to raise a lot of alarm bells given the moral implications surrounding the issue, the fact is that human genomes, or genes, are being routinely edited in a bid to find solutions for what are today considered to be incurable genetically inherited diseases.
Researchers are using a gene editing tool known as CRISPR-Cas9. CRISPR, which stands for Clusters of Regularly Interspaced Short Palindromic Repeats, is a tool that allows researchers to easily alter DNA sequences and modify gene function. The protein Cas9 (CRISPR-associated, or Cas) is an enzyme that acts like a pair of molecular scissors capable of cutting strands of DNA.
CRISPR-Cas9 is primarily known for its use in treating diseases like AIDS, amyotrophic lateral sclerosis (ALS), and Huntingtons disease. Two patients, one with beta thalassemia and one with sickle cell disease, have potentially been cured of their diseases, reveal results from clinical trials that were jointly conducted by Vertex Pharmaceuticals and CRISPR Therapeutics. The results released this November involved using Crispr to edit the genes of these patients.
Researchers are now looking to extend its use to tackle famine, lend a hand in creating antibiotics, and even wipe out an entire species such as malaria-spreading mosquitoes. Further, by genetically engineering a persons bone marrow cells, researchers can reprogram their immune and circulatory systems. Some new cancer treatments are based on this. Moreover, looking at the DNA of the collection of microbes in your gut can help with digestive disorders, weight loss, and even help understand mood changes.
Closer home, scientists at the Institute of Genomics and Integrative Biology (IGIB) and the Indian Institute of Chemical Biology (CSIR-IICB) are trying to correct genetic mutations in their laboratories using CRISPR Cas9 with encouraging preliminary results. But due to regulatory and ethical concerns, it may take a while before they can use this on humans.
IGIB also sells CRISPR products such as Cas9 proteins and its variants to educational institutes at reduced prices in a bid to encourage use of the technology.
The US Food and Drug Administration (FDA), on its part, considers any use of CRISPR-Cas9 gene editing in humans to be gene therapy and rules that the sale of DIY kits to produce gene therapies for self-administration is illegal. India, too, has banned the use of stem cell therapy for commercial use following concerns over rampant malpractice".
CRISPR-Cas9, thus, remains a work in progress and countries should have policies to govern its use. Meanwhile, one can watch out for an upgrade to CRISPR called Prime, which theoretically has the ability to snip out more than 90% of all genetic diseases.
See the article here:
Five technologies that may alter India in 2020 - Livemint
Posted in Genetic Engineering
Comments Off on Five technologies that may alter India in 2020 – Livemint
Israeli CO2-eating bacteria could help save the planet – ISRAEL21c
Posted: December 8, 2019 at 3:42 pm
Israeli scientists have revealed a potential weapon in the battles against air pollution, deforestation and climate change: bacteria engineered to eat carbon dioxide (CO2) from the environment.
Prof. Ron Milos plant and environmental sciences research lab at the Weizmann Institute of Science published a report on the study in Cell on November 27.
Milos team spent nearly a decade using rational design, genetic engineering and a sped-up version of evolution to create unique CO2-eating E. coli bacteria.
First, they identified the genes that plants use for the process of carbon fixation taking carbon from CO2 and turning it into protein, DNA and other biological molecules. Many of these genes were already present in the bacteria. Others could be added or modified.
They also inserted a gene that allows bacteria to get energy from formate, a readily available substance that can be produced directly from electricity and air.
Once the cultured bacteria had the necessary genetic mechanics, they still had to be coaxed into making the switch from their normal food (sugar) to CO2.
Postdoctoral fellow Shmuel Gleizer, the lead researcher, did this with a technique called lab evolution.
Together with PhD students Roee Ben-Nissan, Yinon Bar-On and other members of Milos team, Gleizer weaned the bacteria gradually off the sugar they were used to eating.
At each stage, cultured bacteria were given just enough sugar to keep them from complete starvation, as well as plenty of CO2 and formate.
Subsequent generations of the original cultured bacteria were given less and less sugar. After about a year of adapting to the new diet, some of them did switch to living and multiplying in an environment of pure CO2.
The researchers even used a special method to make sure the E. coli werent snacking on other nutrients.
Researchers converted sugar-eating E. coli bacterium (left) to producing all of its biomass from CO2, using metabolic engineering combined with lab evolution. The new bacterium (center) uses the compound formate as a form of chemical energy to drive CO2 fixation. The bacterium may provide the infrastructure for renewable production of food and green fuels (right). Chart courtesy of the Weizmann Institute
Cultured bacteria for a healthier planet
Our lab was the first to pursue the idea of changing the diet of a normal heterotroph (one that eats organic substances) to convert it to autotrophism (living on air), said Milo.
It sounded impossible at first, but it has taught us numerous lessons along the way, and in the end we showed it indeed can be done. Our findings are a significant milestone toward our goal of efficient, green scientific applications.
The researchers believe that the cultured bacteria could prove healthy for the planet in a variety of ways.
There are several scenarios in which this current research could be potentially applied in the future to address climate change, Bar-On tells ISRAEL21c.
Engineering an E. coli strain capable of utilizing energy sources such as formate, which could be synthesized electrochemically from renewable energy, opens the possibility of producing net-zero emissions ethanol, butanol, and potentially even denser fuels such as diesel fuels, which could replace fossil fuels, says Bar-On.Industrial renewable food production
In addition, the research could serve as the basis for future methods to increase food production without the vast land masses currently needed for raising meat and vegetables.
Reducing the land demand of food production can help to reduce the greenhouse gas emissions associated with agriculture, for example by reducing the amount of deforestation, Bar-On explains.
Biotech companies that currently feed large amounts of corn syrup to bacteria or yeast to produce commodity chemicals could instead use cultured bacteria that live on a diet of CO2 and renewable electricity. Thats another potential way to reduce land demand.
The CO2-eating bacteria also could be useful in producing alternative protein, a major goal in the food-tech world.
In the future, we may be able to use renewable energy to drive carbon fixation and protein production in such bacteria, says Bar-On. This process can be scaled up to produce protein from renewable sources, which could serve as the feedstock of livestock, for example.
Because E. coli are the powerhouse of molecular biology research, says Bar-On, cultured E.coli that live on air alone will allow researchers to probe much closer the components of the carbon fixation machinery, which also operates in all of the plants providing our food.
As such, this bacterium could serve as a stepping-stone for discoveries that may improve the process of carbon fixation and could someday be implemented in crops to increase food production.
Follow this link:
Israeli CO2-eating bacteria could help save the planet - ISRAEL21c
Posted in Genetic Engineering
Comments Off on Israeli CO2-eating bacteria could help save the planet – ISRAEL21c
Free Event on Weapons of Mass Destruction in the Digital Age Focuses on the Growing Threat of WMD Terrorism – GlobeNewswire
Posted: December 8, 2019 at 3:42 pm
McLean, VA, Dec. 03, 2019 (GLOBE NEWSWIRE) -- Public Sector 360, a division of 1105 Media, Inc. and Noblis announce the upcoming event, Weapons of Mass Destruction in the Digital Age.
The event will take place December 11th at Convene, Hamilton Square in Washington, DC.
Speakers include:
The half-day program will address the growing threat of WMD terrorism and will delve into biological threats and pandemics. Other focuses will include exploring how technology is transforming monitoring and mitigation efforts and the benefits and challenges of information sharing across government and with external partners. Dr. Sterling Thomas will discuss how countering bio weapons of mass destruction has changed in the digital age. His presentation will include emerging technologies such as CRISPR-based genetic engineering, machine learning, data poisoning and how these technologies have dual use in this domain.
"The national-security risks of nuclear, chemical, biological and other threats are obvious," said FCW Editor-in-Chief Troy K. Schneider. "Less discussed are the ways government agencies are working together to address those risks, and the ways new technologies are supporting those efforts. We're excited to dig into the solution side of this critical issue."
Noblis is once again delighted to co-host this important event and to contribute to the discussion of how to prepare for the threat from deadly chemical, biological, radiological, nuclear and explosive (CBRNE) weapons, said Jordin Cohen, Ph.D., vice president, Defense and Homeland Security, Noblis. Government and industry are focused on developing the countermeasures to these dangers which will require innovation, collaboration and the deployment of our nations most advanced technologies.
For more information on the December 11th event, visit: https://fcw.com/WMD or contact ametcalf@PublicSector360.com
About Public Sector 360
Public Sector 360, a division of 1105 Media, Inc., provides information, insight and analysis to Government IT sectors. Our content platforms include print, digital, online, events and a broad spectrum of marketing services. http://www.publicsector360.com
About Noblis
Noblis is a dynamic science, technology, and strategy organization dedicated to creating forward-thinking technical and advisory solutions in the public interest. We bring the best of scientific thought, management, and engineering expertise together in an environment of independence and objectivity to deliver enduring impact on federal missions. Noblis works with a wide range of government clients in the defense, intelligence and federal civil sectors. Together with our wholly owned subsidiary, Noblis ESI, we tackle the nation's toughest problems and support our clients' most critical missions.
###
See the original post here:
Free Event on Weapons of Mass Destruction in the Digital Age Focuses on the Growing Threat of WMD Terrorism - GlobeNewswire
Posted in Genetic Engineering
Comments Off on Free Event on Weapons of Mass Destruction in the Digital Age Focuses on the Growing Threat of WMD Terrorism – GlobeNewswire
Can We Genetically Engineer Humans to Survive Missions to Mars? – Space.com
Posted: November 8, 2019 at 12:42 am
Will we one day combine tardigrade DNA with our cells to go to Mars?
Chris Mason, a geneticist and associate professor of physiology and biophysics at Weill Cornell University in New York, has investigated the genetic effects of spaceflight and how humans might overcome these challenges to expand our species farther into the solar system. One of the (strangest) ways that we might protect future astronauts on missions to places like Mars, Mason said, might involve the DNA of tardigrades, tiny micro-animals that can survive the most extreme conditions, even the vacuum of space!
Mason led one of the 10 teams of researchers NASA chose to study twin astronauts Mark and Scott Kelly. After launching in 2015, Scott Kelly spent almost a year aboard the International Space Station while his twin brother, Mark Kelly, stayed back on Earth.
Related:By the Numbers: Astronaut Scott Kelly's Year-in-Space Mission
Geneticist Chris Mason discusses the genetic effects of spaceflight at the 8th Human Genetics in NYC Conference on Oct. 29, 2019.
(Image credit: Chelsea Gohd/Space.com)
By comparing how they biologically reacted to their vastly different environments during that time, scientists aimed to learn more about how long-duration missions affects the human body. Mason and the dozens of other researchers who worked to assess the genetic effects of spaceflight uncovered a wealth of data that has so far revealed many new findings about how space affects the human body.
Researchers hope that this work, which continues today, might inform strategies to support astronaut health on future missions. Mason discussed some of the results of this research at a talk at the 8th Human Genetics in NYC Conference on Oct. 29.
In addition to the research Mason discussed at the conference, these researchers are working on seven more papers incorporating the data from the twins study. However, they also hope to use new data from a larger sample.
"We want to do some of the same studies, longitudinal studies, with people on Earth, people in space," Mason told Space.com at the conference.
By studying, specifically, how certain genes are expressed during the different stages of spaceflight (including the intense return to Earth), these research efforts could support future efforts to mitigate the dangers of spaceflight, Mason said.
For instance, if further studies were to confirm that landing back on Earth were harmful to the human body, scientists could develop ways to prevent those detrimental effects. But with such a small body of data (the twins study was just two people), scientists aren't ready to prescribe any specific treatment or preventative medicine to alter how humans genetically react to spaceflight.
"I think we do what is normally done in science We see something interesting; let's try it in mice first," Mason said.
He noted that they might not even find it necessary to prescribe anything to alter the effects they've seen in astronauts like Scott Kelly. "Some of those changes, even though they're dramatic, maybe that's how the body needed to respond," Mason said.
Related: Space Radiation Threat to Astronauts Explained (Infographic)
While, Mason noted, future astronauts might be prescribed medicine or other tools to help to mitigate the effects which they've uncovered with this research. However, new studies are investigating how tools such as gene editing could make humans more capable of traveling farther into space and even to planets such as Mars.
One of the main health concerns with space travel is radiation exposure. If, for example, scientists could figure out a way to make human cells more resilient to the effects of radiation, astronauts could remain healthier for longer durations in space. Theoretically, this type of technology could also be used to combat the effects of radiation on healthy cells during cancer treatments on Earth, Mason noted.
However, the idea of tinkering with human genes is controversial. But Mason emphasized that there will likely be decades of research completed before this kind of science is applied to humans.
"I don't have any plans of having engineered astronauts in the next one to two decades," Mason said. "If we have another 20 years of pure discovery and mapping and functional validation of what we think we know, maybe by 20 years from now, I'm hoping we could be at the stage where we would be able to say we can make a human that could be better surviving on Mars."
But what does it mean to genetically engineer a person to better survive in space or on another planet? There are multiple possible approaches.
One way that scientists could alter future astronauts is through epigenetic engineering, which essentially means that they would "turn on or off" the expression of specific genes, Mason explained
Alternatively, and even more strangely, these researchers are exploring how to combine the DNA of other species, namely tardigrades, with human cells to make them more resistant to the harmful effects of spaceflight, like radiation.
This wild concept was explored in a 2016 paper, and Mason and his team aim to build upon that research to see if, by using the DNA of ultra-resilient tardigrades, they could protect astronauts from the harmful effects of spaceflight.
Genetically editing humans for space travel would likely be a part of natural changes to the human physiology that could occur after living on Mars for a number of years, Mason said. "It's not if we evolve; it's when we evolve," he added.
While changes to the human body are to be expected as our species expands off-Earth, there is a way to do this science responsibly, Mason said. "In terms of a question of liberty, you're engineering it [a future human] to have lots more opportunities, again assuming we haven't taken away opportunities," he said. "If we learned that, in some way, when we decided to try and prove the ability of humans to live beyond Earth, and we take away their ability to live on Earth, I think that would be unjust."
Genetically engineering humans could be ethical if it makes people more capable of inhabiting Mars safely without interfering with their ability to live on Earth, Mason said.
Follow Chelsea Gohd on Twitter @chelsea_gohd. Follow us on Twitter @Spacedotcom and on Facebook.
Need more space? Subscribe to our sister title "All About Space" Magazine for the latest amazing news from the final frontier!
(Image credit: All About Space)
More:
Can We Genetically Engineer Humans to Survive Missions to Mars? - Space.com
Posted in Genetic Engineering
Comments Off on Can We Genetically Engineer Humans to Survive Missions to Mars? – Space.com
Lonza taps Cryoport to bolster cell and gene therapy delivery – BioPharma Dive
Posted: November 8, 2019 at 12:42 am
Dive Brief:
Lonza is betting big on the future of gene and cell therapy and trying to offer customers an end-to-end solution to meet the complex challenges that come with the field.
Every stage of cell therapy, from patient apheresis through transport, genetic engineering and reinfusion comes with critical requirements for temperature control, speed and chain of identity.
Cryoport operates in more than 100 countries and supports more than 413 clinical trials. Notably, the company also supports three approved therapies: Gilead's Yescarta(axicabtagene ciloleucel), Novartis' Kymriah(tisagenlecleucel) and Bluebird bio's Zynteglo.
Demand for specialized manufacturing and distribution services is growing as researchers figure out new ways to manipulate cells so they can fight cancer and other diseases, Cryoport CEO Jerrell Shelton said in the statement.Cryoport's temperature-controlled supply chain systems fit well with Lonza's manufacturing services, he added.
For Lonza, cell and gene therapies are a new focus, part of a broader turn to the pharmaceutical side of the contract manufacturer's business.
In April 2018, the Swiss CDMO opened the doors to a 300,000 square-foot plant in Texas dedicated to producing the complex treatments.
CEO Marc Funk told BioPharma Dive in an interview earlier this year that Lonza has now worked with over 45 customers seeking supply of viral vectors, which are used to deliver gene therapies.
Read this article:
Lonza taps Cryoport to bolster cell and gene therapy delivery - BioPharma Dive
Posted in Genetic Engineering
Comments Off on Lonza taps Cryoport to bolster cell and gene therapy delivery – BioPharma Dive
The world’s banana crops are under threat from a deadly fungus. Is gene editing the answer? – National Post
Posted: November 8, 2019 at 12:42 am
We expect to have more than one variety of apple to choose from. Even at the most modestly stocked produce stand, youre likely to see mounds of Galas, McIntoshes and Honeycrisps. When it comes to the banana, though no matter where you shop theres only ever one: The Cavendish.
As far removed as we are from tropical growing regions, youd be forgiven for assuming the fruit we recognize as a cheap and reliable staple is the one true banana. In reality, however, there are over a thousand types, each exhibiting a different flavour profile, texture, shape, colour, ripening pattern and durability. And for the second time in recent history, the very existence of the sole breed we rely on which represents the single most exported fresh fruit on the planet is under threat.
Researchers, seeking a solution, are looking towards a new form of genetic modification. Could specific alterations of the genetic makeup of the Cavendish help stave off the disappearance of such a critical commodity?
In August, Colombia declared a state of emergency when scientists confirmed a banana-killing fungus had reached the Americas for the first time. Known by its common name, Panama disease, the strain of fungus Fusarium oxysporum cubense Tropical Race 4 (TR4) has been a known issue since the early 1990s, but until this year, it was largely contained to Asia. Immune to pesticides, the lethal soil-borne organism, for which there is no known cure, obliterates yields by choking banana trees of essential water and nutrients.
The Cavendishs predecessor as worlds presiding banana was the Gros Michel, a variety that dominated fruit stands in temperate regions until it was decimated by fungal strain Tropical Race 1 in the 1950s. That the extreme monoculture approach replicated with the Cavendish would result in a similar fate should have seemed inevitable.
Cavendish bananas are sterile and breeding them requires a cloning process that creates genetically identical plants. Because of their inherent lack of biodiversity, monocultures such as this banana are especially vulnerable to diseases and pests; when theres a weakness, such as little or no resistance against TR4, it can have sweeping and ruinous effects.
Given the bananas immense importance to producers and consumers, researchers have been attempting a variety of methods to create a resistance to the deadly fungus. According to Nature, James Dale, a biotechnologist at Queensland University of Technology in Brisbane, is currently field testing genetically modified bananas in Northern Australia with some success. Dale has added a gene from a wild banana into the Cavendish variety that makes it more resistant to the TR4.
However, even if scientists are able to breed a TR4-immune Cavendish, they wouldnt be permitted to grow or sell them in a significant portion of the world. In Europe, for example, GM crops are restricted. And in Canada, although GMOs have been on the market since the late 1990s, nearly 90 per cent of Canadians believe they should be subject to mandatory labelling.
As a result, researchers like Dale and Leena Tripathi, from the International Institute of Tropical Agriculture in Kenya, have begun experimenting with CRISPR technology. Where GMOs have a foreign gene inserted into the organism, CRISPR allows for the organisms genes to be edited. In the case of Dale, hes discovered a dormant gene in the Cavendish he hopes to activate.
The technique is perhaps best described by Jennifer Kuzma, co-director of the Genetic Engineering and Society Center at North Carolina State University. In an interview with Gastropod, she likened DNA to a book and CRISPR to a pen: You can go in and you can edit the letters in a word, or you can change different phrases, or you can edit whole paragraphs at very specific locations.
CRISPR and GMO are further differentiatedin terms of consumer perception. As a December 2018 study published in Global Food Security found, 47 per cent of Canadian respondents were willing to eat both GM and CRISPR foods, but participants across the board (in Australia, Belgium, Canada, France and the U.S.) were more apt to eat CRISPR than GM food.
Nevertheless, editing the genes of the banana is still in the early stages. Dale told Nature that itll be a couple of years before these get into the field for trials. Can the Cavendish banana wait that long?
In a recent interview with KCRW, Dan Koeppel, author of Banana: The Fate of the Fruit that Changed the World, said I think the time has come to stop looking at bananas as just one kind of fruit when there are thousands. Just as the range of apples at our fingertips is rich and getting richer, perhaps all the different varieties of bananas will prove ripe for discovery.
See more here:
The world's banana crops are under threat from a deadly fungus. Is gene editing the answer? - National Post
Posted in Genetic Engineering
Comments Off on The world’s banana crops are under threat from a deadly fungus. Is gene editing the answer? – National Post
Researching the Future of Cancer Treatment – Southern Newsroom
Posted: November 8, 2019 at 12:42 am
Maria Todd would probably prefer that I write this story about well, anyone else but her. When I first interviewed her and began with the warm-up question of how long shes been researching and teaching biology at Southwestern (the answer is 18 years, since 2001), she very quickly shifted focus to talking about a remarkable undergraduate she taught years ago who is now an oncologist. When she publishes her research, she gives credit to every person who sends her samples because naming them as contributors will, she says, help them get grantsand if theyre getting grants, that helps the whole community. If youre lucky enough to be one of her students or have a cup of tea with her, youll notice that she exhibits a generosity of spirit and that quintessential self-deprecatory Anglo-Irish sensibility that immediately draws you in.
And if you didnt know any better, youd almost never guess that this utterly unpretentious, quietly funny, and genuinely delightful individual is an expert in molecular biology and genetics who has made significant contributions to the progress of cancer research.
Dr. Maria ToddThe evolution of a scientist
A born biologist whose first memory is of crawling down the garden path behind her London home and being fascinated by ants and stones and leaves, Todd recalls that her early love of science was the product of curiosity and exploration. I remember as a child just staring at leaves and their veins, and my parents would allow me to dissect plants and flowers with kitchen knives, she says. Id look at a beautiful flower, and then I would dissect it to see what was inside. I had to understand how it worked. Im always appreciative of the beauty of nature, but I want to understand the mechanisms behind it.
With the loving encouragement of her parents, Todd analyzed specimens she discovered in London parks and by the seaside, experimented with chemistry sets at home, and tinkered with gadgets her father would bring home from his work as an electronics engineer. She eventually enrolled as an undergraduate at the University of Sussex, where Todd originally hoped to specialize in conservation biology and ecology, following in the footsteps of her hero, Jane Goodall. But a first-year course on molecular and population genetics captured her imagination. I knew then, at 19 years old, that this would revolutionize medicine, and I was completely seduced, she recounts. It changed my life. So she traded romantic visions of a future examining ferns on the moors of England for a more fitting career at the lab bench studying genetic engineering.
Her studies would continue during a Ph.D. program at Cambridge University, where she lived for one year in the former home of the father of evolutionary thinking. It was amazing to walk into the drawing room and think, This is where Charles Darwin sat and read his newspapers and worked on the Origin of Species, and here am I, a little 20-something geneticist, sitting in the same window seat perhaps where he sat and looking out onto the grounds, she recalls. It was a very magical experience. She then adds with a laugh, The rest of the accommodation was not magical and is best forgotten. Todd admits that she did sometimes feel rather intimidated while at Cambridge, where she was one of only two women in her medical research cohort and worked in a lab flanked by a pair of Nobel Prize winners. Like so many graduate students, she was periodically afflicted with impostor syndrome, wondering whether her admission to the program had been some sort of mistake or even a cruel sociological experiment. But once she began to build a community among other women scientists at the university, her confidence grew, and she knew that she and her colleagues did, in fact, belong.
The importance of good questions
Todd shares stories like these with her Southwestern students, bringing profound empathy to her teaching and mentorship of students. Most of my time is spent reassuring students, reminding them that theyre here for a reason, that they are good enough to be here, that they will excel here, that they are making a really valuable contribution to this community of learning, that we want them here, [and] that were learning from them just as they learn from us, she says. I always encourage students to ask questions and to share their ideas because their ideas might be the next great breakthrough. Its this approach to teaching that has understandably earned Todd multiple honors throughout her years at SU, including theExemplary Teaching Award from the Board of Higher Education and Ministry of the United Methodist Church and the Southwestern University Teaching Award.
As one might expect of the limelight-shy biology professor, Todd prefers that the camera's focus remain on her students, like Shi Solis '20 , rather than on her.Shi Solis 20, one of Todds current research assistants, can attest that her mentor has been a delight to work with. A methods course with Todd inspired the English major to add biology as her second major, but even more than her coursework, Solis feels that the productive failure of trial and error that characterizes any laboratory setting has really expanded her understanding of biology. Working with Dr. Todd is the best. Shes an angel, Solis remarks. I feel like we came in, and we werent super prepared in what it was like to do research, but shes the best teacher. Even if we dont know anything, she makes us feel that this is a learning environmentthat every minute in the lab is a learning experience.
Biology major Anthony Seek 20 agrees that the lab experience, even with all its mental hurdles, has been pretty awesome because its pushed him to consider not just the what but also the why of cell biology: I wanted to do this before I came here, and Im really excited I got the opportunity to do this and work with Dr. Todd. Shes amazing. I sat in on one of her classes before I came [to SU], and it was great. Shes the best person to work with.
Todds appreciation for Solis and Seek is conspicuous as she praises them for being such independent thinkers and doers. She says that working with undergraduates is fabulous and lovely because they bring youthful enthusiasm; they bring their curiosity. And something that I think is very special about undergraduates is that they ask questions that are quite basic, fundamental questions, and these are the best questions to ask in science. She explains that as more advanced researchers delve deeper into their fields, they tend to think of more sophisticated, complicated questions. But the best science is when we ask very straightforward questions, and students will do that, kind of pulling me up a little [because] maybe I had made an assumption about something . They also ask questions about mechanisms and cellular processes that really keep me on my toes in terms of staying up to date with the literature. And unlike how labs are often portrayed on television, Todd observes that laboratories are communities; no scientist works in isolation. Were highly collaborative, and were highly social creatures . Our students bring life and heart to the lab.
A common but understudied cancer
When students like Seek and Solis apply to work in Todds lab at Southwestern, they have to be highly conscientious, precise, and detail oriented. Thats because theyll be working with complex instruments and techniques that are difficult to learn and require weeks to months of practice to master, or, conversely, theyll be focusing for long periods on techniques that arent necessarily difficult but can be quite tedious.
Those students must possess physical and mental fortitudenot to mention a sense of respect for their materialsbecause they are working with cancer cells that are older than they are.
Todd and her students are studying uterine cancer, which, according to the nonprofit World Cancer Research Fund International, is the sixth most commonly occurring cancer in women (only breast, colorectal, lung, cervical, and thyroid cancers have higher incidences worldwide). More than 382,000 new cases of uterine cancer were reported in 2018, and approximately 76,000 patients die from the disease each year.
Elliot Hershbergn 18 and Sid Pradeep 17 worked alongside Professor Maria Todd in summer 2016.
Although uterine cancer is the most common gynecological cancer in the U.S., it is, paradoxically, also the least studied compared with ovarian, cervical, vaginal, and vulvar malignancieswhich is just one reason Todd and her longtime collaborator, fellow Southwestern Professor of Biology and Garey Chair in Biology Maria Cuevas, switched their research efforts from breast to uterine cancer several years ago while putting together an application for a National Institutes of Health grant. Todd believes its one of those cancers thats often overlooked by researchers because uterine cancer doesnt have the same advocacy groups that breast and ovarian cancers have enjoyed for the past 15 years. Those cancers have benefited from better research funding and more media coverage, likely because uterine cancer occurs less frequently than breast cancer does (one in 25 women versus one in seven, respectively) and is much easier to treat than ovarian cancer, which is often diagnosed too late to benefit from conventional therapies.
Todd says she and Cuevas were also compelled to refocus their research energies because they found something very startling and very striking: women of all races have about the same incidence of uterine cancer, but the mortality rate for African-American women with uterine cancer is 2-1/2 times that of all other women with the same disease. We were completely blown away, Todd recalls. Why is it that the uterine cancer rate is not higher in African-American women but they die at much higher rates?
Todd and Cuevas knew there were many possible answers: Perhaps African-American women were not being diagnosed early enough because of limited access to healthcare. Maybe cultural distrust between African-American women patientsof all socioeconomic classesand their primarily white male doctors was preventing those women from advocating for their own care. And/or perhaps implicit bias was keeping patients from receiving sufficiently aggressive treatment. But these would be sociological responses and therefore beyond the scope of Todd and Cuevass research. From a biological standpoint, however, the pair could investigate which kinds of uterine cancer African-American women were being diagnosed with: Was it the more treatable endometrial cancer (i.e., malignancy of the lining of the uterus), or was it the more difficult-to-treat myometrial cancer (i.e., malignancy of the muscular wall of the uterus)? And if they were to look at tumor samples from women across racial identities, would they see differences in the ability of cancer cells to stay adhered to one another, or would those cells break off more frequently, making it easier for tumors to migrate through the bloodstream and spread (i.e., metastasize) to a different part of the body?
From cancer research to (better) cancer treatment
To help answer such questions about what causes cancer to spread throughout the body, Todd and her undergraduate research assistantspositions made possible by her funding as Southwesterns first Ed and Suzanne Morrow Ellis Term Chairwork with immortalized uterine tumors from women. That is, normal cells eventually stop dividing, grow old, and die; cancer cells, however, have short-circuited that aging process, so they can grow and replicate in perpetuity. So when patients have a tumor removed, researchers can actually continue to grow and examine immortal cell lines derived from that tumor. Todd says, I say that to the students: Just think about what it is that youre handling here in these flasks. These are cancer cells that are immortal, and they will outlive us and your children and your grandchildren. So we do treat them with a certain amount of reverence, actually.
With all due reverence, Solis, Seek, and Todd are studying claudin-3 and claudin-4, just two members of a family of 24 tight-junction proteins that create watertight seals between adjacent cells and help hold those cells together. Although one might expect that having high levels of something called tight-junction proteins would mean that the connections between cells would be even stronger, it turns out that claudin-3 and -4 are abnormally elevated in uterine cancer cells, and that disproportion of proteins actually makes it easier for malignant cells to shear off, spread to another organ, and grow secondary tumors. Todd believes that down the road, if she and her fellow researchers can correlate high levels of claudin-3 and -4 with certain stages of uterine cancer, that correlation can prove useful not just as a diagnostic marker but also as a prognostic one. That is, a doctor could tell a patient how much cancer is in the body and better predict how the cancer will behave, including how it will respond to treatment.
Anthony Seek 20, one of Todd's current research assistants, looks forward to applying his SU lab experience to a future career in pediatric oncology.
But most exciting to meand something that my lab and my students are working onare the possible treatment applications, Todd shares. She and her collaborators have been able to use a molecule known as small interference RNA to decrease the excessive amounts of claudin-3 and -4 to normal levels, which prevents the uterine cancer cells from migrating or moving across membranes as quickly. The hope, then, is that by decreasing the levels of these proteins, scientists will eventually be able to stop uterine tumors from metastasizing.
Thats obviously my goal as a cancer researcher and I think the goal of most people who go into cancer research, Todd says. We might not see those clinical applications in our working lives, possibly not even in our lives, but we build on one anothers work. Shes hopeful that gene therapies similar to those she and her students are experimenting with will one day complement conventional cancer treatments such as surgery, chemotherapy, and radiation. Or rather, given the physical and emotional trauma of surgery and the side effects and risks of chemotherapy and radiationwhich can damage DNA, have adverse effects on neighboring healthy cells, and lead to mutations that cause secondary cancersTodd adds, Im hopeful that in our childrens generation, gene therapy will be part of the treatment program, and by the time they have children, gene therapy will be the major tailored form of therapy and we will eliminate chemotherapy drugs or radiation altogether.
In April 2020, Todd and Cuevas will present their research at the annual meeting of the American Association for Cancer Research, where the theme will be Turning Science into Lifesaving Cure. Todd looks forward to sharing their latest findings with their scholarly colleagues, and shes thankful for her Ellis Term Chair funding because it will support her travel to the conference and because it means that the research we can do at Southwestern is comparable to that at a large R1 [research] institution, and were really excited about that. But she and Cuevas are also dedicated to translating their knowledge in ways that will benefit their students beyond academic or professional development. In a biology class, its not just about preparing for medical school or graduate school or teaching or industry; its about learning about our own health, our own journey, and how our bodies change on a continuous basis, Todd explains. Its just so important from an intellectual standpoint to understand the structures, the functions, and the mechanisms. But its also important from a very human perspective to understand the emotional component, the biological component, and the psychological component that contribute to our own well-being.
Go here to see the original:
Researching the Future of Cancer Treatment - Southern Newsroom
Posted in Genetic Engineering
Comments Off on Researching the Future of Cancer Treatment – Southern Newsroom
Researchers Find Link Between Eye Disease And Degeneration Of The Brain – BioSpace
Posted: November 8, 2019 at 12:42 am
[2][2] https://www.sciencedirect.com/science/article/pii/S0092867417311315?via%3Dihub
Notes to Editor:
The research findings described in this media release can be found in the scientific journal JAMA, under the title, Association of genetic variants with primary open angle glaucoma among individuals with African ancestry by The Genetics of Glaucoma in people of African Descent (GGLAD) consortium.
The authors of the paper are:
Michael A Hauser, PhD1,2,3+; R Rand Allingham, MD2,3+; Tin Aung, MD, PhD3,4+; Carly J Van Der Heide, MD5+; Kent D Taylor, PhD6,7+; Jerome I Rotter, MD6+; Shih-Hsiu J Wang, MD, PhD 8+; Pieter WM Bonnemaijer, MD9,10+; Susan E Williams, MD11+; Sadiq M Abdullahi, MD12; Khaled K Abu-Amero, PhD13; Michael G. Anderson, MD5; Stephen Akafo MD14; Mahmoud B Alhassan MD12; Ifeoma Asimadu, MD15; Radha Ayyagari, PhD16; Saydou Bakayoko, MD17,18; Prisca Biangoup Nyamsi, MD19; Donald W Bowden, PhD20; William C Bromley, MD21; Donald L Budenz, MD22; Trevor R Carmichael, MD, PhD11; Pratap Challa, MD2; Yii-Der Ida Chen, PhD6,7, Chimdi M Chuka-Okosa, MD23; Jessica N Cooke Bailey, PhD24,25; Vital Paulino Costa, MD26; Dianne A Cruz, MS27; Harvey DuBiner, MD28; John F Ervin, BA29; Robert M Feldman, MD30; Miles Flamme-Wiese, BSE5; Douglas E Gaasterland, MD31; Sarah J Garnai, BS32; Christopher A Girkin, MD33; Nouhoum Guirou, MD17,18; Xiuqing Guo, PhD6; Jonathan L Haines, PhD24,25; Christopher J Hammond, MD34; Leon Herndon, MD2; Thomas J Hoffmann, PhD35,36; Christine M Hulette, MD8; Abba Hydara, MD37; Robert P Igo, Jr, PhD24; Eric Jorgenson, PhD38; Joyce Kabwe, MD39; Ngoy Janvier Kilangalanga, MD39; Nkiru Kizor-Akaraiwe, MD 15,40; Rachel W Kuchtey, MD, PhD41; Hasnaa Lamari, MD42; Zheng Li, MD, PhD43, Jeffrey M Liebmann, MD44; Yutao Liu, PhD45,46,47; Ruth JF Loos, PhD48,49; Monica B Melo, PhD50; Sayoko E Moroi, MD, PhD32; Joseph M Msosa, MD51; Robert F Mullins, PhD5; Girish Nadkarni, MD48,52; Abdoulaye Napo, MD17,18; Maggie C Y Ng, PhD20; Hugo Freire Nunes, PhD50; Ebenezer Obeng-Nyarkoh, MA21; Anthony Okeke, MD53; Suhanya Okeke, MD15,40; Olusegun Olaniyi, MD12; Olusola Olawoye, MD54; Mariana Borges Oliveira, MD50; Louise R Pasquale, MD55,56; Rodolfo A. Perez-Grossmann, MD57; Margaret A Pericak-Vance, PhD58; Xue Qin, PhD59; Michele Ramsay, PhD60; Serge Resnikoff, MD, PhD61,62; Julia E Richards, PhD32,63; Rui Barroso Schimiti, MD64; Kar Seng Sim, MS43; William E Sponsel, MD65,66; Paulo Vinicius Svidnicki, PhD50; Alberta AHJ Thiadens; MD, PhD9; Nkechinyere J Uche, MD23,40; Cornelia M van Duijn, PhD9; Jos Paulo Cabral de Vasconcellos, MD, PhD 26; Janey L Wiggs, MD, PhD 67,68; Linda M Zangwill, PhD16; Neil Risch, PhD35,36,38+; Dan Milea, MD, PhD3+,; Adeyinka Ashaye, MD54+,; Caroline CW Klaver, MD, PhD 9,69+,; Robert N Weinreb, MD16+,; Allison E Ashley Koch, PhD1+,; John H Fingert, MD, PhD 5+,; & Chiea Chuen Khor, MD, PhD 3,43+
1Department of Medicine, Duke University, Durham, NC, 2Department of Ophthalmology, Duke University, Durham, NC, 3Singapore Eye Research Institute, Singapore, 4Singapore National Eye Center, Singapore and Duke-NUS Medical School, Singapore, 5Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 6The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 7Department of Pediatrics, Harbor-University of California, Los Angeles Medical Center, Torrance, CA, 8Department of Pathology, Duke University, Durham, NC, 9Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, 10Rotterdam Eye Hospital, Rotterdam, The Netherlands, 11Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa, 12National Eye Centre, Kaduna, Nigeria, 13Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia, 14Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana, 15Department of Ophthalmology, ESUT Teaching Hospital Parklane, Enugu, Nigeria, 16Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, 17Institut d'Ophtalmologie Tropicale de l'Afrique, Bamako, Mali, 18Universit des sciences des techniques et des technologies de Bamako, Bamako, Mali, 19Service spcialis d'ophtalmologie, Hpital Militaire de Rgion No1 de Yaound, Yaound, Cameroun, 20Department of Biochemistry, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, 21Center for Human Genetics, Bar Harbor, ME, 22Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 23University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria, 24Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 25Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 26Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil, 27Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 28Clayton Eye Care Center Management, Inc., Marrow, GA, 29Kathleen Price Bryan Brain Bank and Biorepository, Department of Neurology, Duke University, Durham, NC, 30Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 31The Emmes Corporation, Rockville, MD, 32Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 33Department of Ophthalmology and Visual Sciences, University of Alabama Birmingham, Birmingham, AL, 34Section of Academic Ophthalmology, School of Life Course Sciences, FoLSM, King's College London, London, United Kingdom, 35Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 36Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 37Sheikh Zayed Regional Eye Care Centre, Kanifing, The Gambia, 38Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, 39Department of Ophthalmology, Saint Joseph Hospital, Kinshasa, Limete, Democratic Republic of the Congo, 40The Eye Specialists Hospital, Enugu, Nigeria, 41Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 42Clinique Spcialise en Ophtalmologie Mohammedia, Mohammedia, Morocco, 43Genome Institute of Singapore, Singapore, 44Bernard and Shirlee Brown Glaucoma Research Laboratory, Harkness Eye Institute, Columbia University Medical Center, New York, NY, 45Cellular Biology and Anatomy, Augusta University, Augusta, GA, 46James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, 47Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, 48The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 49The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 50Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil, 51Lions Sight-First Eye Hospital, Kamuzu Central Hospital, Lilongwe, Malawi, 52Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 53Nigerian Navy Reference Hospital, Ojo, Lagos, Nigeria, 54Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria, 55Icahn School of Medicine at Mount Sinai, Department of Ophthalmology, New York, NY, 56Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 57Instituto de Glaucoma y Catarata, Lima, Peru, 58John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 59Duke Molecular Physiology Institute, Duke University, Durham, NC, 60Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa, 61Brien Holden Vision Institute, Sydney, Australia, 62School of Optometry and Vision Science, University of New South Wales, Sydney, Australia, 63Department of Epidemiology, University of Michigan, Ann Arbor, MI, 64Hoftalon Hospital, Londrina, Brazil, 65San Antonio Eye Health, San Antonio, TX, 66Eyes of Africa, Child Legacy International (CLI) Hospital, Msundwe, Malawi, 67Harvard University Medical School, 68Massachusetts Eye and Ear Hospital, Boston, MA, 69Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
+ Drs. Hauser, Allingham, Aung, Van Der Heide, Taylor, Rotter, Wang, Bonnemaijer, Williams, Risch, Milea, Ashaye, Klaver, Weinreb, Ashley Koch, Fingert, and Khor contributed to the work equally.
Author contributions: Drs Hauser (mike.hauser@duke.edu) and Khor (khorcc@gis.a-star.edu.sg) had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis
For media queries and clarifications, please contact:
Lyn LaiOfficer, Office of Corporate CommunicationsGenome Institute of Singapore, A*STARTel: +65 6808 8258Email: laiy@gis.a-star.edu.sg
Ravi ChandranCorporate CommunicationsSingapore National Eye CentreTel: +65 8121 8569Email: ravi.chandran@snec.com.sg
About A*STARs Genome Institute of Singapore (GIS)
The Genome Institute of Singapore (GIS) is an institute of the Agency for Science, Technology and Research (A*STAR). It has a global vision that seeks to use genomic sciences to achieve extraordinary improvements in human health and public prosperity. Established in 2000 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards academic, economic and societal impact.
The key research areas at the GIS include Human Genetics, Infectious Diseases, Cancer Therapeutics and Stratified Oncology, Stem Cell and Regenerative Biology, Cancer Stem Cell Biology, Computational and Systems Biology, and Translational Research.
The genomics infrastructure at the GIS is utilised to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.
For more information about GIS, please visit http://www.a-star.edu.sg/gis.
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that spearheads economic oriented research to advance scientific discovery and develop innovative technology. Through open innovation, we collaborate with our partners in both the public and private sectors to benefit society.
As a Science and Technology Organisation, A*STAR bridges the gap between academia and industry. Our research creates economic growth and jobs for Singapore, and enhances lives by contributing to societal benefits such as improving outcomes in healthcare, urban living, and sustainability.
We play a key role in nurturing and developing a diversity of talent and leaders in our Agency and research entities, the wider research community and industry. A*STARs R&D activities span biomedical sciences and physical sciences and engineering, with research entities primarily located in Biopolis and Fusionopolis. For ongoing news, visit http://www.a-star.edu.sg/.
About Singapore Eye Research Institute (SERI)
Established in 1997, SERI is Singapores national research institute for ophthalmic and vision research. SERIs mission is to conduct high impact eye research with the aim to prevent blindness, low vision and major eye diseases common to Singaporeans and Asians. SERI has grown from a founding team of five in 1997 to a faculty of 220, encompassing clinician scientists, scientists, research fellows, PhD students and support staff. This makes SERI one of the largest research institutes in Singapore and the largest eye research institute in Asia-Pacific. In addition, SERI has over 250 adjunct faculties from various eye departments, biomedical institutes and tertiary centres in Singapore.
SERI has amassed an impressive array of more than 3,585 scientific papers as of July 2019, and has secured more than $314 million in external peer-reviewed competitive grants. To date, SERIs faculty has been awarded more than 568 national and international prizes and filed more than 130 patents. Serving as the research institute of the Singapore National Eye Centre and affiliated to the Duke-NUS Medical School, National University of Singapore, SERI undertakes vision research in collaboration with local clinical ophthalmic centres and biomedical research institutions, as well as major eye centres and research institutes throughout the world. Today, SERI is recognized as a pioneering centre for high quality eye research in Asia, with breakthrough discoveries that has translated to significant paradigm shift in eye care delivery. For more information, visit http://www.seri.com.sg
About Singapore National Eye Centre (SNEC)
Singapore National Eye Centre was incorporated in 1989 and commenced operations in 1990. It is the designated national centre within the public sector healthcare network, and spearheads and coordinates the provision of specialised ophthalmological services with emphasis on quality education and research. Since its opening in 1990, SNEC has achieved rapid growth and currently manages an annual workload of 400,000 outpatient visits and 40,000 major eye surgeries and lasers.
Ten subspecialties in Cataract and Comprehensive Ophthalmology, Corneal and External Eye Disease, Glaucoma, Neuro-Ophthalmology, Oculoplastics, Pediatric Ophthalmology and Strabismus, Refractive Surgery, Ocular Inflammation and Immunology, Medical Retina and Surgical Retina have been established to provide a full range of eye treatments from comprehensive to tertiary levels for the entire spectrum of eye conditions.
SNEC was accorded the Excellence for Singapore Award in 2003 for achieving excellence in the area of Ophthalmology, thrusting Singapore into international prominence. In 2006, SNEC received the first Minister for Health Award for public health. Clinician scientists from Singapore National Eye Centre and Singapore Eye Research Institute were awarded the prestigious President's Science and Technology Award in 2009, 2010 and 2014 for their outstanding contributions in translational, clinical and epidemiological research in cornea, retina and glaucoma. Visit us at http://www.snec.com.sg.
Read the original post:
Researchers Find Link Between Eye Disease And Degeneration Of The Brain - BioSpace
Posted in Genetic Engineering
Comments Off on Researchers Find Link Between Eye Disease And Degeneration Of The Brain – BioSpace
Glowing with the flow – Harvard School of Engineering and Applied Sciences
Posted: November 8, 2019 at 12:42 am
In the battle against heart disease, more than 400,000 coronary artery bypass grafting surgeries are performed in the U.S. each year.
While veins from a patients leg are often used in the surgical procedure, tissue-engineered vascular grafts (TEVG), which are grown outside the body using a patients endothelial cells, are proving to be an effective and increasingly popular technique.
The most common reasons for TEVG failure are conditions like blood clots, narrowing of the blood vessels, and atherosclerosis. But what if these grafts could be engineered to detect and even prevent those ailments from occurring?
A team of Harvard John A. Paulson School of Engineering and Applied Sciences students set out to answer that question for their project in this years International Genetically Engineered Machine Competition. The project, dubbed FlowGlo, seeks to use receptors that exist within the walls of human blood vessels to detect shear stress, a warning sign that a blood vessel may be narrowing.
Shear stress is important to detect because it is a marker of a lot of different cardiovascular diseases. When there is narrowing of a blood vessel due to a blood clot, shear stress jumps exponentially, maybe up to 10 times its normal level, said Teagan Stedman, S.B. 22, a bioengineering concentrator. Our idea is to link the activation of these receptors due to some level of shear stress to a modular response.
Shear stress is a function of viscosity and how rapidly different layers of fluid are flowing over each other through a blood vessel. Because the walls of the vessel must move and roll with the strain of blood flow, receptors naturally activate at different levels of shear stress.
For instance, when shear stress rises above 4 Pascals, channels open in one specific protein receptor, Piezo1, and calcium ions enter the cell, signaling the activation. The students engineered Piezo 1 and two other protein receptors to present different colored fluorescent proteins when that activation occurs.
Down the road, instead of using a fluorescent protein, you could possibly swap it out so the cells secrete some kind of clot busting protein to break up the clot and treat it on site, said Patrick Dickinson, A.B. 22, an applied math concentrator. Current clot-busting medication is delivered through an IV, and it is system-wide and much less targeted, so there are greater risks for side effects. We think this could be a more targeted treatment in the long run.
As part of their project, the team gathered feedback from Elena Aikawa, Professor of Medicine at the Harvard Medical School and Director of the Vascular Biology Program at Brigham and Womens Hospital, who studies tissue-engineered vascular grafts. They also conducted a survey to better understand public perception of genetic engineering ethics, since their technique would require engineered cells to be implanted in the human body.
As they gathered qualitative data, they worked long hours in the lab on intricate experiments. Since beginning the project this summer, the teammates overcame many challenges caused by the difficulty of cloning cells. Relying on the support of their mentor, Timothy Chang, a postdoctoral fellow in the lab of Pamela Silver at the Harvard Medical School, they brainstormed, troubleshot, and learned volumes about synthetic biology along the way.
I learned that biology is messy, Dickinson said. In a lab setting, there is a lot that is hard to predict. We certainly encountered a lot of frustration and stress along the way, but it was a good window into what research really is.
Now that the competition has concluded, the teams work will be included in the iGEM Registry of Standard Biological Parts, a repository of genetic parts that can be mixed and matched to build synthetic biology devices and systems.
For Rahel Imru, it is gratifying to know that future iGEM teams and research groups from around the world could someday build off the research she and her peers have done.
While the weeks leading up to the competition were a whirlwind, the experience was well worth the effort, said Imru, A.B. 21, a biomedical engineering concentrator.
This was my first lab experience, so I definitely learned a lot, she said. I look back and see how much weve grown. Maybe we didnt get all the data and results we wanted to by the end, but for the size of our team and the time that we had, seeing what we are able to accomplish is especially rewarding.
Continued here:
Glowing with the flow - Harvard School of Engineering and Applied Sciences
Posted in Genetic Engineering
Comments Off on Glowing with the flow – Harvard School of Engineering and Applied Sciences
How misguided regulation has kept a GMO ‘superfood’ off the market: Q&A with Golden Rice author Ed Regis – Genetic Literacy Project
Posted: November 8, 2019 at 12:42 am
For us in the West, the ferocious debate over genetic engineering isnt a matter of life and death. We argue about the safety of Impossible Burgers and the potential risks associated with new breeding techniques like CRISPR gene editing, but nobody will go hungry or die of malnutrition pending the outcome of these arguments. Sadly, the same isnt true in the developing world.
The tragic tale of global vitamin A deficiency (VAD) and the life-saving (but still unavailable) solution known as Golden Rice has been told millions of times, 246 million according to Google. But to briefly recap: roughly 250 million people, mostly preschool children in southeast Asia, are vitamin A deficient. Between 250,000 and 500,000 of them go blind every yearand half die within 12 months of losing their sight. Genetically engineered Golden Rice, fortified with the vitamin A precursor beta carotene, could alleviate much of this suffering without otherwise harming human health or the environment, according to a mountain of studies.
So why are so many people still dying of a preventable condition?
Thats the rather frustrating part of the story science writer Ed Regis examines in his new book Golden Rice: The Imperiled Birth of a GMO Superfood. In just over 200 pages, Regis gives a crash course on genetic engineering and explains the messy history of Golden Rice, disabusing the reader of many popular myths along the way. Environmental activist group Greenpeace, for example, is often identified in the press as the primary obstacle to releasing Golden Rice. Despite all its lobbying, however, the NGO has had a relatively minor impact on the crops development.
Instead of pointing the finger at Greenpeace, Regis says the blame lies mostly with overly cautious governments, many of which regulate GMOs as if they were biological weapons. Hoping to avoid the unintended (and so far undiscovered) consequences of growing genetically engineered crops, regulators unintentionally rob people of their eyesight and often their lives.
In a Q&A session with Genetic Literacy Project editor Cameron English, Regis offers a birds eye view of the ongoing controversy and highlights some lesser-known but still significant aspects of the Golden Rice story.
Cameron English: Golden Rice seems simple conceptually. As you point out, scientists just had to direct the plants existing biochemical machinery to synthesize beta carotene in the rice grain, as it does in the rest of the plant. Why did this prove so challenging to achieve in the lab?
For one thing, it had never been done beforerewriting a plants genes to make it express a trait that it normally did not have. Nobody was sure that it was even possible. There were different ways of accomplishing that goal, and there were a lot of technical difficulties in doing the actual hands-on lab work, and getting everything lined up correctly at the genetic level so that beta carotene would appear in the rice grain. There were incredible numbers of false starts, dead ends, and unforeseen technical problems to overcome, and it took years of trial and error for the inventors to get it all working properly. It was just a hard problem, both scientifically, in theory, and technologically, in practice.
CE: You write that Golden Rice could make VAD a thing of the past in developing Asian countries. Why is this biotech crop a better solution than alternative proposals, like distributing vitamin supplements?
Supplement programs have been tried, and of course they do some good, but the problem is that such programs require a substantial and permanent infrastructure. They require a supply chain, personnel to distribute the stuff, record keeping, and the like, plus sufficient and continuous funding to keep it all going across time. Also, there is no way to guarantee that supplements will reach every last person who needs them.
Golden Rice, by contrast, requires none of that. The seeds will be given at no cost to small landowner farmers, and the rice will be no more expensive to consumers than plain and ordinary white rice. Plus, theres the principle that Plants reproduce, pills dont. Once Golden Rice is introduced, its a system that just goes of itself. The product replaces what people already eat on a daily basis with something that could save their sight and lives in the process.
CE: Tell us the story about night blindness you recount from Catherine Prices book. Does that anecdote underscore the problem that Golden Rice could solve?
We in the rich, developed Western countries know practically nothing about [VAD]. We have virtually no experience of it because we get the micronutrients we need from ordinary foods and vitamin supplements. One of the first symptoms of vitamin A deficiency is night blindness, which means pretty much what it says. But to convey this as an actual, lived experience I quote from Catherine Prices excellent book, Vitamania, in which she describes what happens to vitamin A deficient children in poor, developing countries.
While they lead an active life during the day, they gradually withdraw and stop playing as twilight approaches. With the fall of night, they basically just sit in place and wait for help, because they have lost their sight in darkness, and their life grinds to a halt. In countries such as the Philippines, where people eat rice as a staple, at every meal, Golden Rice could prevent this from happening, and even reverse the symptoms in children already affected by VAD.
CE: You point out that Greenpeace struggled with a moral dilemma before forcefully coming out against Golden Rice. Tells about that situation.
In 2001, the year after the Golden Rice protype was announced in Science, a Greenpeace official by the name of Benedikt Haerlin visited Ingo Potrykus, the co-inventor, at his home in Switzerland. Haerlin discussed whether or not to make the provitamin A rice an exception to Greenpeaces otherwise absolute and rigid opposition to any and all genetically engineered foods. He had initially acknowledged that there was a moral difference between GMOs that were merely agriculturally superiorin being pesticide- or herbicide-resistant, for exampleand a GMO that was so nutritionally beneficial that it actually had the potential to save peoples lives and sight.
But apparently that distinction made no difference because in the end both Haerlin himself and Greenpeace as an organization soon took the view that Golden Rice had to be opposed, even stopped, no matter what its possible health benefits might be.
CE: Greenpeace also claimed that poverty and insufficiently diverse diet were the root causes of vitamin A deficiency. Therefore, they said, developing biofortified crops was misguided. That sounds like a reasonable argument, so whats wrong with Greenpeaces analysis here?
This is like arguing that until we find a cure for cancer we should not treat patients by means of surgery, chemotherapy or radiation therapy. This is totally illogical on the face of it. And the same is true of the argument that since poverty is the cause of the problem that therefore the only solution is to eradicate it. Everyones in favor of eradicating poverty, but there are things we can do in the interim while advancing that far-off and utopian goal, which arguably will take some time to accomplish. Biofortified Golden Rice, along with supplementation and a more diverse diet, can help prevent vitamin A deficiency. If a solution, or a set of solutions, is available, lets implement them while also striving to reduce poverty. Both can be done together, you dont have to choose between one and the other.
CE: Many people believe that Greenpeace and other anti-GMO groups are the main roadblock to getting Golden Rice into the hands of farmers. But you write that the activists dont deserve that much credit. What else has kept Golden Rice off the market?
Greenpeaces long history of anti-GMO rhetoric, diatribes, street demonstrations, protests, dressing up in monster crop costumes, and all the rest of it actually did nothing to halt research and development of Golden Rice. There are two reasons why it took 20 years to bring Golden Rice to the point where it won approval for release in four countries: Australia, New Zealand, the United States and Canada. The first is that it takes a long time to breed increasingly higher concentrations of beta carotene (or any other valuable trait) into new strains of rice (or any other plant). Plant breeding is not like a chemistry experiment that you can repeat immediately as many times as you want. Rather, plant growth is an inherently slow and glacial process that cant be [sped] up meaningfully except under certain special laboratory conditions that are expensive and hard to foster and sustain.
The second reason is the retarding force of government regulations on GMO crop development. Those regulations, which cover plant breeding, experimentation, and field trials, among other things, are so oppressively burdensome and costly that they make compliance inordinately time-consuming and expensive.
CE: Whats the Cartagena Protocol and how has it affected the development of Golden Rice?
The Cartagena Protocol was an international agreement, sponsored and developed by the United Nations, which aimed to ensure the safe handling, transport and use of living modified organisms (LMOs) resulting from modern biotechnology that may have adverse effects on biological diversity, taking into account also risks to human health.
On the face of it, this precautionary approach is plausible, even innocuous. In actual practice, the protocol amounts to a sweeping set of guidelines, requirements, and procedures pertaining to GMOs that were legally binding on the nations that were parties to the agreement, coupled with a set of mechanisms to enforce and ensure compliance. These oppressive and stifling rules and regulations soon turned into a nightmare for GMO developers, and did more than anything else to slow down the progress of Golden Rice.
Ingo Potrykus, the co-inventor of Golden Rice, has estimated that adherence to government regulations on GMOs resulting from the Cartagena Protocol and the precautionary principle, caused a delay of up to ten years in the development of the final product. That is a tragedy, caused by the very governments that are supposed to protect our health, but in this case did the opposite.
CE: Once a prototype of Golden Rice was developed, the prestigious science journal Nature refused to publish the study documenting the successful experiment. Why do you think Nature reacted that way, and what does it tell us about the cultural climate during the period when Golden Rice was first developed?
Well, I cant speak for the Nature editors, so in this case youre asking the wrong person. In my book, I quote what Ingo Potrykus had to say about the matter, which was:
The Nature editor did not even consider it worth showing the manuscript to a referee, and sent it back immediately. Even supportive letters from famous European scientists did not help. From other publications in Nature at that time we got the impression that Nature was more interested in cases which would rather question instead of support the value of genetic engineering technology.
And I will leave it at that.
CE: The classic objection to GMOs, including Golden Rice, is that theyre unnatural. Would you summarize your response to that claim in the book?
In the book I show that in fact most of the foods that we eat are unnatural in the sense that they are products of years of artificial selection, often using techniques other than conventional crossbreeding.
In particular I cite the example of Rio Red grapefruit, which is sold all over America and is not considered a GMO, despite the fact that its genes have been scrambled over the years by artificial means including radiation mutation breeding, in the form of thermal neutron (thN) bombardment, which was done at the Brookhaven National Laboratory. This highly mutant and genetically modified grapefruit variety is on file at the Joint FAO/IAEA Mutant Variety Database, at the headquarters of the International Atomic Energy Agency (IAEA), in Vienna, Austria. You can hardly get more unnatural than Rio Red grapefruit.
By contrast, there is a plant whose roots in the ground are potatoes, but whose above ground fruit are tomatoes. This is the so-called TomTato, and was created by exclusively conventional means, i.e., grafting, which goes back thousands of years. But which of the two is more unnaturalthe Rio Red grapefruit or the freakish TomTato? And why does it matter?
CE: There are a lot of transgenic crops being developed, so why did Golden Rice become such a lightening rod for controversy in the GMO debate?
Because if it gets approved, works, and ends up saving lives and sight, it will lead to greater acceptance of GMO foods in general, which is the very last thing that GMO opponents want. That cannot be said of any other GMO.
CE: Bangladesh appears poised to release Golden Rice before the end of 2019. Are you hopeful that farmers will soon have access to it, or do you foresee more political and regulatory obstacles getting in the way?
In the words of Jack Reacher (the hero of Lee Childs crime novels), Hope for the best, prepare for the worst. Seeing what has happened to Golden Rice over the course of 20 years, nothing would surprise me going forward. I would sort of be more surprised if Bangladesh approved it and it was grown and people ate it than if it were banned outright in the countries where its needed most. That is the most infuriating part of the whole story.
Ed Regisis a science writer whose work has appeared inScientific American,Harpers,Wired,Nature,Discover, and theNew York Times,among other publications. He is the author of ten books, includingWhat Is Life? Investigating the Nature of Life in the Age of Synthetic Biology.
Cameron J. English is the GLPs senior agricultural genetics and special projects editor. He co-hosts the Biotech Facts and Fallacies podcast. Follow him on Twitter @camjenglish
Read the original here:
How misguided regulation has kept a GMO 'superfood' off the market: Q&A with Golden Rice author Ed Regis - Genetic Literacy Project
Posted in Genetic Engineering
Comments Off on How misguided regulation has kept a GMO ‘superfood’ off the market: Q&A with Golden Rice author Ed Regis – Genetic Literacy Project