Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetic Engineering
Poseida Therapeutics Appoints Kerry Ingalls as Chief Operating Officer – PRNewswire
Posted: October 10, 2019 at 7:52 pm
SAN DIEGO, Oct. 10, 2019 /PRNewswire/ -- Poseida Therapeutics, Inc., a clinical-stage biopharmaceutical company leveraging proprietary non-viral gene engineering technologies to create life-saving therapeutics, today announced Kerry Ingalls has joined the company as Chief Operating Officer. In this role, Ingalls will work closely with Eric Ostertag, M.D., Ph.D., Chief Executive Officer of Poseida, managing global manufacturing and operations for the Company.
"Kerry brings strong leadership in building teams that consistently deliver best-in-class results, making him a powerful addition to the Poseida senior leadership team," said Ostertag. "We welcome his robust operational expertise and experience that will meaningfully contribute to Poseida's innovative cell and gene editing technologies and plans for the future of our company."
Ingalls brings a long history of operating experience in pharmaceuticals and biotechnology. Most recently he was charged with oversight of clinical and commercial manufacturing at Amgen's headquarters location in Thousand Oaks, California. Previously, Ingalls was responsible for Amgen's largest manufacturing site, which employed 3,000 personnel in Juncos, Puerto Rico. He successfully led monumental crisis recovery efforts at this facility after being impacted by Hurricane Maria, restoring full site operations within five weeks, which provided valuable lessons to other pharmaceutical companies. Ingalls has provided oversight and leadership at multiple Amgen sites globally including US, Ireland and Puerto Rico.
In addition, Ingalls has extensive professional background and training in the United States Navy spanning 30 years, including advising senior defense leaders on critical national security issues and leading elite deployed submarine operations. He received a Master of Arts in International Law and Diplomacy from Tufts University as well as a Bachelor of Science in Mechanical Engineering from the United States Naval Academy.
"The work being done at Poseida is truly remarkable and life-changing as the company redefines the next wave of innovation in cancer and other diseases," said Ingalls. "I am incredibly grateful, excited and energized to help lead this company during its next chapter of growth."
About Poseida Therapeutics, Inc.Poseida Therapeutics is a clinical-stage biotechnology company translating best-in-class cell and gene therapies into lifesaving treatments for patients with high unmet medical need. The company is developing a wholly-owned pipeline of autologous and allogeneic CAR-T product candidates, and gene therapies for orphan genetic diseases. Poseida has assembled a suite of industry-leading gene editing technologies, including the piggyBacDNA Modification System, Cas-CLOVER and TAL-CLOVER site-specific nucleases and Footprint-FreeGene Editing. For more information, visitwww.poseida.com.
SOURCE Poseida Therapeutics, Inc.
Read more from the original source:
Poseida Therapeutics Appoints Kerry Ingalls as Chief Operating Officer - PRNewswire
Posted in Genetic Engineering
Comments Off on Poseida Therapeutics Appoints Kerry Ingalls as Chief Operating Officer – PRNewswire
Global Cell Therapy Technologies, Companies & Markets During the Forecast Period, 2018-2028 – ResearchAndMarkets.com – Business Wire
Posted: October 10, 2019 at 7:52 pm
DUBLIN--(BUSINESS WIRE)--The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.
This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. The role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.
Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.
Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.
Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.
Regulatory and ethical issues involving cell therapy are important and are discussed. The current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.
The cell-based markets was analyzed for 2018 and projected to 2028. The markets are analyzed according to therapeutic categories, technologies, and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer, and cardiovascular disorders. Skin and soft tissue repair, as well as diabetes mellitus, will be other major markets.
The report contains information on the following:
Key Topics Covered:
Part I: Technologies, Ethics & Regulations
Executive Summary
1. Introduction to Cell Therapy
2. Cell Therapy Technologies
3. Stem Cells
4. Clinical Applications of Cell Therapy
5. Cell Therapy for Cardiovascular Disorders
6. Cell Therapy for Cancer.
7. Cell Therapy for Neurological Disorders
8. Ethical, Legal and Political Aspects of Cell therapy
9. Safety and Regulatory Aspects of Cell Therapy
Part II: Markets, Companies & Academic Institutions
10. Markets and Future Prospects for Cell Therapy
11. Companies Involved in Cell Therapy
12. Academic Institutions
13. References
For more information about this report visit https://www.researchandmarkets.com/r/9q5tz1
Posted in Genetic Engineering
Comments Off on Global Cell Therapy Technologies, Companies & Markets During the Forecast Period, 2018-2028 – ResearchAndMarkets.com – Business Wire
NSF funds research on nitrogen fixation | The Source – Washington University in St. Louis Newsroom
Posted: October 10, 2019 at 7:52 pm
The word agriculture conjures up an array of images: endless fields of corn stalks, amber waves of grain, the deserts of Africa Africa? While thoughts of the African landscape may tend to invoke a dry and empty countryside, scientists at Washington University in St. Louis are working to develop self-sustaining plants that could eventually turn the Sahara into a sea of green.
Himadri B. Pakrasi, the Glassberg Greensfelder Distinguished University Professor in the department of biology in Arts & Sciences and director of the International Center for Energy, Environment and Sustainability (InCEES), and Costas D. Maranas, professor of chemical engineering at Penn State, were recently awarded a $1.2-million grant from the National Science Foundation for their collaborative study of systems biology. Specifically, the Pakrasi and Maranas labs hope to decode the inner workings of cyanobacteria for the ultimate purpose of producing nitrogen-fixing crop plants.
For more than a century, farmers around the world have relied heavily on chemical fertilizers to help grow their plants and crops. Fertilizers contain nitrogen, an essential building block for all life forms to grow, and an element that is abundant in the earths atmosphere. However, creating man-made fertilizers is an energy intensive process that contributes to greenhouse gases and leads to run-off issues that severely damage the environment. A solution to this problem is to engineer plants to absorb nitrogen from the atmosphere and convert it into fertilizer, a process known as nitrogen fixation, so that the plants would become self-sufficient.
If you have engineered seeds that you give to an African farmer, that farmer can then plant the seeds, which gives rise to a field of crops that would not need chemically synthesized fertilizer to grow, Pakrasi said. This has huge agricultural implications not just for the affluent, Western world,but to the areas hardest hit by climate change.
Easier said than done. Nitrogen fixation cannot take place in the cells of most photosynthetic organisms plants that convert sunlight into energy because when plants are undergoing photosynthesis, a byproduct is oxygen. And oxygen is like a poison when it mixes with nitrogenease, the enzyme that enables nitrogen fixation. However, there is an organism that can accommodate both photosynthesis and nitrogen fixation in the same cell: cyanobacteria.
Just like human beings, cyanobacteria have a robust circadian rhythm a 24-hour biological cycle during which they photosynthesize in the day and fix nitrogen at night. Scientists have long studied these bluish-green creatures, but do not have a detailed understanding of how circadian rhythms allow cyanobacteria to adjust its metabolism for both nitrogen fixation and photosynthesis to take place in the same cell. With advances in genetic modification tools, it is now possible to probe deeper into the details of this process.
There are still missing parts of the cyanobacterial puzzle, Pakrasi said. The only way to identify what those missing parts are is to actually go into the cyanobacterium and tease apart the machinery. And thats what this grant will allow us to do.
In other words, the Pakrasi lab will perform a series of genetic modifications to the cyanobacteria and generate new data. The Maranas lab will then take the data and develop a predictive model for the inner working of the cyanobacterium. This iterative process will take some time, but the research is imperative to combating the climate changes facing the planet, Pakrasi said.
Its kind of like building an electric pickup truck, Pakrasi said. How do you go from a gasoline fueled car to a Tesla pickup truck? The basic technology for making a gas fueled car is already known, but were moving to a new paradigm of production in the form of a Tesla truck. Once we figure it out, we can deploy the new technology to our partners all over the world.
Read more from the original source:
NSF funds research on nitrogen fixation | The Source - Washington University in St. Louis Newsroom
Posted in Genetic Engineering
Comments Off on NSF funds research on nitrogen fixation | The Source – Washington University in St. Louis Newsroom
Genetic Engineering | Talking Glossary of Genetic Terms …
Posted: September 7, 2019 at 4:32 pm
Genetic engineering is a term that was first introduced into our language in the 1970s to describe the emerging field of recombinant DNA technology and some of the things that were going on. As most people who read textbooks and things know, recombinant DNA technology started with pretty simple things--cloning very small pieces of DNA and growing them in bacteria--and has evolved to an enormous field where whole genomes can be cloned and moved from cell to cell, to cell using variations of techniques that all would come under genetic engineering as a very broad definition. To me, genetic engineering, broadly defined, means that you are taking pieces of DNA and combining them with other pieces of DNA. [This] doesn't really happen in nature, but is something that you engineer in your own laboratory and test tubes. And then taking what you have engineered and propagating that in any number of different organisms that range from bacterial cells to yeast cells, to plants and animals. So while there isn't a precise definition of genetic engineering, I think it more defines an entire field of recombinant DNA technology, genomics, and genetics in the 2000s.
Read more:
Genetic Engineering | Talking Glossary of Genetic Terms ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering | Talking Glossary of Genetic Terms …
Genetic Engineering: Career Scope, Courses & Job Scenario
Posted: May 13, 2019 at 3:56 pm
Today, Genetic Engineering is one of the top career choices made by students in engineering courses.
What is Genetic Engineering?
Genetic Engineering is also referred as genetic modification. It is a process of manually adding new DNA to a living organism through artificial methods.
Genetic Engineering is a method of physically removing a gene from one organism and inserting it to another and giving it the ability to express the qualities given by that gene.
Some examples of genetic engineering are Faster-growing trees, Bigger, longer-lasting tomatoes, Glow in the dark cats, Golden rice, Plants that fight pollution, banana vaccine, etc.
Genetic Engineering is that field which is related to genes & DNA. Genetic engineering is used by scientists to improve or modify the traits of an individual organism.
Want to know more about it?
An organism which is generated by applying genetic engineering is called as genetically modified organism (GMO). The first GMO were Bacteria generated in 1973 and GM mice in 1974.
The techniques of genetic engineering have been applied in various fields such as research, agriculture, industrial biotechnology, and medicine. Genetic engineering focuses on biochemistry, cell biology, molecular biology, evolutionary biology, and medical genetics.
The term genetic engineering was firstly used by Jack Williamson in Dragons Island a science fiction novel. In 1973 Paul Berg father of genetic engineering invents a method of joining DNA from two different organisms.
Genetic engineering is used in medicine, research, industry and agriculture and can also be used on a wide range of plants, animals and micro organisms.
Medicine Genetic engineering in the field of medicine is used in manufacturing drugs. The concepts of genetic engineering have been applied in doing laboratory research and in gene therapy.
Agriculture In Agriculture, genetic engineering is used to create genetically modified crops or genetically modified organisms in order to produce genetically modified foods.
Research Scientists uses the genetic engineering in their various researches. Genes from various organisms are converted into bacteria for storage and modification, creating genetically modified bacteria.
What are the courses in this field?
You may also check:
Courses After 12th Science
Genetic engineering is a specialization of biotechnology. It can also be studied as a separate specialization. There are many undergraduate and postgraduate courses available in this field. Some most sought courses opted by students for genetic engineering are listed below:
Bachelor Courses:
Master Courses:
Here, we are mentioning some specializations available in genetic engineering. These are as follows:
Also Check:
Courses After 12th
For admission in UG courses, students must have passed 12th Science exam. In India, most of the colleges give admission on the basis of ranks secured in JEE Main 2019. Joint Entrance Examination Main (JEE Main) is usually conducted in the month of April. Some institutions also provides admission on merit basis. For IITs, it is necessary for students to qualify JEE Advanced 2019after clearing JEE Main.
For admission in PG courses, students should hold a bachelor degree in genetic engineering from any recognized university. Mostly GATE 2019score card will be considered for admission in pg courses. On the basis of GATE scores, candidates can apply for admission in Master of Engineering/ Master of Technology courses.
Top colleges which offers various courses in genetic engineering:
Today, demand for genetic engineers is rising in India as well as abroad.
After pursuing courses in genetic engineering, you can work in medical and pharmaceutical industries, research and development departments, agricultural sector, genetic engineering firms, chemical companies, etc. A genetic engineer can work in both private and public sectors.
Genetic engineering graduates are required in government as well as private organizations.
There is a great growth of genetic engineering in India as well as in abroad. With the increasing number of biotech firms in India, the future scope in genetic engineering is good.
The graduates of this field can also opt teaching as a career. Numerous colleges are introducing genetic engineering course in their colleges and for that they recruit professionals of this field.
To become a genetic engineering research scientist, you need a doctoral degree in a biological science. The genetic engineering research scientist can become project leaders or administrators of entire research programs.
Responsibilities of a genetic engineer:
The National Institute of Immunology, New Delhi
The Centre for DNA Fingerprint and Diagnostics, Hyderabad
The Institute of Genomic and Integrative Biology, Delhi
Biochemical Engineering Research and Process Development Centre, Chandigarh
How much salary should I expect as a genetic engineering?
Salary packages of a genetic engineer are based on qualification, experience, working area, etc. You can get a handsome salary package after gaining the sufficient experience in this field.
The average salary of a well-qualified genetic engineer is Rs. 20,000 to 35,000 per month. They can earn more in the private sector as compared to the public sector.
Which are the best books for genetic Engineering?
Here we have listed some books which will help you throughout your studies:
For any queries regarding Genetic Engineering, you may leave your comments below.
Read more:
Genetic Engineering: Career Scope, Courses & Job Scenario
Posted in Genetic Engineering
Comments Off on Genetic Engineering: Career Scope, Courses & Job Scenario
Human Genetic Engineering – Probe Ministries
Posted: May 13, 2019 at 3:56 pm
Although much has occurred in this field since this article was written in 2000, the questions addressed by Dr. Bohlin are still timely and relevant. Is manipulating our genetic code simply a tool or does it deal with deeper issues? Dealing with genetic engineering must be done within the context of the broader ethical and theological issues involved. In the article, Dr. Bohlin provides an excellent summary driven from his biblical worldview perspective.
Genetic technology harbors the potential to change the human species forever. The soon to be completed Human Genome Project will empower genetic scientists with a human biological instruction book. The genes in all our cells contain the code for proteins that provide the structure and function to all our tissues and organs. Knowing this complete code will open new horizons for treating and perhaps curing diseases that have remained mysteries for millennia. But along with the commendable and compassionate use of genetic technology comes the specter of both shadowy purposes and malevolent aims.
For some, the potential for misuse is reason enough for closing the door completelythe benefits just arent worth the risks. In this article, Id like to explore the application of genetic technology to human beings and apply biblical wisdom to the eventual ethical quagmires that are not very far away. In this section well investigate the various ways humans can be engineered.
Since we have introduced foreign genes into the embryos of mice, cows, sheep, and pigs for years, theres no technological reason to suggest that it cant be done in humans too. Currently, there are two ways of pursuing gene transfer. One is simply to attempt to alleviate the symptoms of a genetic disease. This entails gene therapy, attempting to transfer the normal gene into only those tissues most affected by the disease. For instance, bronchial infections are the major cause of early death for patients with cystic fibrosis (CF). The lungs of CF patients produce thick mucus that provides a great growth medium for bacteria and viruses. If the normal gene can be inserted in to the cells of the lungs, perhaps both the quality and quantity of their life can be enhanced. But this is not a complete cure and they will still pass the CF gene on to their children.
In order to cure a genetic illness, the defective gene must be replaced throughout the body. If the genetic defect is detected in an early embryo, its possible to add the gene at this stage, allowing the normal gene to be present in all tissues including reproductive tissues. This technique has been used to add foreign genes to mice, sheep, pigs, and cows.
However, at present, no laboratory is known to be attempting this well-developed technology in humans. Princeton molecular biologist Lee Silver offers two reasons.{1} First, even in animals, it only works 50% of the time. Second, even when successful, about 5% of the time, the new gene gets placed in the middle of an existing gene, creating a new mutation. Currently these odds are not acceptable to scientists and especially potential clients hoping for genetic engineering of their offspring. But these are only problems of technique. Its reasonable to assume that these difficulties can be overcome with further research.
The primary use for human genetic engineering concerns the curing of genetic disease. But even this should be approached cautiously. Certainly within a Christian worldview, relieving suffering wherever possible is to walk in Jesus footsteps. But what diseases? How far should our ability to interfere in life be allowed to go? So far gene therapy is primarily tested for debilitating and ultimately fatal diseases such as cystic fibrosis.
The first gene therapy trial in humans corrected a life-threatening immune disorder in a two-year-old girl who, now ten years later, is doing well. The gene therapy required dozens of applications but has saved the family from a $60,000 per year bill for necessary drug treatment without the gene therapy.{2} Recently, sixteen heart disease patients, who were literally waiting for death, received a solution containing copies of a gene that triggers blood vessel growth by injection straight into the heart. By growing new blood vessels around clogged arteries, all sixteen showed improvement and six were completely relieved of pain.
In each of these cases, gene therapy was performed as a last resort for a fatal condition. This seems to easily fall within the medical boundaries of seeking to cure while at the same time causing no harm. The problem will arise when gene therapy will be sought to alleviate a condition that is less than life-threatening and perhaps considered by some to simply be one of lifes inconveniences, such as a gene that may offer resistance to AIDS or may enhance memory. Such genes are known now and many are suggesting that these goals will and should be available for gene therapy.
The most troublesome aspect of gene therapy has been determining the best method of delivering the gene to the right cells and enticing them to incorporate the gene into the cells chromosomes. Most researchers have used crippled forms of viruses that naturally incorporate their genes into cells. The entire field of gene therapy was dealt a severe setback in September 1999 upon the death of Jesse Gelsinger who had undergone gene therapy for an inherited enzyme deficiency at the University of Pennsylvania.{3} Jesse apparently suffered a severe immune reaction and died four days after being injected with the engineered virus.
The same virus vector had been used safely in thousands of other trials, but in this case, after releasing stacks of clinical data and answering questions for two days, the researchers didnt fully understand what had gone wrong.{4} Other institutions were also found to have failed to file immediate reports as required of serious adverse events in their trials, prompting a congressional review.{5} All this should indicate that the answers to the technical problems of gene therapy have not been answered and progress will be slowed as guidelines and reporting procedures are studied and reevaluated.
The simple answer is no, at least for the foreseeable future. Gene therapy currently targets existing tissue in a existing child or adult. This may alleviate or eliminate symptoms in that individual, but will not affect future children. To accomplish a correction for future generations, gene therapy would need to target the germ cells, the sperm and egg. This poses numerous technical problems at the present time. There is also a very real concern about making genetic decisions for future generations without their consent.
Some would seek to get around these difficulties by performing gene therapy in early embryos before tissue differentiation has taken place. This would allow the new gene to be incorporated into all tissues, including reproductive organs. However, this process does nothing to alleviate the condition of those already suffering from genetic disease. Also, as mentioned earlier this week, this procedure would put embryos at unacceptable risk due to the inherent rate of failure and potential damage to the embryo.
Another way to affect germ line gene therapy would involve a combination of gene therapy and cloning.{6} An embryo, fertilized in vitro, from the sperm and egg of a couple at risk for sickle-cell anemia, for example, could be tested for the sickle-cell gene. If the embryo tests positive, cells could be removed from this early embryo and grown in culture. Then the normal hemoglobin gene would be added to these cultured cells.
If the technique for human cloning could be perfected, then one of these cells could be cloned to create a new individual. If the cloning were successful, the resulting baby would be an identical twin of the original embryo, only with the sickle-cell gene replaced with the normal hemoglobin gene. This would result in a normal healthy baby. Unfortunately, the initial embryo was sacrificed to allow the engineering of its identical twin, an ethically unacceptable trade-off.
So what we have seen, is that even human gene therapy is not a long-term solution, but a temporary and individual one. But even in condoning the use of gene therapy for therapeutic ends, we need to be careful that those for whom gene therapy is unavailable either for ethical or monetary reasons, dont get pushed aside. It would be easy to shun those with uncorrected defects as less than desirable or even less than human. There is, indeed, much to think about.
The possibility of someone or some government utilizing the new tools of genetic engineering to create a superior race of humans must at least be considered. We need to emphasize, however, that we simply do not know what genetic factors determine popularly desired traits such as athletic ability, intelligence, appearance and personality. For sure, each of these has a significant component that may be available for genetic manipulation, but its safe to say that our knowledge of each of these traits is in its infancy.
Even as knowledge of these areas grows, other genetic qualities may prevent their engineering. So far, few genes have only a single application in the body. Most genes are found to have multiple effects, sometimes in different tissues. Therefore, to engineer a gene for enhancement of a particular traitsay memorymay inadvertently cause increased susceptibility to drug addiction.
But what if in the next 50 to 100 years, many of these unknowns can be anticipated and engineering for advantageous traits becomes possible. What can we expect? Our concern is that without a redirection of the worldview of the culture, there will be a growing propensity to want to take over the evolution of the human species. The many people see it, we are simply upright, large-brained apes. There is no such thing as an independent mind. Our mind becomes simply a physical construct of the brain. While the brain is certainly complicated and our level of understanding of its intricate machinery grows daily, some hope that in the future we may comprehend enough to change who and what we are as a species in order to meet the future demands of survival.
Edward O. Wilson, a Harvard entomologist, believes that we will soon be faced with difficult genetic dilemmas. Because of expected advances in gene therapy, we will not only be able to eliminate or at least alleviate genetic disease, we may be able to enhance certain human abilities such as mathematics or verbal ability. He says, Soon we must look deep within ourselves and decide what we wish to become.{7} As early as 1978, Wilson reflected on our eventual need to decide how human we wish to remain.{8}
Surprisingly, Wilson predicts that future generations will opt only for repair of disabling disease and stop short of genetic enhancements. His only rationale however, is a question. Why should a species give up the defining core of its existence, built by millions of years of biological trial and error?{9} Wilson is naively optimistic. There are loud voices already claiming that man can intentionally engineer our evolutionary future better than chance mutations and natural selection. The time to change the course of this slow train to destruction is now, not later.
Many of the questions surrounding the ethical use of genetic engineering practices are difficult to answer with a simple yes or no. This is one of them. The answer revolves around the method used to determine the sex selection and the timing of the selection itself.
For instance, if the sex of a fetus is determined and deemed undesirable, it can only be rectified by termination of the embryo or fetus, either in the lab or in the womb by abortion. There is every reason to prohibit this process. First, an innocent life has been sacrificed. The principle of the sanctity of human life demands that a new innocent life not be killed for any reason apart from saving the life of the mother. Second, even in this country where abortion is legal, one would hope that restrictions would be put in place to prevent the taking of a life simply because its the wrong sex.
However, procedures do exist that can separate sperm that carry the Y chromosome from those that carry the X chromosome. Eggs fertilized by sperm carrying the Y will be male, and eggs fertilized by sperm carrying the X will be female. If the sperm sample used to fertilize an egg has been selected for the Y chromosome, you simply increase the odds of having a boy (~90%) over a girl. So long as the couple is willing to accept either a boy or girl and will not discard the embryo or abort the baby if its the wrong sex, its difficult to say that such a procedure should be prohibited.
One reason to utilize this procedure is to reduce the risk of a sex-linked genetic disease. Color-blindness, hemophilia, and fragile X syndrome can be due to mutations on the X chromosome. Therefore, males (with only one X chromosome) are much more likely to suffer from these traits when either the mother is a carrier or the father is affected. (In females, the second X chromosome will usually carry the normal gene, masking the mutated gene on the other X chromosome.) Selecting for a girl by sperm selection greatly reduces the possibility of having a child with either of these genetic diseases. Again, its difficult to argue against the desire to reduce suffering when a life has not been forfeited.
But we must ask, is sex determination by sperm selection wise? A couple that already has a boy and simply wants a girl to balance their family, seems innocent enough. But why is this important? What fuels this desire? Its dangerous to take more and more control over our lives and leave the sovereignty of God far behind. This isnt a situation of life and death or even reducing suffering.
But while it may be difficult to find anything seriously wrong with sex selection, its also difficult to find anything good about it. Even when the purpose may be to avoid a sex-linked disease, we run the risk of communicating to others affected by these diseases that because they could have been avoided, their life is somehow less valuable. So while it may not be prudent to prohibit such practices, it certainly should not be approached casually either.
Notes
1. Lee Silver, Remaking Eden: Cloning and Beyond in a Brave New World, New York, NY: Avon Books, p. 230-231. 2. Leon Jaroff, Success stories, Time, 11 January 1999, p. 72-73. 3. Sally Lehrman, Virus treatment questioned after gene therapy death, Nature Vol. 401 (7 October 1999): 517-518. 4. Eliot Marshall, Gene therapy death prompts review of adenovirus vector, Science Vol. 286 (17 December 1999): 2244-2245. 5. Meredith Wadman, NIH under fire over gene-therapy trials, Nature Vol. 403 (20 January 1999): 237. 6. Steve Mirsky and John Rennie, What cloning means for gene therapy, Scientific American, June 1997, p. 122-123. 7. Ibid., p. 277. 8. Edward Wilson, On Human Nature, Cambridge, Mass.: Harvard University Press, p. 6. 9. E. Wilson, Consilience, p. 277.
2000 Probe Ministries
On January 8, 2007, the Associated Press reported that scientists from Wake Forest University and Harvard University discovered a new type of stem cell found in the amniotic fluid within
Genetic Diseases The age of genetics has arrived. Society is in the midst of a genetic revolution that some futurists predict will have a greater impact on the culture than
Original post:
Human Genetic Engineering - Probe Ministries
Posted in Genetic Engineering
Comments Off on Human Genetic Engineering – Probe Ministries
genetic engineering – Kids | Britannica Kids | Homework Help
Posted: April 11, 2019 at 1:44 am
In genetic engineering, scientists combine fragments, or parts, of DNA from different organisms. One way they do this is by cutting and rejoining genes. First, they take DNA from one organism, called the donor, and cut out the gene that they want to use. Next, they join that gene with the DNA of another organism. The result is DNA that has traits of both organisms. This new DNA is called recombinant DNA.
To make more copies of recombinant DNA, scientists may place it inside bacteria. When the bacteria reproduces, the DNA also is reproduced. This process is called gene cloning.
There are several ways to produce a fully grown plant or animal that contains recombinant DNA. Bacteria carrying the DNA may be allowed to infect plant cells. The cells then develop into plants with traits of both original organisms. Recombinant DNA also may be injected into the egg cells of animals. The eggs then grow into animals with the desired traits.
More here:
genetic engineering - Kids | Britannica Kids | Homework Help
Posted in Genetic Engineering
Comments Off on genetic engineering – Kids | Britannica Kids | Homework Help
What is Genetic Engineering and Pros and Cons of …
Posted: March 20, 2019 at 2:49 am
Genetic engineering refers to the set of technologies that directly manipulate on an organisms genes, change the genetic make up of cells and add one or more new traits that are not found in that organism. At the heart of all life is what we call DNA. It is responsible for the abundance of life on this Earth and the reason why we are the way we are. The genetic make-up of any organism is defined by DNA. In nature, the genetic nature never remains fixed.
Genetic engineering has a huge array of applications, for instance, surgery, animal husbandry, medicine, and agriculture. With genetic engineering, many crops species have developed immunity to most lethal diseases. Genetic engineering has also helped to increase yields at the farm. Today, wide-ranging crop species like wheat are genetically modified to achieve high nutritive value, and faster and higher productivity. These days, more and more countries are embracing genetically engineered crops to fight scarcity of food, offer highly nutritious foods, and grow and cultivate crops that are immune to various diseases and pests. Genetic engineering, in many ways, has heralded an age of agricultural revolution, which many hope will help wipe out malnutrition and starvation.
What is genetic engineering? Well, its when a gene of a particular organism is harnessed and the copy inserted into the DNA of another organism to modify its characteristics. An organism is any living thing such as humans, plants, and animals. To understand how genetic engineering works, it would be prudent to know how DNA works. Any organism has a cell. In the cell, there is DNA, which acts as an instructional manual for the entire body.
DNA is responsible for every characteristic of an organism, for example, in humans; its responsible for eye color, hair color, height and so on. So, to harvest the height gene from an organism, biologists use restriction enzyme (which resemble a scissor) to cut it out. The harvested height gene is then inserted into a second targeted organism. The targeted organism then reproduces, and the result is multiplication of organisms with the modified height. The same process applies to genetically modified foods.
Genes rarely ever comprise of a single genetic material. The more complex an organism becomes, the more genetic material it has. Much of it has no use and only a small fraction of it is responsible for our specific characteristics. For example, humans and apes share some 99% of their DNA. It is the rest 1% which can be used to create such spectacular differences.
It is also the amount from which active genetic material is extracted and introduced to a new host cell, usually bacteria. This allows it to perform or inherit a certain function from the new genetic material. If it sounds too tough to understand genetic engineering, just imagine that artificial insulin for diabetics is produced through this method.
The applications of this field are growing each day. One example is the production of insulin for diabetes patients. The field of medicine is reaping the benefits of genetic engineering. They have used the process to create vaccines and human growth hormones, changing the lives of many in the process. Gene therapy has been developed, which could possibly provide a cure for those who suffer from genetic illnesses.
It has also found a place of importance in research. As scientists successfully understand genetic engineering, they use it to resolve issues in current research methods. Most of these are done with the help of genetically modified organisms.
Statistics according to scientists at the Germanys University of Gttingen indicate that Genetically Modified Foods (GMO) increase crop yield by more than 22%. This is why most areas experiencing food shortage have taken up the use of GMOs to help reverse the trend.
Genetic modification greatly increases flavor of crops. For, instance, modification makes corn sweeter and pepper spicier. In fact, genetic modification has the capability to make difficult flavor a lot palatable.
Resistance to disease was the main reason for genetic engineering research. Genetically modified foods exhibit great resistance to various diseases. Just like vaccine, genetic codes are implanted into foods to fortify their immune system.
Genetic modification has enabled researchers to incorporate variety of nutrients like proteins, vitamins, carbohydrates and minerals in crops to accord consumers greater nutritive value. This aspect has helped many in the developing world who cannot afford a balanced diet every single day. In addition, genetic modification has gone a long way towards solving worldwide malnutrition. For instance, rice thats strengthened with vitamin A, referred to as golden rice, now assist in mitigating deficiency of vitamin A across the globe.
Statistically, GMOs have a much longer lifespan than other traditional foods. This means they can be transported to far destinations that lack nutritious foods without fear of going bad.
The use of molecular biology in vaccine creation has bore fruits so far according to FAO (Food and Agriculture Organization of the United Nations). Biologists have been able to genetically engineer plants to generate vaccines, proteins, and other important pharmaceutical products via a technique referred to as pharming.
Production of genetically modified foods involves less time, land, machinery and chemicals. This means you wont worry about greenhouse gas emission, soil erosion or environmental pollution. In addition, with increased productivity witnessed with genetically modified foods, farmers will use less farmland to grow crops. Not to mention, they are already growing foods like corn, cotton, and potatoes without using insecticides because genetically modified foods generate their own insecticides.
Scientists indulge in crop modification to achieve enhanced resistance to diseases and superior crop health. Genetically modified foods also have the capability to resist harsh weather conditions. All these factors lead to one thing: reduced risk of crop failure.
A research study by Brown University concluded that genetic modification normally blends proteins that are not naturally present in the organism, which can result in allergy reactions to certain groups people. In fact, some studies found out that GMOs had caused significant allergic reactions to the population. A separate research by the National Center for Health Statistics reported that food allergies in individuals under 18 years leaped from 3.4% in the year 1997-2999 to 5.1% in 2009-2011.
Although reports have pronounced that genetically modified foods have no impact on the environment, there are some noted environmental impacts. It has been established that GMOs grown in environments that do not favor them often lead to environmental damage. This is evident in the GMO cross-breeding whereby weeds that are cross-bred with modified plants are reported to develop resistance to herbicides. This, eventually, calls for added modification efforts.
The fact that GMOs take the same amount of time to mature, and same effort to cultivate and grow, they dont add any economic gain compared to traditional growing methods.
According to a research study by Food and Agriculture Organization (FAO), GMOs can transfer genes to other members of similar species or different species through a process called gene escape. This gene interaction might take place at different levels including plant, cell, gene or ecosystem. Trouble could arise if, for instance, herbicide resistant genes find way into weeds.
Research finding according to Iowa State University stipulates that some GMOs contain antibiotic characteristics that boost your immunity. However, when consumed, their effectiveness dramatically reduces compared to the real antibiotics.
1. Identification of an organism that exhibits the desired trait or gene of interest.
2. Extracting the DNA from that organism.
3. Through a process called gene cloning, one desired gene (recipe) must be located and copied from thousands of genes that were extracted.
4. The gene is slightly modified to work in a more desirable way once it is inserted inside the recipient organism.
5. The transformation process occurs when new gene(s), called a transgene is delivered into cells of the recipient organism. The most common transformation technique uses a bacteria that naturally genetically engineer plants with its own DNA. The transgene is inserted into the bacteria, which then delivers it into cells of the organism being engineered.
6. The characteristics of the final product is improved through the process called traditional breeding.
Hawaii is well documented as a place where genetically modified papaya trees have been cultivated and grown since 1999. The harvested papayas are disseminated to markets such as the United States and Canada. The reason for modifying these papayas is the Papaya Ringspot virus that has caused havoc for many years. Also, Hawaii papayas have been modified to slow down their maturity to accord suppliers sufficient time to ship to the market.
Statistically, over 90% of soybeans available in the marketplace today are genetically engineered to naturally resist a herbicide known as Round Up. This enhanced resistance enables farmers to use a lot more Round Up to exterminate weeds.
Eggplant, also known as Zucchini, is another food product that is widely genetically modified. Genetically modified eggplant encompasses a protein, which gives it more resistance to insects.
Cotton is very susceptible to diseases, insects, and pests. It is heavily modified to boost yields and resistance to pests and diseases.
Corn also makes the list of the most genetically modified foods. Half of farmers in the United States grow corn that has been genetically modified. Most of the corn is utilized for human consumption and animal feed.
Sugar beets are surprisingly modified due to their high demand in countries like U.S., Canada, and Europe. Genetically modified sugar beets debuted in the United States markets in 2009. They are genetically modified to develop resistance to Round Up.
These days, dairy cows are increasingly being genetically modified with growth hormones to enable faster growth and beef up of yields.
Harnessed from rapeseed oil. According to studies, it is the most well know genetically modified oil in the world.
Most countries require that any genetically modified food be labeled. 64 countries across the world with an estimated world population of 64% already label GMOs, the entire European Union included. China also joined the bandwagon of labeling GMOs. Although genetically modified food companies are fighting against labeling, the battle may not be won in the near future.
Science has been able to genetically engineer animals and plants alike. While the animals are used in research or sold as a novelty pet item, the plants have a different purpose. Following the years of pesticide and insecticide use, most pests have developed an immunity to them. With the help of scientists that understand genetic engineering, farmers now benefit from seeds that have been engineered.
They are provided with traits from other plants that can naturally balance the plant-pest relationship. As expected, the use of such engineering has become heavily commercialized and is used to produce more attractive varieties of food.
Genetically modified food is not an experimental project. Foods that have been engineered to look, smell and taste better have found their place in the supermarket shelves since 1994. Thats twenty years ago and the trend has become habit. Apart from their looks, foods are produced simply for consumer convenience, such as seedless fruits.
As of now, soybean, cotton seed oil, corn and canola are the most advanced of the modified crops. Most of the livestock grown in the country is feed with crops that were genetically modified, making them partly genetically modified organisms in the long run. For those that understand genetic engineering, the growing use of the technology is quite alarming.
However, not all is wonderful in world of genetic engineering. It has been launched into controversy many times over the last decade. Since it is still a fledgling technology whose implications are yet not clear, there are many liberties taken with it. Lack of policy and laws makes it easy for research based companies to misuse the work of those that understand genetic engineering.
Most concerns regarding genetically modified food and animals are the ethical ramifications, while others are related to problems in the ecology and future misuse of the technology. As a result, the process and technology is highly regulated as of now.
Even with the regulations and laws being passed to reign in the rampant abuse of genetic engineering, the process is not in a hurry to stop. The government is pushing for one step at a time, such as labeling foods as GM Foods in markets to help the customers make their own choice. But the commercial advantages are quite high and further research will be able to possibly solve many of our health and poverty related issues. This is the biggest argument in the favor of engineering. Even so, it takes a lot many years to fully understand genetic engineering.
A true environmentalist by heart . Founded Conserve Energy Future with the sole motto of providing helpful information related to our rapidly depleting environment. Unless you strongly believe in Elon Musks idea of making Mars as another habitable planet, do remember that there really is no 'Planet B' in this whole universe.
Read the rest here:
What is Genetic Engineering and Pros and Cons of ...
Posted in Genetic Engineering
Comments Off on What is Genetic Engineering and Pros and Cons of …
Genetic engineering | Memory Alpha | FANDOM powered by Wikia
Posted: March 10, 2019 at 3:42 pm
A portrait of Khan Noonien Singh, a man who was a product of genetic engineering
Genetic engineering, genetic programming or genetic manipulation was a process in which the DNA of an organism was selectively altered through artificial means. Genetic engineering was often used to produce "custom" organisms, such as for agricultural or medical purposes, as well as to produce biogenic weapons. The most common application of genetic engineering on intelligent beings in the Federation was corrective DNA resequencing for genetic disorders. A far more dubious application of genetic engineering was the genetic enhancement of individuals to produce improved senses, strength, intelligence, etc.
During Earth's 20th century, the efforts of ambitious scientists' to produce "superhumans" eventually resulted in the Eugenics Wars. Genetically engineered individuals such as Khan Noonien Singh attempted to seize power. (TOS: "Space Seed")
This would lead to the banning of genetic engineering on Earth by the mid-22nd century, even research which could be used to cure critical illnesses. This ban was implemented because of the general fear of creating more tyrants such as Khan. It was also felt that parents would feel compelled to have their children genetically engineered, especially if "enhanced" individuals were allowed to compete in normal society.
Some, including geneticist Arik Soong, argued that it was simply convenient for Humanity to denounce the attempts at genetic "improvement" of Humanity, that it was inherently evil because of the Eugenics Wars. He argued that the source of the problem, in fact, wasn't the technology, but Humanity's own inability to use it wisely. Imprisoned for, among other crimes, stealing the embryos of a number of Augment children, Soong wrote long treatises on the subject of genetic augmentations and improvements. His works were routinely taken and placed into storage (although his jailers often told him that his work was vaporized). Though Soong himself gave up genetics to begin research in cybernetics, Captain Jonathan Archer expressed his hope to Soong that research into genetic engineering could cure life-threatening diseases would someday be resumed. (ENT: "Borderland", "The Augments")
Symbols used to indicate presence of genetically engineered lifeform
Others, however, chose to establish isolated colonies, as became the case with the Genome colony on Moab IV, which was established in 2168. It became a notable and successful example of Human genetic engineering in which every individual was genetically tailored from birth to perform a specific role in society. However, after a five-day visit by the USS Enterprise-D when the ship came to the colony in an effort to save it from an approaching neutron star which, eventually, the craft was able to effectively redirect twenty-three colonists left the colony aboard the craft, possibly causing significant damage to the structure of their society. The reason for the societal split was that those who left the colony had realized their organized, pre-planned world had certain limitations, lacking opportunities to grow that were offered by the Enterprise. (TNG: "The Masterpiece Society")
By the 24th century, the United Federation of Planets allowed limited use of genetic engineering to correct existing genetically related medical conditions. Persons known to be genetically enhanced, however, were not allowed to serve in Starfleet, and were especially banned from practicing medicine. (TNG: "Genesis", DS9: "Doctor Bashir, I Presume")
Nevertheless, some parents attempted to secretly have their children genetically modified. (DS9: "Doctor Bashir, I Presume") Unfortunately, most of these operations were performed by unqualified physicians, resulting in severe psychological problems in the children due to their enhancements being only partially successful, such as a patient's senses being enhanced while their ability to process the resulting data remained at a Human norm. (DS9: "Statistical Probabilities")
In some cases, genetic engineering can be permitted to be performed in utero when dealing with a developing fetus to correct any potential genetic defects that could handicap the child as they grew up. Chakotay's family history included a defective gene that made those who possessed it prone to hallucinations, the gene afflicting his grandfather in Chakotay's youth, although the gene was suppressed in Chakotay himself. (VOY: "The Fight") In 2377, The Doctor performed prenatal genetic modification on Miral Paris to correct a spinal deviation, a congenital defect that tends to run in Klingon families; Miral's mother and grandmother had undergone surgery to correct the defect at a young age, but the modification meant Miral would not need surgery herself. Unfortunately, learning of this capability, B'Elanna briefly became obsessed with having her child modified to remove all Klingon DNA traits to try and 'protect' her daughter from the discrimination she had experienced as a child, even going so far as to reprogram The Doctor so that he would believe these changes were necessary to prevent later illness, but she was talked out of it by her husband (VOY: "Lineage").
The Founders of the Dominion performed extensive genetic modifications on their two servant races, the Jem'Hadar and the Vorta, in order for them to better serve their roles and to ingrain a fanatical devotion to the Founders. (DS9: "The Abandoned", "Ties of Blood and Water") As a result of these modifications, neither species reproduced in the traditional biological sense. (DS9: "To the Death")
According to Vorta legend, they were originally ape-like creatures who were gifted sentience by the Founders after they helped a changeling escape pursuit. (DS9: "Treachery, Faith and the Great River")
It is unknown whether the Jem'Hadar had any such ancestral species.
The Dominion also genetically engineered biological weapons, such as the blight they unleashed against the people of the Teplan system. (DS9: "The Quickening")
During the 22nd century, the Suliban were no more evolved than Humans. However, a number of Suliban, from a faction known as the Suliban Cabal, became recipients of some very sophisticated genetic engineering thanks to a mysterious humanoid from the 28th century. These enhancements included subcutaneous pigment sacs, a bio-mimetic garment, modified alveoli, more bronchial lobes and eyes with compound retinas which allowed them to see things starship sensors likely could not detect. The Suliban considered these "enhancements" as "progress". (ENT: "Broken Bow")
When they were captured by a pre-warp civilization in 2152, Jonathan Archer and Malcolm Reed claimed to be prototypes of a new breed of supersoldiers to conceal the existence of alien life from the civilization. (ENT: "The Communicator")
Genetic engineering had been employed on Denobula since the twentieth century, to generally positive effect. (ENT: "Borderland")
Genetic programming was Surmak Ren's major field of study at the University of Bajor. (DS9: "Babel")
The Angosians used psychological and biochemical modifications and mental programming to make the perfect soldier such as Roga Danar. (TNG: "The Hunted")
The Tosk were engineered by the Hunters to be prey for their traditional hunts. (DS9: "Captive Pursuit")
The Son'a used genetic manipulation as part of a range of strategies to retard aging. (Star Trek: Insurrection)
The Brunali were proficient at genetic engineering, which they used to create modified crops capable of surviving on their Borg-devastated homeworld. However, they also genetically engineered some of their children to produce a pathogen deadly to Borg. These children were then allowed to be assimilated, so that they could spread the infection to their Borg vessels. Icheb was one such child, the pathogen causing the cube that he was on to break down, killing all of the active drones and causing the young drones in their maturation chambers to activate before they were fully processed into the Collective. (VOY: "Child's Play")
The Taresians used genetic engineering in tandem with a form of biological weaponry to manipulate the DNA of other species. This occurred to Ensign Harry Kim in 2373, who was infected with a virus that altered his DNA to make him a potential Taresian mate. (VOY: "Favorite Son")
Go here to see the original:
Genetic engineering | Memory Alpha | FANDOM powered by Wikia
Posted in Genetic Engineering
Comments Off on Genetic engineering | Memory Alpha | FANDOM powered by Wikia
CRISPR: A game-changing genetic engineering technique …
Posted: March 10, 2019 at 3:42 pm
Have you heard? A revolution has seized the scientific community. Within only a few years, research labs worldwide have adopted a new technology that facilitates making specific changes in the DNA of humans, other animals, and plants. Compared to previous techniques for modifying DNA, this new approach is much faster and easier. This technology is referred to as CRISPR, and it has changed not only the way basic research is conducted, but also the way we can now think about treating diseases [1,2].
CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeat. This name refers to the unique organization of short, partially palindromic repeated DNA sequences found in the genomes of bacteria and other microorganisms. While seemingly innocuous, CRISPR sequences are a crucial component of the immune systems [3] of these simple life forms. The immune system is responsible for protecting an organisms health and well-being. Just like us, bacterial cells can be invaded by viruses, which are small, infectious agents. If a viral infection threatens a bacterial cell, the CRISPR immune system can thwart the attack by destroying the genome of the invading virus [4]. The genome of the virus includes genetic material that is necessary for the virus to continue replicating. Thus, by destroying the viral genome, the CRISPR immune system protects bacteria from ongoing viral infection.
Figure 1 ~ The steps of CRISPR-mediated immunity. CRISPRs are regions in the bacterial genome that help defend against invading viruses. These regions are composed of short DNA repeats (black diamonds) and spacers (colored boxes). When a previously unseen virus infects a bacterium, a new spacer derived from the virus is incorporated amongst existing spacers. The CRISPR sequence is transcribed and processed to generate short CRISPR RNA molecules. The CRISPR RNA associates with and guides bacterial molecular machinery to a matching target sequence in the invading virus. The molecular machinery cuts up and destroys the invading viral genome. Figure adapted from Molecular Cell 54, April 24, 2014 [5].
Interspersed between the short DNA repeats of bacterial CRISPRs are similarly short variable sequences called spacers (FIGURE 1). These spacers are derived from DNA of viruses that have previously attacked the host bacterium [3]. Hence, spacers serve as a genetic memory of previous infections. If another infection by the same virus should occur, the CRISPR defense system will cut up any viral DNA sequence matching the spacer sequence and thus protect the bacterium from viral attack. If a previously unseen virus attacks, a new spacer is made and added to the chain of spacers and repeats.
The CRISPR immune system works to protect bacteria from repeated viral attack via three basic steps [5]:
Step 1) Adaptation DNA from an invading virus is processed into short segments that are inserted into the CRISPR sequence as new spacers.
Step 2) Production of CRISPR RNA CRISPR repeats and spacers in the bacterial DNA undergo transcription, the process of copying DNA into RNA (ribonucleic acid). Unlike the double-chain helix structure of DNA, the resulting RNA is a single-chain molecule. This RNA chain is cut into short pieces called CRISPR RNAs.
Step 3) Targeting CRISPR RNAs guide bacterial molecular machinery to destroy the viral material. Because CRISPR RNA sequences are copied from the viral DNA sequences acquired during adaptation, they are exact matches to the viral genome and thus serve as excellent guides.
The specificity of CRISPR-based immunity in recognizing and destroying invading viruses is not just useful for bacteria. Creative applications of this primitive yet elegant defense system have emerged in disciplines as diverse as industry, basic research, and medicine.
In Industry
The inherent functions of the CRISPR system are advantageous for industrial processes that utilize bacterial cultures. CRISPR-based immunity can be employed to make these cultures more resistant to viral attack, which would otherwise impede productivity. In fact, the original discovery of CRISPR immunity came from researchers at Danisco, a company in the food production industry [2,3]. Danisco scientists were studying a bacterium called Streptococcus thermophilus, which is used to make yogurts and cheeses. Certain viruses can infect this bacterium and damage the quality or quantity of the food. It was discovered that CRISPR sequences equipped S. thermophilus with immunity against such viral attack. Expanding beyond S. thermophilus to other useful bacteria, manufacturers can apply the same principles to improve culture sustainability and lifespan.
In the Lab
Beyond applications encompassing bacterial immune defenses, scientists have learned how to harness CRISPR technology in the lab [6] to make precise changes in the genes of organisms as diverse as fruit flies, fish, mice, plants and even human cells. Genes are defined by their specific sequences, which provide instructions on how to build and maintain an organisms cells. A change in the sequence of even one gene can significantly affect the biology of the cell and in turn may affect the health of an organism. CRISPR techniques allow scientists to modify specific genes while sparing all others, thus clarifying the association between a given gene and its consequence to the organism.
Rather than relying on bacteria to generate CRISPR RNAs, scientists first design and synthesize short RNA molecules that match a specific DNA sequencefor example, in a human cell. Then, like in the targeting step of the bacterial system, this guide RNA shuttles molecular machinery to the intended DNA target. Once localized to the DNA region of interest, the molecular machinery can silence a gene or even change the sequence of a gene (Figure 2)! This type of gene editing can be likened to editing a sentence with a word processor to delete words or correct spelling mistakes. One important application of such technology is to facilitate making animal models with precise genetic changes to study the progress and treatment of human diseases.
Figure 2 ~ Gene silencing and editing with CRISPR. Guide RNA designed to match the DNA region of interest directs molecular machinery to cut both strands of the targeted DNA. During gene silencing, the cell attempts to repair the broken DNA, but often does so with errors that disrupt the geneeffectively silencing it. For gene editing, a repair template with a specified change in sequence is added to the cell and incorporated into the DNA during the repair process. The targeted DNA is now altered to carry this new sequence.
In Medicine
With early successes in the lab, many are looking toward medical applications of CRISPR technology. One application is for the treatment of genetic diseases. The first evidence that CRISPR can be used to correct a mutant gene and reverse disease symptoms in a living animal was published earlier this year [7]. By replacing the mutant form of a gene with its correct sequence in adult mice, researchers demonstrated a cure for a rare liver disorder that could be achieved with a single treatment. In addition to treating heritable diseases, CRISPR can be used in the realm of infectious diseases, possibly providing a way to make more specific antibiotics that target only disease-causing bacterial strains while sparing beneficial bacteria [8]. A recent SITN Waves article discusses how this technique was also used to make white blood cells resistant to HIV infection [9].
Of course, any new technology takes some time to understand and perfect. It will be important to verify that a particular guide RNA is specific for its target gene, so that the CRISPR system does not mistakenly attack other genes. It will also be important to find a way to deliver CRISPR therapies into the body before they can become widely used in medicine. Although a lot remains to be discovered, there is no doubt that CRISPR has become a valuable tool in research. In fact, there is enough excitement in the field to warrant the launch of several Biotech start-ups that hope to use CRISPR-inspired technology to treat human diseases [8].
Ekaterina Pak is a Ph.D. student in the Biological and Biomedical Sciences program at Harvard Medical School.
1. Palca, J. A CRISPR way to fix faulty genes. (26 June 2014) NPR < http://www.npr.org/blogs/health/2014/06/26/325213397/a-crispr-way-to-fix-faulty-genes> [29 June 2014]
2. Pennisi, E. The CRISPR Craze. (2013) Science, 341 (6148): 833-836.
3. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 17091712.
4. Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., and van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960964.
5. Barrangou, R. and Marraffini, L. CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity (2014). Molecular Cell 54, 234-244.
6. Jinkek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. (2012) 337(6096):816-21.
7. CRISPR reverses disease symptoms in living animals for first time. (31 March 2014). Genetic Engineering and Biotechnology News. <http://www.genengnews.com/gen-news-highlights/crispr-reverses-disease-symptoms-in-living-animals-for-first-time/81249682/> [27 July 2014]
8. Pollack, A. A powerful new way to edit DNA. (3 March 2014). NYTimes < http://www.nytimes.com/2014/03/04/health/a-powerful-new-way-to-edit-dna.html?_r=0> [16 July 2014]
9. Gene editing technique allows for HIV resistance? <http://sitn.hms.harvard.edu/flash/waves/2014/gene-editing-technique-allows-for-hiv-resistance/> [13 June 2014]
Read this article:
CRISPR: A game-changing genetic engineering technique ...
Posted in Genetic Engineering
Comments Off on CRISPR: A game-changing genetic engineering technique …