Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetic Engineering
Stanford’s Final Exams Pose Question About the Ethics of Genetic Engineering – Futurism
Posted: July 10, 2017 at 6:46 am
In BriefThe age of gene editing and creation will be upon us in thenext few decades, with the first lifeform having already beenprinted. Stanford University questions the ethics of prospectivestudents by asking a question we should all be thinking about. Stanfords Moral Pickle
When bioengineering students sit down to take their final exams for Stanford University,they are faced with a moral dilemma, as well as a series of grueling technical questions that are designed to sort the intellectual wheat from the less competent chaff:
If you and your future partner are planning to have kids, would you start saving money for college tuition, or for printing the genome of your offspring?
The question is a follow up to At what point will the cost of printing DNA to create a human equal the cost of teaching a student in Stanford? Both questions refer to the very real possibility that it may soon be in the realm of affordability to print off whatever stretch of DNA you so desire, using genetic sequencing and a machine capable of synthesizing the four building blocks of DNA A, C, G, and T into whatever order you desire.
The answer to the time question, by the way, is 19 years, given that the cost of tuition at Stanford remains at $50,000 and the price of genetic printing continues the 200-fold decrease that has occurred over the last 14 years. Precursory work has already been performed; a team lead by Craig Venter created the simplest life form ever known last year.
Stanfords moral question, though, is a little trickier. The question is part of a larger conundrum concerning humans interfering with their own biology; since the technology is developing so quickly, the issue is no longer whether we can or cant,but whether we should or shouldnt. The debate has two prongs: gene editing and life printing.
With the explosion of CRISPR technology many studies are due to start this year the ability to edit our genetic makeup will arrive soon. But how much should we manipulate our own genes? Should the technology be a reparative one, reserved for making sick humans healthy again, or should it be used to augment our current physical restrictions, making us bigger, faster, stronger, and smarter?
The question of printing life is similar in some respects; rather than altering organisms to have the desired genetic characteristics, we could print and culture them instead billions have already been invested. However, there is theadditional issue of playing God by sidestepping the methods of our reproduction that have existed since the beginning of life. Even if the ethical issue of creation was answered adequately, there are the further questions ofwho has the right to design life, what the regulations would be, and the potential restrictions on the technology based on cost; if its too pricey, gene editing could be reserved only for the rich.
It is vital to discuss the ethics of gene editing in order to ensure that the technology is not abused in the future. Stanfords question is praiseworthy because it makes todays students, who will most likely be spearheading the technologys developments, think about the consequences of their work.
Read more:
Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism
Posted in Genetic Engineering
Comments Off on Stanford’s Final Exams Pose Question About the Ethics of Genetic Engineering – Futurism
Free genetic engineering Essays and Papers – 123helpme
Posted: November 20, 2016 at 7:46 am
Title Length Color Rating The Effects of Genetic Engineering on Agriculture - Genetic engineering is a way in which specific genes for an animal or plant can be extracted, and reproduced to form a new animal or plant. These new organisms will express the required trait for that gene. This practice is a very controversial topic within the scientific world. It is being implemented in various areas such as agriculture even though there are many alternatives that can be found for genetic engineered crops, such as organic materials and reducing leeching of the soil. The controversy regarding this practice occurs as it is believed to contribute both negative and positive implications and dangers, not only to oneself but the environment as a whole.... [tags: Genetic Engineering ] :: 5 Works Cited 1303 words (3.7 pages) Strong Essays [preview] Pros and Cons of Genetic Engineering - Genetic Engineering is highly controversial since some people believe that genetic engineering is playing God. As this fact there is opposition to the progression of the field by people who do not see the value in genetic engineering, or they fear what genetic engineering may lead to for us as people. There is a history of discover that belongs to genetic engineering, which has led to numerous products that have emerged which have brought numerous applications to the society of the world. Though there are benefits to genetic engineering, there are also drawbacks to genetic engineering including ethical and legal issues that are dealt with in todays society in order to try and regulate the... [tags: Genetic Engineering] :: 8 Works Cited 2049 words (5.9 pages) Term Papers [preview] The Benefits of Genetic Engineering - Almost three decades ago, on July 25, 1978, Louise Brown, the first test tube baby was born (Baird 1). With this birth another controversy broke out, do humans have the right to make life. Most of the concern comes from the fear of control over the production and development of human beings. But, those who are against cloning would most likely look the other way if they needed gene therapy after receiving a grim diagnosis. There are many aspects of genetic engineering and to thoroughly understand it looking into each is absolutely necessary.... [tags: Genetic Engineering ] :: 6 Works Cited 1443 words (4.1 pages) Powerful Essays [preview] The Ethics of Genetic Engineering - The Problem Genetic engineering has been around since the 1960s although major experiments have not been really noticed until the 1990s. The science comes in different forms the two major being cloning and genetic reconstruction. Cloning is the duplicating of one organism and making an exact copy. For example in 1996 the creation of the clone sheep named Dolly the first mammal to be cloned which was a great achievement. The other form, genetic reconstruction, is used to replace genes within humans to help or enhance the life of an unborn child for a medical reason or just for the preference of a parent.... [tags: Genetic Engineering ] :: 5 Works Cited 1437 words (4.1 pages) Powerful Essays [preview] Apocalyptic Visions of Genetic Engineering - Global warming, nuclear winter, microscopic black holessociety views all these as apocalyptic phenomena resulting from the accelerating rate of discovery in the fields of science and technology. Opinions on fields like climate change and atomic weaponry certainly have a basis in scientific evidence, but many other apocalyptic reactions derive from hypothetical situations and thought experiments. To further examine public opinions on scientific fields, we can examine genetic engineering (GE). The possibilities of GE have prompted many ethicists to provide commentary on the topic, opening a dialogue between policy and experimentation in order to address topics such as genetically modified cro... [tags: Genetic Engineering] :: 7 Works Cited 2203 words (6.3 pages) Term Papers [preview] The Genetic Engineering Industry - Ever wish chocolate was healthy and could have the same nutrients and vitamins as fruit and vegetables. Food, one of three necessities of life, affects every living organism on Earth. Although some foods are disliked because of taste or health issues, recent discovery will open up new prosperities and growth in agriculture. Genetic engineering has the capability to make foods taste better, increase nutrient value, and even engineer plants to produce aids for deadly health issues. Every day the progress, understanding, and development of genetic engineering is digging deeper and with this knowledge virtually anything is possible.... [tags: Genetic Engineering ] :: 7 Works Cited 1806 words (5.2 pages) Term Papers [preview] Genetic Engineering in Humans - Author Chuck Klosterman said, The simple truth is that were all already cyborgs more or less. Our mouths are filled with silver. Our nearsighted pupils are repaired with surgical lasers. We jam diabetics full of delicious insulin. Almost 40 percent of Americans now have prosthetic limbs. We see to have no qualms about making post-birth improvements to our feeble selves. Why are we so uncomfortable with pre-birth improvement? Despite Klostermans accurate observation, there are reasons people are wearisome toward pre-birth enhancement.... [tags: Genetic Engineering ] 859 words (2.5 pages) Better Essays [preview] Genetic Engineering: The Impact of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel, cloning, and even light sabers are some of the countless topics that are seemingly unattainable and just ideas of the imagination. Saying that these events are feasible would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1725 words (4.9 pages) Better Essays [preview] Genetic Engineering: A Major Advancement for Mankind - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in our era, and in 1946, scientists discover that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering] :: 10 Works Cited 973 words (2.8 pages) Strong Essays [preview] Genetic Engineering: Is the Human Race Ready? - It is incredible to see how far genetic engineering has come. Humans, plants, and any living organism can now be manipulated. Scientists have found ways to change humans before they are even born. They can remove, add, or alter genes in the human genome. Making things possible that humans (even thirty years ago) would have never imagined. Richard Hayes claims in SuperSize Your Child. that genetic engineering needs to have limitations. That genetic engineering should be used for medical purposes, but not for genetic modification that could open the door to high-tech eugenic engineering (188).... [tags: Genetic Engineering] 1455 words (4.2 pages) Powerful Essays [preview] The Dark Side of Genetic Engineering - I never knew what genetic engineering was until I watched a special on the Discovery channel. The special showed scientists forming the first perfect embryo. What was very shocking was that the scientists kept asking each other what traits this embryo should compose of. To me that was disturbing and unethical to make a living human being based on what traits the parents would want them to have. This process goes against nature just as Francis Bacon said if we would control nature, we must first obey her (Fox 193).... [tags: Genetic Engineering Essays] 1104 words (3.2 pages) Strong Essays [preview] Historical Background Of Genetic Engineering - DNA is the material that gives us our personality, our looks, and our thought processes, good or bad, DNA controls all of this. DNA full name is Deoxyribonucleic Acid. It is called that because it is missing one oxygen atom, and it is located in the nucleus. It is also in the form of an acid. DNA is made up of four subunits: Adenine, Thymine, Guanine and Cytosine. During the production of RNA, the messenger of DNA, Uracil is used instead of thymine. A small segment of this DNA is called a gene.... [tags: dna, Genetic Engineering, genes] :: 8 Works Cited 1513 words (4.3 pages) Powerful Essays [preview] Genetic Engineering Is Not Safe - Genetic engineering is the intended modification to an organisms genetic makeup. There have been no continuing studies on this topic or action so there is no telling whether or not it is harmless. Genetic engineering is not safe because scientists have no absolute knowledge about living systems. Given that, they are unable to do DNA surgery without creating mutations. Any interference on an organisms genetic makeup can cause permanent damage, hereditary defects, lack of nutritious food, or a spread of dangerous diseases.... [tags: Genetic Engineering Essays] :: 5 Works Cited 994 words (2.8 pages) Good Essays [preview] Genetic Engineering: A Step Forward - Genetic engineering (GE) refers to the technique of modification or manipulation of genes (the biological material or chemical blue print that determines a living organisms traits) from one organism to another thus giving bacteria, plants, and animals, new features. The technique of selecting the best seed or the best traits of plants has been around for centuries. Humans have learned to graft (fuse) and hybridize (cross breed) plants, creating dwarfs and other useful forms since at least 1000 B.C.... [tags: Genetic Engineering Essays] 498 words (1.4 pages) Strong Essays [preview] Benefits of Genetic Engineering - Genetic Engineering is an idea that we can ponder on quiet days. The creation of altered DNA is an enticing aspect that can greatly influence the average human life. The research of genetic engineering is an ongoing exploration that may never end. I am a supporter of a genetic engineering. There are three basic beneficial basis of genetic engineering. Those are genetically altered crops, the creation of medicines, and the creation of organs so that many lives could be saved. Genetically altered crops are very beneficial to third world countries.... [tags: Genetic Engineering, DNA, ] :: 3 Works Cited 455 words (1.3 pages) Strong Essays [preview] Understanding Genetic Engineering - What if cancer could be cured by eating a pear. Or if a crop of wheat could be developed so that it never rotted. These may sound like science fiction but they're not as strange as they first seem to be, and may even be reality in the future. Fifteen years ago who would have thought that plants could be created to be immune to pesticides or that it would be possible to create a sheep that is exactly like its parent in every physical way. And yet both of these currently exist due to genetic engineering.... [tags: Genetic Engineering ] :: 13 Works Cited 1820 words (5.2 pages) Term Papers [preview] Genetic Engineering: Annotated Bibliography - Genetic Engineering. The World Book Encyclopedia. 2008 ed. This encyclopedia was extremely helpful. In not knowing all of the exact terms and basic knowledge of genetic engineering, it helped inform any reader of all this and more. The pages that had information on genetics and genetic engineering, had detailed definitions and descriptions for all the terms and ideas. Instead of focusing more towards the future of genetic engineering, it gave numerous facts about the technology and accomplishments of today.... [tags: Annotated Bibliographies, Genetic Engineering] 879 words (2.5 pages) Strong Essays [preview] Is Genetic Engineering Superior or Appalling? - Genetic engineering has changed a lot through the years. It is now possible not to only be able to genetically engineer just plants but also animals and people, plants especially. There are many different kind of plants that have been genetically modified. Genetic engineering is not all good but it is also not all bad. Genetic Engineering will come together the more you read. Plants are not the only thing getting bigger because of genetic engineering modifying the sizes. Animals are starting to become a bigger part of genetic engineering.... [tags: genetic plants,polar tree, genetic engineering] :: 7 Works Cited 1183 words (3.4 pages) Strong Essays [preview] Genetic Engineering: The Negative Impacts of Human Manipulation - The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today's world, time travel and cloning are only two of the countless topics that are seemingly unattainable ideas of the imagination. Saying that these events are within reach would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category.... [tags: Genetic Engineering ] :: 6 Works Cited 1675 words (4.8 pages) Powerful Essays [preview] Genetic Engineering: Major Advancement or Major Setback? - As the Biochemist Isaac Asimov once said, "The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in this era, and in 1946, scientists discovered that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal.... [tags: Genetic Engineering ] :: 10 Works Cited 1335 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering in Beneficial to Society - Even after thousands of years of evolution, the human race is not perfect: it is ravaged by disease and limited by nature. Yet, in recent times, researchers have begun to ascertain an advanced understanding of the underlying genetic code of humanity. The Human Genome Project, now complete, has provided a map of the intricacies in human DNA, allowing researchers to begin looking at the purpose of each gene. When combined with selective embryo implantation, which is used occasionally today to avoid hereditary diseases or to choose gender, genetic discoveries can become a sort of artificial evolution.... [tags: Pro Human Genetic Engineering] :: 8 Works Cited 1484 words (4.2 pages) Powerful Essays [preview] Genetic Engineering - Just imagine the scene: and newlywed wife and husband are sitting down with a catalog, browsing joyously, pointing and awing at all the different options, fantasizing about all the possibilities that could become of their future. Is this a catalog for new furniture. No. This catalog for all features, phenotype and genotype, for the child they are planning to have. It is basically a database for parents to pick and choose all aspects of their children, from the sex of the child, to looks, and even to personality traits.... [tags: Genetic Engineering] 1131 words (3.2 pages) Good Essays [preview] Genetic Engineering - Genes are, basically, the blueprints of our body which are passed down from generation to generation. Through the exploration of these inherited materials, scientists have ventured into the recent, and rather controversial, field of genetic engineering. It is described as the "artificial modification of the genetic code of a living organism", and involves the "manipulation and alteration of inborn characteristics" by humans (Lanza). Like many other issues, genetic engineering has sparked a heated debate.... [tags: Genetic Engineering ] :: 7 Works Cited 1882 words (5.4 pages) Term Papers [preview] Genetic Engineering: The End of Life as We Know It - Prior to 1982, genetic engineering was a relatively new branch of science. Today, scientists have a firm understanding of genetics and its importance to the living world. Genetic engineering allows us to influence the laws of nature in ways favorable to ourselves. Although promising in its achievements, it also has the potential for abuse. If engineering of this caliber were to be used for anything other than the advancement of the human race, the effects could be devastating. If precautions are not implemented on this science, parents might use it solely for eugenic purposes.... [tags: Genetic Engineering Essays] 773 words (2.2 pages) Better Essays [preview] Genetic Engineering: The Next Technological Leap or a Disruption to the Natural Order of Our Planet? - While walking down the produce aisle at your local grocery store, have you ever questioned where the assortment of goods came from. When asked, perhaps your first thought would likely be from a local farm or orchard. But what if I were to tell you that those very goods could in fact be from a far less obvious third choice. What if someone told you that those pretty peaches on display were meticulously grown in a laboratory to bring forth predetermined traits. As futuristic as it may sound, this type of technology is no longer science fiction but has become a new reality.... [tags: Genetic Engineering ] :: 3 Works Cited 936 words (2.7 pages) Better Essays [preview] The Need for Policy Makers to Regulate Human Genetic Engineering - Human genetic engineering (HGE), a prevalent topic for scientists in research, is the process of manipulating genes in the human genome. Potentially, scientists can use the process of HGE to alter many biological and psychological human traits by gene modification. Currently, however, there is a large deficiency in information regarding HGE and its effects to the human body; creating a need for scientists to conduct more research and tests. Because of the many unknowns involving HGE it is necessary for policy makers to regulate HGE for the use by scientists.... [tags: Human Genetic Engineering] :: 2 Works Cited 1249 words (3.6 pages) Strong Essays [preview] The Pros and Cons of Genetic Engineering - Genetic engineering is a process in which scientists transfer genes from one species to another totally unrelated species. Usually this is done in order to get one organism to produce proteins, which it would not naturally produce. The genes taken from one species, which code for a particular protein, are put into cells of another species, using a vector. This can result in the cells producing the desired protein. It is used for producing proteins which can be used by humans, such as insulin for diabetics and is also used to make organisms better at surviving, for example genetically modifying a plant so that it can survive in acidic soil.... [tags: Genetic Engineering Essays] 1054 words (3 pages) Better Essays [preview] Genetic Engineering: The Controversy of Genetic Screening - The Controversy of Genetic Screening Craig Ventor of Celera Genomics, Rockville, MD, and Francis Collins of the National Institutes of Health and Wellcome Trust, London, England, simultaneously presented the sequence of human DNA in June of 2000, accomplishing the first major endeavor of the Human Genome Project (HGP) (Ridley 2). As scientists link human characteristics to genes-segments of DNA found on one or more of the 23 human chromosomes-prospects for genetic engineering will increase dramatically.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1609 words (4.6 pages) Powerful Essays [preview] An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World - An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World Human society always attempts to better itself through the use of technology. Thus far, as a species, we have already achieved much: mastery of electronics, flight, and space travel. However, the field in which the most progress is currently being made is Biology, specifically Genetic Engineering. In Aldous Huxleys Brave New World, humanity has taken control of reproduction and biology in the same way that we have mastered chemistry and physics.... [tags: Genetic Engineering ] :: 6 Works Cited 2288 words (6.5 pages) Term Papers [preview] The Benefits of Genetic Engineering - Outline I. Thesis statement: The benefits of genetic engineering far outweigh its potential for misuse. II. Genetic Engineering A. Definition of Genetic Engineering. (#6) B. Who invented Genetic Engineering Gregor Mendel (Christopher Lampton #7) Thomas Hunt Morgan (Christopher Lampton #7) III. Benefits of Genetic Engineering A. Genetic Screening (Laurence E. Karp #4) B. Gene Therapy (Renato Dulbecco #6) C. Cloning D. Genetic Surgery (Christopher Lampton #7) E. Benefits in Agriculture (David Pimentel and Maurizio G.... [tags: Genetic Engineering Research Papers] :: 15 Works Cited 2500 words (7.1 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The selective Engineering of Genetics is invaluable to the health and happiness of humans. The importance of this issue has played second fiddle to the arguments, for and against genetic engineering. This essay will discuss the impact of genetic engineering on everyday life, for example genetic disorders, disease and how its impact on life in the world today. Although the opinions differ greatly, the benefits are substantial. Firstly, an increasing importance is being placed on the role of genetic engineering in the use of riding the incidence of genetic disorders.... [tags: Genetic Engineering Essays] :: 8 Works Cited 1176 words (3.4 pages) Strong Essays [preview] The Benefits of Genetic Engineering - What exactly is genetic engineering. A simple definition of genetic engineering is the ability to isolate DNA pieces that contain selected genes of other species(Muench 238). Genetic engineering has been the upcoming field of biology since the early nineteen seventies. The prosperous field has benefits for both the medical and also the agricultural field. The diminishing of diseases, especially congenital disorders, reduction of pollution, eradication of world hunger, and increased longevity are just some of the possibilities which scientists foresee.... [tags: Genetic Engineering Essays] 1146 words (3.3 pages) Strong Essays [preview] Genetic Engineering Is Not Ethical - For many years, genetic engineering has been a topic in heated debates. Scientists propose that genetic engineering far outweighs its risks in benefits and should be further studied. Politicians argue that genetic engineering is largely unethical, harmful, and needs to have strong limitations. Although genetic engineering may reap benefits to modern civilization, it raises questions of human ethics, morality, and the limitations we need to set to protect humanity. Though there is harsh criticism from politicians, scientists continue to press forward saying that genetic engineering is of utmost importance to help and improve society.... [tags: Genetic Engineering is Immoral ] :: 5 Works Cited 1490 words (4.3 pages) Strong Essays [preview] Is Genetic Engineering Ethically Correct? - Over the past few years, genetic engineering has come a long way from its roots. What spawned as just a project for understanding has now become quite powerful. An article written by Michael Riess aided me in gaining some knowledge of the ethical dilemmas faced in the field of genetic engineering. Suppose you and your partner both discover that you are carriers of a genetic defect known as cystic fibrosis, and the two of you are expecting a baby. Genetic screening gives you the opportunity to use antenatal diagnosis to see if the baby will have cystic fibrosis or not (Reiss).... [tags: Genetic Engineering Essays] :: 2 Works Cited 715 words (2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - The engineering of deoxyribonucleic acid (DNA) is entirely new, yet genetics, as a field of science, has fascinated mankind for over 2,000 years. Man has always tried to bend nature around his will through selective breeding and other forms of practical genetics. Today, scientists have a greater understanding of genetics and its role in living organisms. Unfortunately, some people are trying to stop further studies in genetics, but the research being conducted today will serve to better mankind tomorrow.... [tags: Genetic Engineering Essays] 1109 words (3.2 pages) Strong Essays [preview] The Benefits of Genetic Engineering - Many people are envied or deprecated because of certain traits they are born with. Those that are envied are a select few, which in turn is why they are envied. When one child in a nursery has a toy, he is coveted by all the other children in the nursery. He will be idolized, and nearly every child will want to be his friend. However, there will also those that want the toy for themselves. The children that are jealous will do whatever they can to get the toy. The jealous children often resort to violence, and this is true in all aspects of life.... [tags: Genetic Engineering Essays] 975 words (2.8 pages) Strong Essays [preview] Genetic Engineering and the Media - Genetic engineering and its related fields have stimulated an extremely controversial scientific debate about cloning for the last decade. With such a wide range of public opinions, it is hard to find any middle ground. Some feel that improving the genes of future children will help mankind make a major evolutionary step forward. Others agree that there could be dangerous unforeseen consequences in our genetic futures if we proceed with such endeavors. A third group warns that the expense of genetic enhancement will further separate the wealthy from the poor and create a super race. Popular magazines and the Internet are two of the major arenas in which this debate has been hotly cont... [tags: Genetic Engineering Essays] :: 21 Works Cited 1731 words (4.9 pages) Powerful Essays [preview] The FDA Should Prohibit Genetic Engineering - Abstract: Recent developments in genomic research have enabled humans to manipulate the genes of living organisms with genetic engineering. Scientists have used this momentous technology in environmental and most recently, agricultural spheres. However, the United States Food and Drug Administration (FDA) does not require that genetically altered foods be labeled as such. As a result, there is no protection against humans' ability to construct organisms that nature never intended to exist and to threaten nature's carefully balanced environment. Is it ethically responsible for the government to allow scientists to continue with these advances if they do not understand their consequences.... [tags: Genetic Engineering, Genetic Ethics] :: 10 Works Cited 2439 words (7 pages) Powerful Essays [preview] Genetic Engineering is Immoral - Genetic engineering gives the power to change many aspects of nature and could result in a lot of life-saving and preventative treatments. Today, scientists have a greater understanding of genetics and its role in living organisms. However, if this power is misused, the damage could be very great. Therefore, although genetic engineering is a field that should be explored, it needs to be strictly regulated and tested before being put into widespread use. Genetic engineering has also, opened the door way to biological solutions for world problems, as well as aid for body malfunctions.... [tags: Genetic Engineering Essays] 423 words (1.2 pages) Strong Essays [preview] Genetic Engineering is Unethical - Just as the success of a corporate body in making money need not set the human condition ahead, neither does every scientific advance automatically make our lives more meaningful'; (Wald 45). These words were spoken by a Nobel Prize winning biologist and Harvard professor, George Wald, in a lecture given in 1976 on the Dangers of Genetic Engineering. This quotation states that incredible inventions, such as genetic engineering, are not always beneficial to society. Genetic engineering is altering the genetic material of cells and/or organisms in order to make them capable of making new substances or performing new functions'; (Wald 45).... [tags: Genetic Engineering is Immoral] :: 3 Works Cited 1141 words (3.3 pages) Better Essays [preview] Genetic Engineering is Unethical - Genetic engineering is a technology that has been created to alter DNA of different species to try and make them more improved. This essay will discuss the eugenics, the religious point of view about genetic engineering, genetically modified food and the genetic screening of embryos. In this essay it will be said wether genetic engineering is ethical or unethical. During 1924 Hitler said that everyone needs to be blond hair, blue eyes and white. This is known as Eugenics, thanks to a new science known as biotechnology in a few decades.... [tags: Genetic Engineering Essays] 492 words (1.4 pages) Strong Essays [preview] Genetic Engineering: Playing God - Current technology has made what once seemed impossible, mapping the human genome, a reality within the next decade. What began over forty years ago with the discovery of the basic structure of DNA has evolved into the Human Genome Project. This is a fifteen-year, three billion dollar effort to sequence the entire human genetic code. The Project, under the direction of the U.S. National Institute of Health and the department of Energy is ahead of schedule in mapping what makes up an individual's genetic imprint.... [tags: Genetic Engineering Essays] 634 words (1.8 pages) Strong Essays [preview] Genetic Engineering: Playing God - Regenerating extinct species, engineering babies that are born without vital body organs, this is what the use of genetic engineering brings to the world. In Greek myth, an chimera was a part lion, part goat, part dragon that lived in Lycia; in real life, its an animal customized with genes of different species. In reality, it could be a human-animal mixture that could result in horror for the scientific community. In myth the chimera was taken down by the warrior Bellerophon, the biotech version faces platoons of lawyers, bioethicists, and biologists (Hager).... [tags: Genetic Engineering Essays] :: 8 Works Cited 1804 words (5.2 pages) Strong Essays [preview] Genetic Engineering Research Paper - I. Introduction In the past three decades, scientists have learned how to mix and match characteristics among unrelated creatures by moving genes from one creature to another. This is called genetic engineering. Genetic Engineering is prematurely applied to food production. There are estimates that food output must increase by 60 percent over the next 25 years to keep up with demand. Thus, the result of scientist genetically altering plants for more consumption. The two most common methods for gene transfer are biological and electromechanical.... [tags: Science Biology Genetic Engineering Essays] :: 3 Works Cited 1347 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering: Unnatural Selection - Introduction Technology has a significant influence across the world, as it has become a fast growing field. Modern biotechnology has been in the major forefront of this influence. From the discovery of DNA to the cloning of various animals, the study of genetic engineering has changed the way society views life. However, does genetic engineering have the capacity to influence the world to its best abilities. Products, which are genetically engineered, may cause severe negative effects on our society.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1509 words (4.3 pages) Strong Essays [preview] Genetic Engineering - At the Roslin Institute in Edinburgh, Scotland, Dr. Keith Campbell, director of embryology at PPL therapeutics in Roslin, and his colleague Dr. Ian Wilmut worked together on a project to clone a sheep, Dolly, from adult cells. On February 22, 1997, they finally succeeded. Dolly was the only lamb born from 277 fusions of oocytes with udder cells. Wilmut says there were so many failures because it is difficult to ensure that the empty oocytes and the donor cell are at the same stage of the cell division cycle.To clone Dolly, basically scientists took an unfertilized egg cell, removed the nucleus, replaced it with cells taken from the organism to be cloned, put it into an empty egg cell which... [tags: Genetic Engineering Essays] 1446 words (4.1 pages) Strong Essays [preview] Genetic Engineering: Our Key to a Better World - What is genetic engineering one might ask and why is there so much moral controversy surrounding the topic. Genetic engineering as defined by Pete Moore, "is the name given to a wide variety of techniques that have one thing in common: they all allow the biologist to take a gene from one cell and insert it into another" (SS1). Such techniques included in genetic engineering (both "good" and "bad") are, genetic screening both during the fetal stage and later in life, gene therapy, sex selection in fetuses, and cloning.... [tags: Genetic Engineering Essays] :: 3 Works Cited 1117 words (3.2 pages) Better Essays [preview] Genetic Engineering and Cryonic Freezing: A Modern Frankenstein? - Genetic Engineering and Cryonic Freezing: A Modern Frankenstein. In Mary Shelley's Frankenstein, a new being was artificially created using the parts of others. That topic thus examines the ethics of "playing God" and, though written in 1818, it is still a relevant issue today. Genetic engineering and cryogenic freezing are two current technologies related to the theme in the novel of science transcending the limits of what humans can and should do. Genetic engineering is widely used today.... [tags: Genetic Engineering Essay Examples] :: 5 Works Cited 1507 words (4.3 pages) Powerful Essays [preview] Genetic Engineering: The Tremendous Benefits Outweigh the Risks - Wouldn't it be great to improve health care, improve agriculture, and improve our quality of life. Genetic engineering is already accomplishing those things, and has the potential to accomplish much more. Genetic engineering, also referred to as biotechnology, is a fairly new science where the genes of an organism are modified to change the features of an organism or group of organisms. Genes are found in the DNA (deoxyribonucleic acid) of an organism, and each gene controls a specific trait of an organism.... [tags: Genetic Engineering Essay Examples] :: 7 Works Cited 2253 words (6.4 pages) Powerful Essays [preview] Genetic Engineering Brings More Harm Than Good - Until the recent demise of the Soviet Union, we lived under the daily threat of nuclear holocaust extinguishing human life and the entire biosphere. Now it looks more likely that total destruction will be averted, and that widespread, but not universally fatal, damage will continue to occur from radiation accidents from power plants, aging nuclear submarines, and perhaps the limited use of tactical nuclear weapons by governments or terrorists. What has gone largely unnoticed is the unprecedented lethal threat of genetic engineering to life on the planet.... [tags: Genetic Engineering Essays] 1953 words (5.6 pages) Strong Essays [preview] Genetic Engineering New Teeth - The article I read was about some scientists that were able to grow teeth inside rats bodies. This project was led by Pamela C. Yelick, a scientist for Forsyth Institute, and the project was conducted in Massachusetts. Joseph P. Vacanti, a tissue engineer at Massachusetts General Hospital, and Yelick had the idea for the experiment. Vacanti had previously worked with rats and he found that cells will naturally organize themselves into tissues and other complex structures if they are placed in the right environment.... [tags: Genetic Engineering Essays] 736 words (2.1 pages) Strong Essays [preview] Ethics of Human Cloning and Genetic Engineering - INTRODUCTION When the Roslin Institute's first sheep cloning work was announced in March 1996 the papers were full of speculation about its long-term implications. Because of this discovery, the medias attention has focused mainly on discussion of the possibility, of cloning humans. In doing so, it has missed the much more immediate impact of this work on how we use animals. It's not certain this would really lead to flocks of cloned lambs in the fields of rural America, or clinically reproducible cuts of meat on the supermarket shelves.... [tags: Genetic Engineering Essays] :: 9 Works Cited 1845 words (5.3 pages) Strong Essays [preview] We Must Educate Ourselves Before Passing Laws Restricting Cloning and Genetic Engineering - Biotechnology and genetic engineering involve the cloning of animal cells and organisms, but they also involve the alteration of an organism in an effort to make it more perfect, whether it is a crop, an animal, or even a human being. Obviously the cloning of humans or the cloning of human cells is much different than the cloning of genetically superior livestock or a better quality, higher yielding food crop, and people throughout the world realize this. The cloning of human beings has become one of the worst fears in our society today and for that reason many laws have been passed throughout European countries and North America in an effort to ban human cloning.... [tags: Genetic Engineering Essays] :: 4 Works Cited 1937 words (5.5 pages) Powerful Essays [preview] The Benefits of Human Genetic Engineering - Pre-implantation genetic diagnosis is a revolutionary procedure that utilizes in vitro fertilization to implant a healthy egg cell into the mothers uterus after it is screened for mutations or other abnormalities. That way, only healthy eggs can develop to term and become beautiful, bouncing boys or girls. Designer babies have a bright future in the face of science because they are genetically engineered to be: disease free; viable donors for a sibling or parent; and with optional elimination of any severe cosmetic disorders that might develop,without risk to human diversity in the future.... [tags: Pre-implantation genetic diagnosis, PGD] :: 6 Works Cited 1650 words (4.7 pages) Powerful Essays [preview] Genetic Engineering The Perfect Child - Modern society has an unquestionable preoccupation with perfection. Indulging in our vanities with things such as plastic surgery, veneers, botox, collagen, hair dye, and so on, have become a part of the socially acceptable norm. People do these things, and more, in an attempt to become their ideal selves. However, many are taking these practices to a completely new extreme, and are not stopping at just altering their own physical characteristics. With recent advances in medical science and technology, couples are now able to genetically modify embryos to create their ideal children.... [tags: Pre-Implantation Genetic Diagnosis] :: 2 Works Cited 1022 words (2.9 pages) Strong Essays [preview] The Morals and Ethics of Genetic Engineering - Introduction Widely considered a revolutionary scientific breakthrough, genetic engineering has been on a path toward changing the world since its introduction in 1973 by Stanley Cohen and Herbert Boyer (What). However, as genetic engineering slowly permeates the lives of humanity, the morals and ethics behind what are now common practices are entering public attention, and as a culture we are left to question whether the change brought on by such a discovery bring benefits and positive change, or damage and destruction.... [tags: genetics, theology, bioethics, DNA, GMOs] :: 13 Works Cited 3322 words (9.5 pages) Research Papers [preview] The Human Genetic Engineering Debate - Science is moving forward at an increasing rate every day. Just in the past decade, there have been numerous new discoveries in astronomy, chemistry, geology, paleontology, and many more scientific fields. However, some of the fastest growing subjects are in the field of biological sciences, more specifically genetics. Over the past twenty years a new genetic science known as genetic engineering has come to prominence. Genetic engineering is the direct manipulation of an organisms genome using biotechnology, including a humans genome.... [tags: Genetics, Science Ethics] :: 9 Works Cited 1838 words (5.3 pages) Better Essays [preview] Genetic Engineering in the Modern World - Advances in biotechnology can be looked at two ways; both, positive and negative. People can also differ in what would qualify as a positive and negative way. Some may think that tinkering with Deoxyribonucleic acid also know as DNA, should not be allowed at all for any reason. Others may believe that manipulating human DNA can have many different beneficial outcomes. Biotechnology and genetic engineering can be looked at in two very different ways; can either be misused or unethical or it can be beneficial, ethical, and used for the better kind.... [tags: biotechnology, DNA, abortion] :: 1 Works Cited 966 words (2.8 pages) Better Essays [preview] Genetic Engineering and the Pursuit of Perfection - Research Paper Rough Draft In the year 2050, a young boy nervously rehearses what hes going to say as he approaches the cheerleader hes been too nervous to approach for the past month. But as he draws near, a jock pushes his books out of his hands. Hes teased, being the school wimp. They call him names like undesirable, god-child, and in-valid. Of course nobody cares for a less-than-perfect child whose genetic makeup was left to fate. With the introduction of genetic engineering into society, people like this young boy simply have no hope for competing against the likes of the genetically reimagined, perfect jock, people engineered to be unflawed.... [tags: Perfection, Body Image, Technology] :: 10 Works Cited 1898 words (5.4 pages) Powerful Essays [preview] Genetic Engineering: Pros and Cons - Our world has finally begun its long-predicted descent into the depths of chaos. We may not yet realize it, but more and more problems plague the very state of our humanity with each passing day, such as cancer, famine, genetic disorders, and social elitism. It seems as though there is little hope, although a new solution has finally emerged, in the form of genetic engineering. It is apparent, however, that currently we cannot proceed, because while there are an abundant amount of advantages to genetic engineering, it is not a utopian process; criticism includes its practicality, theological implications, and changes in modern social structure.... [tags: Eugenics, Ethics] :: 5 Works Cited 1212 words (3.5 pages) Strong Essays [preview] Is Genetic Engineering Ethically Right? - Described at its most simple, ethics can be described as a socially constructed set of behaviours and beliefs deemed either acceptable or unacceptable by the vast majority of people. Ethical beliefs can vary somewhat from person to person and are ever changing and malleable (www.ncbi.nlm.gov/pubmed/15289521). There are three main ethical theories used by present day philosophers; these are Meta-ethics, Normative ethics and Applied ethics. Meta-ethics focuses on the nature of moral judgement and the foundation of ethical principles.... [tags: DNA, gene, diabetis] :: 10 Works Cited 1191 words (3.4 pages) Strong Essays [preview] Genetic Engineering and the Public - Genetic Engineering and the Publics Uses of Genetic Engineering Opinions about genetic engineering range from disgust to awe. These opinions may also depend on what type of animal is being genetically manipulated, how such manipulation is being done, and for what reasons. In California, pet fish that have been genetically altered to fluoresce (glofish) have been restricted for sale.[1] Yet, for the rest of the United States these fish are found in several species, varieties and morphs. In California, Commissioner of Californias Fish and Game, Sam Schuchat, felt that there was a difference in genetic modification depending on the use of the product made.[2] The use of genetic engineering f... [tags: Stake Holders, Science, Dialogue] :: 6 Works Cited 877 words (2.5 pages) Better Essays [preview] Genetic Engineering: A Good Thing? - Today there are many definitions of Genetic Engineering, such as Genetic Engineering is a laboratory technique used by scientists to change the DNA of living organisms (Kowalski) and Genetic Engineering refers to the modification or manipulation of a living organisms genes (Genetic). No matter the wording all definitions of genetic engineering refers to somehow changing an organisms genetic identity. Many people today support genetic engineering because it has many potential benefits for today's society; however, it also has many potential threats associated with it.... [tags: argumentative, persuasive, informative] :: 19 Works Cited 1928 words (5.5 pages) Powerful Essays [preview] Genetic Engineering and its Drawbacks - In the past few years, there have been numerous technological advances, one of them being genetic engineering. Scientists are experimenting with genes and animals to create everything from a Day-Glo pet fish to a pig whose liver could be used in a liver transplant for humans. Scientists argue that genetic engineering can be used to test medicinal products without putting humans at risk, to battle diseases and to make a body with a stronger immune system, amongst many other reasons, which they claim are to improve the outcome of the human race.... [tags: gene, transplant, animal testing] :: 9 Works Cited 911 words (2.6 pages) Better Essays [preview] The Perfect Child: Genetic Engineering - Have you ever wondered what it would be like if you could produce the perfect child. You picked their eye color, hair color, body type, even intelligence level. Instead of waiting nine months to see what your child looks like; you will already know because you chose their outer appearance. Improvements in science, has given way to the idea of allowing people to choose their offsprings physical attributes. This new concept is known as designer babies. A designer baby according to the oxford dictionary is a baby whose genetic makeup has been artificially selected by genetic engineering, combined with in vitro fertilization to ensure the presence or absence of particular genes or characteris... [tags: Designer Babies, Stem Cells] :: 5 Works Cited 899 words (2.6 pages) Better Essays [preview] Cons of Genetic Modification of Plants - In our everyday lives we have a substantial need for food. Everyone on planet earth needs food to survive from day to day, so engineers have begun mutating plants and crops to create a better source of nutrition to the population. Scientists are pushing the boundaries in order to create the most bountiful crops and, in turn, healthier people. Imagine what could happen if there were larger harvests, more succulent fruits and nutritious vegetables. Our imagination can run wild with the endless possibilities of genetic alteration of food.... [tags: Genetic Engineering ] :: 5 Works Cited 1011 words (2.9 pages) Strong Essays [preview] Germline Engineering and Reprogenetic Technologies - Modern technologies are constantly advancing in a multitude of ways to the degree that scientists have gained enough knowledgeable about the human genome to be able to find specific genes during the embryonic stage of reproduction. Scientists have already begun to use this knowledge to allow parents the ability to select the sex of their child and screen for genetic diseases via preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF). Sex-selection has already created world-wide discussion regarding the ethics of such a situation.... [tags: Genetic Engineering ] :: 4 Works Cited 2055 words (5.9 pages) Term Papers [preview] Genetic Engineering and Experimentation - ... However, Ill be using it in the context that it is the experimentation of genetic engineering to see if its safe for the public. While you might think genetic engineering/experimentation is all fun and games while youre having your genes modified to make you smarter, or prettier, or something like that, there are consequences and dangers that can come with that modification. Then again, once perfected, genetic engineering could do a lot of good for humanity and society in general. Eliminate diseases, fix mental and psychological disabilities, maybe even (and semi-hopefully) keep people from being outright stupid.... [tags: Science, Controversy] :: 4 Works Cited 880 words (2.5 pages) Better Essays [preview] The Genetic Engineering Debate - In recent discussions of genetic engineering, a controversial issue has been whether genetic engineering is ethical or not. In The Person, the Soul, and Genetic Engineering, JC Polkinghorne discusses about the moral status of the very early embryo and therapeutic cloning. J. H. Brookes article Commentary on: The Person, the Soul, and Genetic Engineering comments and state opinions that counter Polkinghornes article. On the other hand John Harriss Goodbye Dolly? The Ethics of Human Cloning examines the possible uses and abuses of human cloning and draw out the principal ethical dimensions, both of what might be done and its meaning, and of public and official response (353).... [tags: Ethical Dilemma, Embryos With Dignity] :: 4 Works Cited 1403 words (4 pages) Powerful Essays [preview] Ethics of Genetic Modification Technology - Modern society is on the verge of a biotechnological revolution: the foods we eat no longer serve simply to feed us, but to feed entire nations, to withstand natural disasters, and to deliver preventative vaccination. Much of this technology exists due to the rapid development of genetic modification, and todays genetically modified crops are only the tip of the proverbial iceberg. Says Robert T. Fraley, chief technology officer for biotech giant Monsanto, Its like computers in the 1960s. We are just at the beginning of the explosion of technology we are going to see." Biotechnologys discontents are numerous and furious, declaring the efforts of corporations of Monsanto to be dangerous... [tags: Genetic Engineering] 776 words (2.2 pages) Better Essays [preview] Xerosotmia and genetic engineering - All around the globe, predominantly in the United States and in Europe, there are technological advances in science that affects the way people live. In recent years, genetically modified organisms (GMOs) have replaced peoples diet with genetically altered foods, which has affected human health. In a broad view, GMOs are created by splicing genes of different species that are combined through genetic engineering, consequently improving the resulting organism. Large corporations who choose to use Xerosotmia i i make larger profits with less time and effort involved (ABNE).... [tags: biology, genetically modified organisms] :: 4 Works Cited 1309 words (3.7 pages) Powerful Essays [preview] The Dangers of Genetic Engineering - Genetically manipulating genes to create certain traits in a human embryo is impossible at this point. Perhaps it will never happen. It is not inevitable in the long run, as some scientists pragmatically point out. (Embgen). It is, however, something that dominates modern day discussion concerning genetics and therefore must be addressed with care and consideration. There are many ways that gene manipulation could come about. Advances in spermatogenesis as well as the field of assisted reproductive technology, as seen in In Vitro Fertilization clinics, point toward methods that could house the systematic alteration of genetic information in reproductive cells. Transpl... [tags: Genetic Manipulation Essays] :: 5 Works Cited 1033 words (3 pages) Strong Essays [preview] Engineering the Perfect Human - For centuries, mankind has been fascinated by the idea of perfection. In recent decades, the issue has been raised regarding the perfect human and whether scientists are able to engineer and create this. Attempts have been made in the past to engineer this said perfect human, through eugenics and scientific racism, but until now, these attempts have been ineffective. Only now, with modern technology, are scientists able to make more significant progress in altering the human genome to the produce desired characteristics of perfection.... [tags: Genetic Engineering ] :: 21 Works Cited 1831 words (5.2 pages) Term Papers [preview] Can Genetic Modification Benefit Humanity? - Throughout the course of human history, new technological advancements have always created opposing views, and conflict between the different groups that hold them. Today, one of the greatest technological controversies is over the morals and practicality of genetically modifying crops and animals. Reasons for doing so vary from making them more nutritious to making plants more bountiful to allowing organisms to benefit humans in ways never before possible. Genetic engineering is a process in which genes within the DNA of one organism are removed and placed into the DNA of another, a reshuffling of genesfrom one species to another (Steinbrecher qtd.... [tags: Genetic Engineering] 1676 words (4.8 pages) Powerful Essays [preview] Genetic Engineering - In the field of animal and human genetic engineering there is much more speculation, than fact, because very little has actually been tested in the real world. Firstly, theres a big question mark over safety of genetic engineering. In addition, genetic engineering can cause greater problems than that what we have today. Moreover, we can create a injustice world between Designer vs Non-designer children. Furthermore, genetic engineering is a type of murder because of the process of genetically modifying a baby.... [tags: designer babies, perfect baby] :: 5 Works Cited 911 words (2.6 pages) Better Essays [preview] Genetic Engineering - Imagine a world where diseases can be found and prevented before they happen. This would be a future possibility if genetic engineering became more advanced. Genetic engineering is when parts of DNA are spliced into another piece of DNA which give new traits to the organism containing the DNA. Through continued research in the field of genetics, techniques such as mapping genomes and splicing DNA can be used beneficially to improve on existing organisms and their traits. To help understand genetic engineering, it is important to understand its history.... [tags: Cloning] :: 4 Works Cited 894 words (2.6 pages) Better Essays [preview] Genetic Engineering - In the 21st century, times are changing. Everyday objects are becoming perfect with alterations to their system. These alterations are not only occurring on man-made objects, but also on natural organisms, such as newborn babies. Science has come a long way to being able to have the capability to alter pre-born babies to a parents desire. There are four arguments that can be considered when discussing this topic, including nature and three others. While many scientific minds are all for creating perfection in a child, many different groups of minds are arguing this act against nature should be abolished from scientists minds.... [tags: Ethics] 888 words (2.5 pages) Better Essays [preview] Genetic Engineering - I, as a Christian, believe that the traits of a child are a blessing to a parent in one-way or another. Although I hold this true, I actually wouldnt mind being able to design my own baby. I mean, I could root out all of the bad traits, and add the ones I want. I would make my child a girl with olive skin, brown hair, bright green eyes, and to have the dancing feet of Fosse, the facial expressions of Liz Taylor, and the vocal chords of Lea Michelle. I want her to be a star of the screen or stage.... [tags: controversy, genes, physical traits, flaws] :: 3 Works Cited 890 words (2.5 pages) Better Essays [preview] Genetic Engineering - Moore's law, the statement that technologies will double every two years is a very thought-provoking inception for technologist and scientist (Moore's Law par.1). Numerous people are thrilled about this commandment while others are petrified. Why an individual might be troubled by technology one might inquire. Well there are many arguments that claim that technology is contrary to itself, nature, and humans. The unpretentious fact is technology is cohesive within the humanoid existence and will linger as time travels on.... [tags: genetically modified foods] :: 13 Works Cited 1461 words (4.2 pages) Powerful Essays [preview] Human Genetic Engineering: Dreams and Nightmares - Technological breakthroughs and advancements have occurred so rapidly since the dawn of the information age, that one often overlooks the great power humanity holds over the building blocks of life itself. While our understanding and mapping of Deoxyribonucleic acid (DNA) sequences has been slow coming since Friedrich Mieschers isolation of the double-helix shaped molecule, efforts in recent decades to map the human genome have opened many doors to the potential manipulation of lifes basic elements.... [tags: human genome, human genetics, cloning] :: 7 Works Cited 1162 words (3.3 pages) Strong Essays [preview]
Original post:
Free genetic engineering Essays and Papers - 123helpme
Posted in Genetic Engineering
Comments Off on Free genetic engineering Essays and Papers – 123helpme
Gene therapy – Wikipedia
Posted: November 20, 2016 at 7:46 am
Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease.[1] The first attempt at modifying human DNA was performed in 1980 by Martin Cline, but the first successful and approved[by whom?] nuclear gene transfer in humans was performed in May 1989.[2] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.
Between 1989 and February 2016, over 2,300 clinical trials had been conducted, more than half of them in phase I.[3]
It should be noted that not all medical procedures that introduce alterations to a patient's genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[4] Gene therapy is defined by the precision of the procedure and the intention of direct therapeutic effects.
Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.
The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[5][6] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[7] and even if he is correct, it's unlikely it produced any significant beneficial effects treating beta-thalassemia.[8]
After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on September 14, 1990, when Ashi DeSilva was treated for ADA-SCID.[9]
The first somatic treatment that produced a permanent genetic change was performed in 1993.[10]
This procedure was referred to sensationally and somewhat inaccurately in the media as a "three parent baby", though mtDNA is not the primary human genome and has little effect on an organism's individual characteristics beyond powering their cells.
Gene therapy is a way to fix a genetic problem at its source. The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations.
The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells.
Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers' attention, although as of 2014, it was still largely an experimental technique.[11] These include treatment of retinal diseases Leber's congenital amaurosis[12][13][14][15] and choroideremia,[16]X-linked SCID,[17] ADA-SCID,[18][19]adrenoleukodystrophy,[20]chronic lymphocytic leukemia (CLL),[21]acute lymphocytic leukemia (ALL),[22]multiple myeloma,[23]haemophilia[19] and Parkinson's disease.[24] Between 2013 and April 2014, US companies invested over $600 million in the field.[25]
The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[26] In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[27] In 2012 Glybera, a treatment for a rare inherited disorder, became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[11][28]
Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[29] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[28]
DNA must be administered, reach the damaged cells, enter the cell and express/disrupt a protein.[30] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[31][32]Naked DNA approaches have also been explored, especially in the context of vaccine development.[33]
Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014 these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[34]
Gene editing is a potential approach to alter the human genome to treat genetic diseases,[35] viral diseases,[36] and cancer.[37] As of 2016 these approaches were still years from being medicine.[38][39]
Gene therapy may be classified into two types:
In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.
Over 600 clinical trials utilizing SCGT are underway in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[40]
In germline gene therapy (GGT), germ cells (sperm or eggs) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism's cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland and the Netherlands[41] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[41] and higher risks versus SCGT.[42] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).[41][43][44][45]
The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).
In order to replicate, viruses introduce their genetic material into the host cell, tricking the host's cellular machinery into using it as blueprints for viral proteins. Scientists exploit this by substituting a virus's genetic material with therapeutic DNA. (The term 'DNA' may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retrovirus, adenovirus, lentivirus, herpes simplex, vaccinia and adeno-associated virus.[3] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host's genome, becoming a permanent part of the host's DNA in infected cells.
Non-viral methods present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Later technology remedied this deficiency[citation needed].
Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.
Some of the unsolved problems include:
Three patients' deaths have been reported in gene therapy trials, putting the field under close scrutiny. The first was that of Jesse Gelsinger in 1999.[52] One X-SCID patient died of leukemia in 2003.[9] In 2007, a rheumatoid arthritis patient died from an infection; the subsequent investigation concluded that the death was not related to gene therapy.[53]
In 1972 Friedmann and Roblin authored a paper in Science titled "Gene therapy for human genetic disease?"[54] Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those who suffer from genetic defects.[55]
In 1984 a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.[56]
The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson.[57] Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with ADA-SCID, a severe immune system deficiency. The effects were temporary, but successful.[58]
Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993).[59] The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH n 1602, and FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.
In 1992 Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases.[60] In 2002 this work led to the publication of the first successful gene therapy treatment for adenosine deaminase-deficiency (SCID). The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or "bubble boy" disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial's Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy and Germany.[61]
In 1993 Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother's placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew's blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.[citation needed]
Jesse Gelsinger's death in 1999 impeded gene therapy research in the US.[62][63] As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.[64]
The modified cancer gene therapy strategy of antisense IGF-I RNA (NIH n 1602)[65] using antisense / triple helix anti IGF-I approach was registered in 2002 by Wiley gene therapy clinical trial - n 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This antigene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.
Sickle-cell disease can be treated in mice.[66] The mice which have essentially the same defect that causes human cases used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.[67]
A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.[68]
Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.[69]
In 2003 a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which, unlike viral vectors, are small enough to cross the bloodbrain barrier.[70]
Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.[71]
Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.[26]
In March researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.[72]
In May a team reported a way to prevent the immune system from rejecting a newly delivered gene.[73] Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.
In August scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.[74]
In November researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.[75][76]
In May researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.[77]
Leber's congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April.[12] Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.[12][13][14][15]
In September researchers were able to give trichromatic vision to squirrel monkeys.[78] In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.[79]
An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.[80]
In September it was announced that an 18-year-old male patient in France with beta-thalassemia major had been successfully treated.[81] Beta-thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions.[82] The technique used a lentiviral vector to transduce the human -globin gene into purified blood and marrow cells obtained from the patient in June 2007.[83] The patient's haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed.[83][84] Further clinical trials were planned.[85]Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.[84]
Cancer immunogene therapy using modified anti gene, antisense / triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14.12.2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers, were treated (Trojan et al. 2016). [86][87]
In 2007 and 2008, a man was cured of HIV by repeated Hematopoietic stem cell transplantation (see also Allogeneic stem cell transplantation, Allogeneic bone marrow transplantation, Allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011.[88] It required complete ablation of existing bone marrow, which is very debilitating.
In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease.[21] In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.[89]
Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.[90][91]
In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF.[92][27] Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.[93][94]
The FDA approved Phase 1 clinical trials on thalassemia major patients in the US for 10 participants in July.[95] The study was expected to continue until 2015.[96]
In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis.[97] The recommendation was endorsed by the European Commission in November 2012[11][28][98][99] and commercial rollout began in late 2014.[100]
In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission "or very close to it" three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.[23]
In March researchers reported that three of five subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B-cells, cancerous or not. The researchers believed that the patients' immune systems would make normal T-cells and B-cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.[22]
Following encouraging Phase 1 trials, in April, researchers announced they were starting Phase 2 clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients[101] at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function.[102] The FDA granted this a Breakthrough Therapy Designation to accelerate the trial and approval process.[103] In 2016 it was reported that no improvement was found from the CUPID 2 trial.[104]
In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 732 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills.[105] The other children had Wiskott-Aldrich syndrome, which leaves them to open to infection, autoimmune diseases and cancer.[106] Follow up trials with gene therapy on another six children with Wiskott-Aldrich syndrome were also reported as promising.[107][108]
In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress.[19] In 2014 a further 18 children with ADA-SCID were cured by gene therapy.[109] ADA-SCID children have no functioning immune system and are sometimes known as "bubble children."[19]
Also in October researchers reported that they had treated six haemophilia sufferers in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.[19][110]
Data from three trials on Topical cystic fibrosis transmembrane conductance regulator gene therapy were reported to not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections.[111]
In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight.[112][113] By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting.[16] Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.
In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.[114][115]
Clinical trials of gene therapy for sickle cell disease were started in 2014[116][117] although one review failed to find any such trials.[118]
In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA "breakthrough" status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.[119]
In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys' cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza and hepatitis are underway.[120][121]
In March scientists, including an inventor of CRISPR, urged a worldwide moratorium on germline gene therapy, writing scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans until the full implications are discussed among scientific and governmental organizations.[122][123][124][125]
Also in 2015 Glybera was approved for the German market.[126]
In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T-cells genetically engineered using TALEN to attack cancer cells. Two months after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia [ALL]). Children with highly aggressive ALL normally have a very poor prognosis and Layla's disease had been regarded as terminal before the treatment.[127]
In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies[128] but that basic research including embryo gene editing should continue.[129]
In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis and recommended it be approved.[130][131] This treats children born with ADA-SCID and who have no functioning immune system - sometimes called the "bubble baby" disease. This would be the second gene therapy treatment to be approved in Europe.[132]
In October, Chinese scientists reported they had started a trial to genetically modify T-cells from 10 adult patients with lung cancer and reinject the modified T-cells back into their bodies to attack the cancer cells. The T-cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.[133][134]
Speculated uses for gene therapy include:
Gene Therapy techniques have the potential to provide alternative treatments for those with infertility. Recently, successful experimentation on mice has proven that fertility can be restored by using the gene therapy method, CRISPR.[135] Spermatogenical stem cells from another organism were transplanted into the testes of an infertile male mouse. The stem cells re-established spermatogenesis and fertility.[136]
Athletes might adopt gene therapy technologies to improve their performance.[137]Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[138]
Genetic engineering could be used to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.[139][140][141] For adults, genetic engineering could be seen as another enhancement technique to add to diet, exercise, education, cosmetics and plastic surgery.[142][143] Another theorist claims that moral concerns limit but do not prohibit germline engineering.[144]
Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Associations Council on Ethical and Judicial Affairs stated that "genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics."[145]
As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools,[146] and such concerns have continued as technology progressed.[147] With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.[122][123][124][125] In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[135][148]
Regulations covering genetic modification are part of general guidelines about human-involved biomedical research.
The Helsinki Declaration (Ethical Principles for Medical Research Involving Human Subjects) was amended by the World Medical Association's General Assembly in 2008. This document provides principles physicians and researchers must consider when involving humans as research subjects. The Statement on Gene Therapy Research initiated by the Human Genome Organization (HUGO) in 2001 provides a legal baseline for all countries. HUGOs document emphasizes human freedom and adherence to human rights, and offers recommendations for somatic gene therapy, including the importance of recognizing public concerns about such research.[149]
No federal legislation lays out protocols or restrictions about human genetic engineering. This subject is governed by overlapping regulations from local and federal agencies, including the Department of Health and Human Services, the FDA and NIH's Recombinant DNA Advisory Committee. Researchers seeking federal funds for an investigational new drug application, (commonly the case for somatic human genetic engineering), must obey international and federal guidelines for the protection of human subjects.[150]
NIH serves as the main gene therapy regulator for federally funded research. Privately funded research is advised to follow these regulations. NIH provides funding for research that develops or enhances genetic engineering techniques and to evaluate the ethics and quality in current research. The NIH maintains a mandatory registry of human genetic engineering research protocols that includes all federally funded projects.
An NIH advisory committee published a set of guidelines on gene manipulation.[151] The guidelines discuss lab safety as well as human test subjects and various experimental types that involve genetic changes. Several sections specifically pertain to human genetic engineering, including Section III-C-1. This section describes required review processes and other aspects when seeking approval to begin clinical research involving genetic transfer into a human patient.[152] The protocol for a gene therapy clinical trial must be approved by the NIH's Recombinant DNA Advisory Committee prior to any clinical trial beginning; this is different from any other kind of clinical trial.[151]
As with other kinds of drugs, the FDA regulates the quality and safety of gene therapy products and supervises how these products are used clinically. Therapeutic alteration of the human genome falls under the same regulatory requirements as any other medical treatment. Research involving human subjects, such as clinical trials, must be reviewed and approved by the FDA and an Institutional Review Board.[153][154]
Gene therapy is the basis for the plotline of the film I Am Legend[155] and the TV show Will Gene Therapy Change the Human Race?.[156]
More here:
Gene therapy - Wikipedia
Posted in Genetic Engineering
Comments Off on Gene therapy – Wikipedia
Genetic Engineering in Agriculture | Union of Concerned …
Posted: November 16, 2016 at 3:45 pm
While the risks of genetic engineering are often exaggerated or misrepresented, GE crops do have the potential to cause a variety of health problems and environmental impacts. For instance, they may spread undesirable traits to weeds and non-GE crops, produce new allergens and toxins, or harm animals that consume them.
At least one major environmental impact of genetic engineering has already reached critical proportions: overuse of herbicide-tolerant GE crops has spurred an increase in herbicide use and an epidemic of herbicide-resistant "superweeds," which will lead to even more herbicide use.
How likely are other harmful GE impacts to occur? This is a difficult question to answer. Each crop-gene combination poses its own set of risks. While risk assessments are conducted as part of GE product approval, the data are generally supplied by the company seeking approval, and GE companies use their patent rights to exercise tight control over research on their products.
In short, there is a lot we don't know about the long-term and epidemiological risks of GEwhich is no reason for panic, but a good reason for caution, particularly in view of alternatives that are more effective and economical.
Read more here:
Genetic Engineering in Agriculture | Union of Concerned ...
Posted in Genetic Engineering
Comments Off on Genetic Engineering in Agriculture | Union of Concerned …
Genetic Engineering – The New York Times
Posted: November 10, 2016 at 4:44 pm
Latest Articles
A cotton farmer in India says they have greatly increased his yield. The Union of Concerned Scientists urges better crop management methods instead.
Higher yields with less pesticides was the sales pitch for genetically modified seeds. But that has not proved to be the outcome in the United States.
By DANNY HAKIM
A new survey shows distrust of scientists, a suspicion about claims of progress and discomfort with the idea of meddling with human abilities.
By GINA KOLATA
The bill would require companies to indicate that foods have genetically engineered ingredients, but disagreement remains over how that would be done.
By STEPHANIE STROM
The study was testing the use of genetically engineered cells as a treatment for cancer, which had shown promising earlier results.
The bill would set a national standard for labeling G.M.O. foods, though critics say the system would not be tough enough.
By STEPHANIE STROM
A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.
By THE EDITORIAL BOARD
As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.
By STEPHANIE STROM
The worlds top scientists say opponents of genetically modified foods are standing in the way of nutrition for people around the world.
By NIRAJ CHOKSHI
A technique to change or eliminate entire populations of organisms could be used against virus-carrying mosquitoes. It could also have unintended consequences.
By AMY HARMON
Residents there heard a proposal Monday from an M.I.T. scientist to use genetically engineered mice to stop the spread of the tick-borne disease.
By AMY HARMON
A common bacterium contains molecules that target RNA, not DNA. If it can be harnessed for use in humans, the process may lead to new forms of bioengineering.
By CARL ZIMMER
The formal announcement of the plans, which leaked last month, seeks to raise $100 million this year. The total price tag could exceed $1 billion.
By ANDREW POLLACK
One of the scientists credited with starting the gene editing revolution discusses her landmark discovery and how science has driven her.
By GINA KOLATA
Ritual, a start-up, is introducing a multivitamin that is vegan, mostly free of genetically engineered ingredients and tailored to todays diets.
By STEPHANIE STROM
The transaction, if consummated, would create an industry giant whose products include pain medications, genetically modified crops and pesticides.
By MICHAEL J. de la MERCED and CHAD BRAY
Without disclosing details, Monsanto said its board was reviewing a proposal that would create a giant with a combined annual revenue of $67 billion.
By MICHAEL J. de la MERCED
The report from the National Academies of Sciences, Engineering and Medicine is not expected to end the highly polarized debate over the technology.
By ANDREW POLLACK
Bioengineered food products are safe. So why do we try to hide the facts about them?
By JASON KELLY
The project poses ethical issues about whether humans could be created without parents.
By ANDREW POLLACK
A cotton farmer in India says they have greatly increased his yield. The Union of Concerned Scientists urges better crop management methods instead.
Higher yields with less pesticides was the sales pitch for genetically modified seeds. But that has not proved to be the outcome in the United States.
By DANNY HAKIM
A new survey shows distrust of scientists, a suspicion about claims of progress and discomfort with the idea of meddling with human abilities.
By GINA KOLATA
The bill would require companies to indicate that foods have genetically engineered ingredients, but disagreement remains over how that would be done.
By STEPHANIE STROM
The study was testing the use of genetically engineered cells as a treatment for cancer, which had shown promising earlier results.
The bill would set a national standard for labeling G.M.O. foods, though critics say the system would not be tough enough.
By STEPHANIE STROM
A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.
By THE EDITORIAL BOARD
As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.
By STEPHANIE STROM
The worlds top scientists say opponents of genetically modified foods are standing in the way of nutrition for people around the world.
By NIRAJ CHOKSHI
A technique to change or eliminate entire populations of organisms could be used against virus-carrying mosquitoes. It could also have unintended consequences.
By AMY HARMON
Residents there heard a proposal Monday from an M.I.T. scientist to use genetically engineered mice to stop the spread of the tick-borne disease.
By AMY HARMON
A common bacterium contains molecules that target RNA, not DNA. If it can be harnessed for use in humans, the process may lead to new forms of bioengineering.
By CARL ZIMMER
The formal announcement of the plans, which leaked last month, seeks to raise $100 million this year. The total price tag could exceed $1 billion.
By ANDREW POLLACK
One of the scientists credited with starting the gene editing revolution discusses her landmark discovery and how science has driven her.
By GINA KOLATA
Ritual, a start-up, is introducing a multivitamin that is vegan, mostly free of genetically engineered ingredients and tailored to todays diets.
By STEPHANIE STROM
The transaction, if consummated, would create an industry giant whose products include pain medications, genetically modified crops and pesticides.
By MICHAEL J. de la MERCED and CHAD BRAY
Without disclosing details, Monsanto said its board was reviewing a proposal that would create a giant with a combined annual revenue of $67 billion.
By MICHAEL J. de la MERCED
The report from the National Academies of Sciences, Engineering and Medicine is not expected to end the highly polarized debate over the technology.
By ANDREW POLLACK
Bioengineered food products are safe. So why do we try to hide the facts about them?
By JASON KELLY
The project poses ethical issues about whether humans could be created without parents.
By ANDREW POLLACK
Read more here:
Genetic Engineering - The New York Times
Posted in Genetic Engineering
Comments Off on Genetic Engineering – The New York Times
Genetic Engineering | MSPCA-Angell
Posted: November 10, 2016 at 4:44 pm
The MSPCAbelieves scientists ability to clone animals, to alter the genetic makeup of an animal, and to transfer pieces of genetic material from one species to another raises serious concerns for animals and humans alike.
This pagewill explore issues related to genetic engineering, transgenic animals, and cloned animals. It will examine the implications of genetic engineering on human and animal welfare and will touch on some related moral and ethical concerns that our society has so far failed to completely address.
Definitions
Problems related to the physical and psychological well-being of cloned and transgenic animals, significant ethical concerns about the direct manipulation of genetic material, and questions about the value of life itself must all be carefully weighed against the potential benefits of genetic engineering for disease research, agricultural purposes, vaccine development, pharmaceutical products, and organ transplants.
Genetic engineering is, as yet, an imperfect science that yields imperfect results.
Changes in animal growth and development brought about by genetic engineering and cloning are less predictable, more rapid, and often more debilitating than changes brought about through the traditional process of selective breeding.
This is especially apparent with cloning. Success rates are incredibly low; on average, less than 5% of cloned embryos are born and survive.
Clones are created at a great cost to animals. The clones that are successful, as well as those that do not survive and the surrogates who carry them, suffer greatly.Many of the cloned animals that do survive are plagued by severe health problems.
Offspring suffer from severe birth defects such as Large Offspring Syndrome (LOS), in which the cloned offspring are significantly larger than normal fetuses; hydrops, a typically fatal condition in which the mother or the fetus swells with fluid; respiratory distress; developmental problems; malformed organs; musculoskeletal deformities; or weakened immune systems, to name only a few.
Additionally, surrogates are subjected to repeated invasive procedures to harvest their eggs, implant embryos, or due to the offsprings birth defects surgical intervention to deliver their offspring. All of these problems occur at much higher rates than for offspring produced via traditional breeding methods.
Cloning increases existing animal welfare and environmental concerns related to animal agriculture.
In 1996, the birth of the ewe, Dolly, marked the first successful cloning of a mammal from adult cells. At the time of her birth, the researchers who created Dolly acknowledged the inefficiency of the new technology: it took 277 attempts to create this one sheep, and of these, only 29 early embryos developed, and an even smaller number of these developed into live fetuses. In the end, Dolly was the sole surviving clone. She was euthanized in 2003 at just 6 years of age, about half as old as sheep are expected to live, and with health problems more common in older sheep.
Since Dollys creation, the process of cloning has not demonstrated great improvement in efficiency or rates of success. A 2003 review of cloning in cattle found that less than 5% of cloned embryos transferred into surrogate cows survived; a 2016 study showedno noticeable increase in efficiency, with the success rate being about 1%.
Currently, research is focused on cloning for agricultural purposes. Used alone, or in concert with genetic engineering, the objective is to clone the best stock to reproduce whole herds or flocks with desired uniform characteristics of a specific trait, such as fast growth, leaner meat, or higher milk production. Cloning is often pursued to produce animals that grow faster so they can be slaughtered sooner and to raise more animals in a smaller space.
For example, transgenic fish are engineered to grow larger at a faster rate and cows injected with genetically engineered products to increase their productivity. Another example of this is the use of the genetically engineered drug, bovine growth hormone (BGH or BST) to increase milk production in dairy cows. This has also been associated with increased cases of udder disease, spontaneous abortion, lameness, and shortened lifespan. The use of BGH is controversial; many countries (such as Canada, Japan, Australia, and countries in the EU) do not allow it, and many consumers try to avoid it.A rise in transgenic animals used for agriculture will only exacerbate current animal welfare and environmental concerns with existing intensive farming operations.(For more information on farming and animal welfare, visit the MSPCAs Farm Animal Welfare page.)
Much remains unknown about thepotential environmental impacts of widespread cloning of animals. The creation of genetically identical animals leads to concerns about limited agricultural animal gene pools. The effects of creating uniform herds of animals and the resulting loss of biodiversity, have significant implications for the environment and for the ability of cloned herds to withstand diseases. This could make an impact on the entireagriculture industry and human food chain.
These issues became especiallyconcerning when, in 2008, the Federal Drug Administration not only approved the sale of meat from the offspring of cloned animals, but also did not require that it be labeled as such. There have been few published studies that examine the composition of milk, meat, or eggs from cloned animals or their progeny, including the safety of eating those products. The health problems associated with cloned animals, particularly those that appear healthy but have concealed illnesses or problems that appear unexpectedly later in life, could potentially pose risks to the safety of the food products derived from those animals.
Genetically Engineered Pets
Companion animals have also been cloned. The first cloned cat, CC, was created in 2001. CCs creation marked the beginning of the pet cloning industry, in which pet owners could pay to bank DNA from their companion dogs and cats to be cloned in the future. In 2005, the first cloned dog was created; later, the first commercially cloned dog followed at a cost of $50,000. Many consumers assume that cloning will produce a carbon copy of their beloved pet, but this is not the case. Even though the animals are genetically identical, they often do not resemble each other physically or behaviorally.
To date, the pet cloning industry has not been largely successful. However, efforts to make cloning a successful commercial venture are still being put forth.RBio (formerly RNL Bio), a Korean biotechnology company, planned to create a research center that would produce 1,000 cloned dogs annually by 2013. However, RBio, considered a black market cloner, failed to make any significant strides in itscloning endeavors and seems to have been replaced by other companies, such as South Korean-based Sooam Biotech, now the worlds leader in commercial pet cloning. Since 2006, Sooam has cloned over 800 dogs, in addition to other animals, such as cattle and pigs, for breed preservation and medical research.
While South Korean animal cloning expands, the interest in companion animal cloning in the United States continues to remain low. In 2009, the American company BioArts ceased its dog cloning services and ended its partnership with Sooam, stating in a press release that cloning procedures were still underdeveloped and that the cloning market itself was weak and unethical. Companion animal cloning causes concern not only because of the welfare issues inherent in the cloning process, but also because of its potential to contribute to pet overpopulation problem in the US, as millions of animals in shelters wait for homes.
Cloning and Medical Research
Cloning is also used to produce copies of transgenic animals that have been created to mimic certain human diseases. The transgenic animals are created, then cloned, producing a supply of animals for biomedical testing.
A 1980 U.S. Supreme Court decision to permit the patenting of a microorganism that could digest crude oil had a great impact on animal welfare and genetic engineering. Until that time, the U.S. Patent Office had prohibited the patenting of living organisms. However, following the Supreme Court decision, the Patent Office interpreted this ruling to extend to the patenting of all higher life forms, paving the way for a tremendous explosion of corporate investment in genetic engineering research.
In 1988, the first animal patent was issued to Harvard University for the Oncomouse, a transgenic mouse genetically modified to be more prone to develop cancers mimicking human disease. Since then, millions of transgenic mice have been produced. Transgenic rats, rabbits, monkeys, fish, chickens, pigs, sheep, goats, cows, horses, cats, dogs, and other animals have also been created.
Both expected and unexpected results occur in the process of inserting new genetic material into an egg cell. Defective offspring can suffer from chromosomal abnormalities that can cause cancer, fatal bleeding disorders, inability to reproduce, early uterine death, lack of ability to nurse, and such diseases as arthritis, diabetes, liver disease, and kidney disease.
The production of transgenic animals is of concern because genetic engineering is often used to create animals with diseases that cause intense suffering. Among the diseases that can be produced in genetically engineered research mice are diabetes, cancer, cystic fibrosis, sickle-cell anemia, Huntingtons disease, Alzheimers disease, and a rare but severe neurological condition called Lesch-Nyhansyndromethat causes the sufferer to self-mutilate. Animals carrying the genes for these diseases can suffer for long periods of time, both in the laboratory and while they are kept on the shelf by laboratory animal suppliers.
Another reason for the production of transgenic animals is pharming, in which sheep and goats are modified to produce pharmaceuticals in their milk. In 2009, the first drug produced by genetically engineered animals was approved by the FDA. The drug ATryn, used to prevent fatal blood clots in humans, is derived from goats into which a segment of human DNA has been inserted, causing them to produce an anticoagulant protein in their milk. This marks the first time a drug has been manufactured from a herd of animals created specifically to produce a pharmaceutical.
A company has also manufactured a drug produced in the milk of transgenic rabbits to treat a dangerous tissue swelling caused by a human protein deficiency. Yet another pharmaceutical manufacturer, PharmAnthene, was funded by the US Department of Defense to develop genetically engineered goats whose milk produces proteins used in a drug to treat nerve gas poisoning. The FDA also approved a drug whose primary proteins are also found in the milk of genetically engineered goats, who are kept at a farm in Framingham, Massachusetts. Additionally, a herd of cattle was recently developed that produces milk containing proteins that help to treat human emphysema. These animals are essentially used as pharmaceutical-production machines to manufacture only those substances they were genetically modified to produce; they are not used as part of the normal food supply chain for items such as meat or milk.
The transfer of animal tissues from one species to another raises potentially serious health issues for animals and humans alike.
Some animals are also genetically modified to produce tissues and organs to be used for human transplant purposes (xenotransplantation). Much effort is being focused in this area as the demand for human organs for transplantation far exceeds the supply, with pigs the current focus of this research. While efforts to date have been hampered by a pig protein that can cause organ rejection by the recipients immune system, efforts are underway to develop genetically modified swine with a human protein that would mitigate the chance of organ rejection.
Little is known about the ways in which diseases can be spread from one species to another, raising concerns for both animals and people, and calling into question the safety of using transgenic pigs to supply organs for human transplant purposes. Scientists have identified various viruses common in the heart, spleen, and kidneys of pigs that could infect human cells. In addition, new research is shedding light on particles called prions that, along with viruses and bacteria, may transmit fatal diseases between animals and from animals to humans.
Acknowledging the potential for transmission of viruses from animals to humans, the National Institutes of Health, a part of the U.S. Department of Health and Human Services,issued a moratorium in 2015 onxenotransplantation until the risks are better understood, ceasing funding until more research has been carried out. With the science of genetic engineering, the possibilities are endless, but so too are the risks and concerns.
Genetic engineering research has broad ethical and moral ramifications with few established societal guidelines.
While biotechnology has been quietly revolutionizing the science for decades, public debate in the United Statesover the moral, ethical, and physical effects of this research has been insufficient. To quote Colorado State University Philosopher Bernard Rollin, We cannot control technology if we do not understand it, and we cannot understand it without a careful discussion of the moral questions to which it gives rise.
Research into non-animal methods of achieving some of the same goals looks promising.
Researchers in the U.S. and elsewhere have found ways togenetically engineer cereal grains to produce human proteins. One example of this, developed in the early 2000s, is a strain of rice that can produce a human protein used to treat cystic fibrosis. Wheat, corn, and barley may also be able to be used in similar ways at dramatically lower financial and ethical costs than genetically engineering animals for this purpose.
Originally posted here:
Genetic Engineering | MSPCA-Angell
Posted in Genetic Engineering
Comments Off on Genetic Engineering | MSPCA-Angell
What is genetic engineering? – Definition from WhatIs.com
Posted: November 10, 2016 at 4:44 pm
Genetic engineering is the deliberate, controlled manipulation of the genes in an organism with the intent of making that organism better in some way. This is usually done independently of the natural reproductive process. The result is a so-called genetically modified organism (GMO). To date, most of the effort in genetic engineering has been focused on agriculture.
Proponents of genetic engineering claim that it has numerous benefits, including the production of food-bearing plants that are resistant to extreme weather and adverse climates, insect infestations, disease, molds, and fungi. In addition, it may be possible to reduce the amount of plowing necessary in the farming process, thereby saving energy and minimizing soil erosion. A major motivation is the hope of producing abundant food at low cost to reduce world hunger, both directly (by feeding GMOs to human beings) and indirectly (by feeding GMOs to livestock and fish, which can in turn be fed to humans).
Genetic engineering carries potential dangers, such as the creation of new allergens and toxins, the evolution of new weeds and other noxious vegetation, harm to wildlife, and the creation of environments favorable to the proliferation of molds and fungi (ironically, in light of the purported advantage in that respect). Some scientists have expressed concern that new disease organisms and increased antibiotic resistance could result from the use of GMOs in the food chain.
The darkest aspect of genetic engineering is the possibility that a government or institution might undertake to enhance human beings by means of genetic engineering. Some see the possibility of using this technology to create biological weapons.
Genetic engineering is also known as genetic modification.
This was last updated in May 2007
Read more here:
What is genetic engineering? - Definition from WhatIs.com
Posted in Genetic Engineering
Comments Off on What is genetic engineering? – Definition from WhatIs.com
Pros and Cons of Genetic Engineering | HRFnd
Posted: November 10, 2016 at 4:44 pm
Manipulation of genes in natural organisms, such as plants, animals, and even humans, is considered genetic engineering. This is done using a variety of different techniques like molecular cloning. These processes can cause dramatic changes in the natural makeup and characteristic of the organism. There are benefits and risks associated with genetic engineering, just like most other scientific practices.
Genetic engineering offers benefits such as:
1. Better Flavor, Growth Rate and Nutrition Crops like potatoes, soybeans and tomatoes are now sometimes genetically engineered in order to improve size, crop yield, and nutritional values of the plants. These genetically engineered crops also possess the ability to grow in lands that would normally not be suitable for cultivation.
2. Pest-resistant Crops and Extended Shelf Life Engineered seeds can resist pests and having a better chance at survival in harsh weather. Biotechnology could be in increasing the shelf life of many foods.
3. Genetic Alteration to Supply New Foods Genetic engineering can also be used in producing completely new substances like proteins or other nutrients in food. This may up the benefits they have for medical uses.
4. Modification of the Human DNA Genes that are responsible for unique and desirable qualities in the human DNA can be exposed and introduced into the genes of another person. This changes the structural elements of a persons DNA. The effects of this are not know.
The following are the issues that genetic engineering can trigger:
1. May Hamper Nutritional Value Genetic engineering on food also includes the infectivity of genes in root crops. These crops might supersede the natural weeds. These can be dangerous for the natural plants. Unpleasant genetic mutations could result to an increased allergy occurrence of the crop. Some people believe that this science on foods can hamper the nutrients contained by the crops although their appearance and taste were enhanced.
2. May Introduce Risky Pathogens Horizontal gene shift could give increase to other pathogens. While it increases the immunity against diseases among the plants, the resistant genes can be transmitted to harmful pathogens.
3. May Result to Genetic Problems Gene therapy on humans can end to some side effects. While relieving one problem, the treatment may cause the onset of another issue. As a single cell is liable for various characteristics, the cell isolation process will be responsible for one trait will be complicated.
4. Unfavorable to Genetic Diversity Genetic engineering can affect the diversity among the individuals. Cloning might be unfavorable to individualism. Furthermore, such process might not be affordable for poor. Hence, it makes the gene therapy impossible for an average person.
Genetic engineering might work excellently but after all, it is a kind of process that manipulates the natural. This is altering something which has not been created originally by humans. What can you say about this?
See original here:
Pros and Cons of Genetic Engineering | HRFnd
Posted in Genetic Engineering
Comments Off on Pros and Cons of Genetic Engineering | HRFnd
Genetic Engineering and GM Crops – Pocket K | ISAAA.org
Posted: November 10, 2016 at 4:44 pm
Over the last 50 years, the field of genetic engineering has developed rapidly due to the greater understanding of deoxyribonucleic acid (DNA) as the chemical double helix code from which genes are made. The term genetic engineering is used to describe the process by which the genetic makeup of an organism can be altered using recombinant DNA technology. This involves the use of laboratory tools to insert, alter, or cut out pieces of DNA that contain one or more genes of interest.
Developing plant varieties expressing good agronomic characteristics is the ultimate goal of plant breeders. With conventional plant breeding, however, there is little or no guarantee of obtaining any particular gene combination from the millions of crosses generated. Undesirable genes can be transferred along with desirable genes; or, while one desirable gene is gained, another is lost because the genes of both parents are mixed together and re-assorted more or less randomly in the offspring. These problems limit the improvements that plant breeders can achieve.
In contrast, genetic engineering allows the direct transfer of one or just a few genes of interest, between either closely or distantly related organisms to obtain the desired agronomic trait (Figure 1). Not all genetic engineering techniques involve inserting DNA from other organisms. Plants may also be modified by removing or switching off their own particular genes.
Source: Agricultural Biotechnology (A Lot More than Just GM Crops). http://www.isaaa.org/resources/publications/agricultural_biotechnology/download/.
Genes are molecules of DNA that code for distinct traits or characteristics. For instance, a particular gene sequence is responsible for the color of a flower or a plants ability to fight a disease or thrive in extreme environment.
The sharing of DNA among living forms is well documented as a natural phenomenon. For thousands of years, genes have moved from one organism to another. For example, Agrobacterium tumefaciens, a soil bacterium known as natures own genetic engineer, has the natural ability to genetically engineer plants. It causes crown gall disease in a wide range of broad-leaved plants, such as apple, pear, peach, cherry, almond, raspberry, and roses. The disease gains its name from the large tumor-like swellings (galls) that typically occur at the crown of the plant, just above soil level. Basically, the bacterium transfers part of its DNA to the plant, and this DNA integrates into the plants genome, causing the production of tumors and associated changes in plant metabolism.
Genetic engineering techniques are used only when all other techniques have been exhausted, i.e. when the trait to be introduced is not present in the germplasm of the crop; the trait is very difficult to improve by conventional breeding methods; and when it will take a very long time to introduce and/or improve such trait in the crop by conventional breeding methods (see Figure 2). Crops developed through genetic engineering are commonly known as transgenic crops or genetically modified (GM) crops.
Modern plant breeding is a multi-disciplinary and coordinated process where a large number of tools and elements of conventional breeding techniques, bioinformatics, molecular genetics, molecular biology, and genetic engineering are utilized and integrated.
Figure 2: Modern Plant Breeding
Source: DANIDA, 2002.
Although there are many diverse and complex techniques involved in genetic engineering, its basic principles are reasonably simple. There are five major steps in the development of a genetically engineered crop. But for every step, it is very important to know the biochemical and physiological mechanisms of action, regulation of gene expression, and safety of the gene and the gene product to be utilized. Even before a genetically engineered crop is made available for commercial use, it has to pass through rigorous safety and risk assessment procedures.
The first step is the extraction of DNA from the organism known to have the trait of interest. The second step is gene cloning, which will isolate the gene of interest from the entire extracted DNA, followed by mass-production of the cloned gene in a host cell. Once it is cloned, the gene of interest is designed and packaged so that it can be controlled and properly expressed once inside the host plant. The modified gene will then be mass-produced in a host cell in order to make thousands of copies. When the gene package is ready, it can then be introduced into the cells of the plant being modified through a process called transformation. The most common methods used to introduce the gene package into plant cells include biolistic transformation (using a gene gun) or Agrobacterium-mediated transformation. Once the inserted gene is stable, inherited, and expressed in subsequent generations, then the plant is considered a transgenic. Backcross breeding is the final step in the genetic engineering process, where the transgenic crop is crossed with a variety that possesses important agronomic traits, and selected in order to obtain high quality plants that express the inserted gene in a desired manner.
The length of time in developing transgenic plant depends upon the gene, crop species, available resources, and regulatory approval. It may take 6-15 years before a new transgenic hybrid is ready for commercial release.
Transgenic crops have been planted in different countries for twenty years, starting from 1996 to 2015. About 179.7 million hectares was planted in 2015 to transgenic crops with high market value, such as herbicide tolerant soybean, maize, cotton, and canola; insect resistant maize, cotton, potato, and rice; and virus resistant squash and papaya. With genetic engineering, more than one trait can be incorporated or stacked into a plant. Transgenic crops with combined traits are also available commercially. These include herbicide tolerant and insect resistant maize, soybean and cotton.
To date, commercial GM crops have delivered benefits in crop production, but there are also a number of products in the pipeline which will make more direct contributions to food quality, environmental benefits, pharmaceutical production, and non-food crops. Examples of these products include: rice with higher levels of iron and beta-carotene (an important micronutrient which is converted to vitamin A in the body); long life banana that ripens faster on the tree and can therefore be harvested earlier; tomatoes with high levels of flavonols, which are powerful antioxidants; arsenic-tolerant plants; edible vaccines from fruit and vegetables; and low lignin trees for paper making.
*August 2016
See the rest here:
Genetic Engineering and GM Crops - Pocket K | ISAAA.org
Posted in Genetic Engineering
Comments Off on Genetic Engineering and GM Crops – Pocket K | ISAAA.org
Human Genetic Engineering – Popular Issues
Posted: October 29, 2016 at 6:45 am
Human Genetic Engineering - A Hot Issue! Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.
Human Genetic Engineering - Position of the U.S. Government Human genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.
The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."
Human Genetic Engineering - The Problems There are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)
Human Genetic Engineering - A Final Thought Human genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.
Learn More Now!
What is your response?
Yes, today I am deciding to follow Jesus
Yes, I am already a follower of Jesus
I still have questions
Read the original post:
Human Genetic Engineering - Popular Issues
Posted in Genetic Engineering
Comments Off on Human Genetic Engineering – Popular Issues