Page 65«..1020..64656667..7080..»

Category Archives: Genetic medicine

Genetic Medicine | Internal Medicine | Michigan Medicine …

Posted: November 18, 2018 at 4:44 pm

Goutham Narla, MD, PhD, Chief, Division of Genetic Medicine

As use of genomic technologies continue to increase in research and clinical settings, the Division of Genetic Medicine serves a key role in bringing together basic, clinical, and translational expertise in genomic medicine, with multidisciplinary faculty comprised of MDs, PhD scientists, and genetic counselors. Demand for expertise in genetics continues to increase, and the Division of Genetic Medicine is committed to advancing scientific discovery and clinical care of patients.

In addition to our Medical Genetics Clinic, genetics services are available through several other Michigan Medicine clinics and programs, including the Breast and Ovarian Cancer Risk Evaluation Program, Cancer GeneticsClinic,Inherited Cardiomyopathies and Arrhythmias Program,Neurogenetics Clinic, Pediatric Genetics Clinic, and Prenatal Evaluation Clinic.

Our faculty are focused on various research areas including cancer genetics, inherited hematologic disorders, neural stem cells,the mechanisms and regulation of DNA repair processes in mammalian cells, predictive genetic testing,understanding the mechanisms controlled by Hox genes, birth defects, bleeding and thrombotic disorders, and human limb malformations.

Division of Genetic Medicinefaculty are actively engaged in the education, teaching, and mentorship of clinicians, and clinical and basic scientists, including undergraduate and graduate students, medical students, residents, and fellows from various subspecialties.

Originally posted here:
Genetic Medicine | Internal Medicine | Michigan Medicine ...

Posted in Genetic medicine | Comments Off on Genetic Medicine | Internal Medicine | Michigan Medicine …

Genetic Medicine – University of Chicago – Department of …

Posted: November 18, 2018 at 4:44 pm

Yoav Gilad, PhD

Chief, Section of Genetic Medicine

University of ChicagoDepartment of Medicine

The Section of Genetic Medicine was created over 10 years ago to both build research infrastructure in genetics within the Department of Medicine and to focus translational efforts related to genetics. As a result, the Section of Genetic Medicine is shaping the future of precision medicine with very active and successful research programs focused on the quantitative genetics, systems biology and genomics, and bioinformatics and computational biology. The Section provides extremely valuable collaborations with investigators in the Department of Medicine who are seeking to develop new and more powerful ways to identify genetic risk factors for common, complex disorders with almost immediate clinical application.

The Section of Genetic Medicine continues to shape the future of personalized medicine with successful research programs focused on the quantitative genetic and genomic science. The Section provides extremely valuable collaborations with investigators in the Department of Medicine who are seeking to develop new and more powerful ways to identify genetic risk factors for common, complex disorders with almost immediate clinical application.

The Section of Genetic Medicine conducts impactful investigations focused on quantitative genetics, systems biology and genomics, bioinformatics and computational biology. Some highlights from the past year include:

Read more here:
Genetic Medicine - University of Chicago - Department of ...

Posted in Genetic medicine | Comments Off on Genetic Medicine – University of Chicago – Department of …

Maternalfetal medicine – Wikipedia

Posted: September 25, 2018 at 10:46 pm

Maternalfetal medicine (MFM) (also known as perinatology) is a branch of medicine that focuses on managing health concerns of the mother and fetus prior to, during, and shortly after pregnancy.

Maternalfetal medicine specialists are physicians who subspecialize within the field of obstetrics.[1] Their training typically includes a four-year residency in obstetrics and gynecology followed by a three-year fellowship. They may perform prenatal tests, provide treatments, and perform surgeries. They act both as a consultant during lower-risk pregnancies and as the primary obstetrician in especially high-risk pregnancies. After birth, they may work closely with pediatricians or neonatologists. For the mother, perinatologists assist with pre-existing health concerns, as well as complications caused by pregnancy.

Maternalfetal medicine began to emerge as a discipline in the 1960s. Advances in research and technology allowed physicians to diagnose and treat fetal complications in utero, whereas previously, obstetricians could only rely on heart rate monitoring and maternal reports of fetal movement. The development of amniocentesis in 1952, fetal blood sampling during labor in the early 1960s, more precise fetal heart monitoring in 1968, and real-time ultrasound in 1971 resulted in early intervention and lower mortality rates.[2] In 1963, Albert William Liley developed a course of intrauterine transfusions for Rh incompatibility at the National Women's Hospital in Australia, regarded as the first fetal treatment.[3] Other antenatal treatments, such as the administration of glucocorticoids to speed lung maturation in neonates at risk for respiratory distress syndrome, led to improved outcomes for premature infants.

Consequently, organizations were developed to focus on these emerging medical practices, and in 1991, the First International Congress of Perinatal Medicine was held, at which the World Association of Perinatal Medicine was founded.[2]

Today, maternal-fetal medicine specialists can be found in major hospitals internationally. They may work in privately owned clinics, or in larger, government-funded institutions.[4][5]

The field of maternal-fetal medicine is one of the most rapidly evolving fields in medicine, especially with respect to the fetus. Research is being carried on in the field of fetal gene and stem cell therapy in hope to provide early treatment for genetic disorders,[6] open fetal surgery for the correction of birth defects like congenital heart disease,[7] and the prevention of preeclampsia.

Maternalfetal medicine specialists attend to patients who fall within certain levels of maternal care. These levels correspond to health risks for the baby, mother, or both, during pregnancy.[8]

They take care of pregnant women who have chronic conditions (e.g. heart or kidney disease, hypertension, diabetes, and thrombophilia), pregnant women who are at risk for pregnancy-related complications (e.g. preterm labor, pre-eclampsia, and twin or triplet pregnancies), and pregnant women with fetuses at risk. Fetuses may be at risk due to chromosomal or congenital abnormalities, maternal disease, infections, genetic diseases and growth restriction.[9]

Expecting mothers with chronic conditions, such as high blood pressure, drug use during or before pregnancy, or a diagnosed medical condition may require a consult with a maternal-fetal specialist. In addition, women who experience difficulty conceiving may be referred to a maternal-fetal specialist for assistance.

During pregnancy, a variety of complications of pregnancy can arise. Depending on the severity of the complication, a maternal-fetal specialist may meet with the patient intermittently, or become the primary obstetrician for the length of the pregnancy. Post-partum, maternal-fetal specialists may follow up with a patient and monitor any medical complications that may arise.

The rates of maternal and infant mortality due to complications of pregnancy have decreased by over 23% since 1990, from 377,000 deaths to 293,000 deaths. Most deaths can be attributed to infection, maternal bleeding, and obstructed labor, and their incidence of mortality vary widely internationally.[10] The Society for Maternal-fetal Medicine (SMFM) strives to improve maternal and child outcomes by standards of prevention, diagnosis and treatment through research, education and training.[11]

Maternalfetal medicine specialists are obstetrician-gynecologists who undergo an additional 3 years of specialized training in the assessment and management of high-risk pregnancies. In the United States, such obstetrician-gynecologists are certified by the American Board of Obstetrician Gynecologists (ABOG) or the American Osteopathic Board of Obstetrics and Gynecology.

Maternalfetal medicine specialists have training in obstetric ultrasound, invasive prenatal diagnosis using amniocentesis and chorionic villus sampling, and the management of high-risk pregnancies. Some are further trained in the field of fetal diagnosis and prenatal therapy where they become competent in advanced procedures such as targeted fetal assessment using ultrasound and Doppler, fetal blood sampling and transfusion, fetoscopy, and open fetal surgery.[12][13]

For the ABOG, MFM subspecialists are required to do a minimum of 12 months in clinical rotation and 18-months in research activities. They are encouraged to use simulation and case-based learning incorporated in their training, a certification in advanced cardiac life support (ACLS) is required, they are required to develop in-service examination and expand leadership training. Obstetrical care and service has been improved to provide academic advancement for MFM in-patient directorships, improve skills in coding and reimbursement for maternal care, establish national, stratified system for levels of maternal care, develop specific, proscriptive guidelines on complications with highest maternal morbidity and mortality, and finally, increase departmental and divisional support for MFM subspecialists with maternal focus. As Maternalfetal medicine subspecialists improve their work ethics and knowledge of this advancing field, they are capable of reducing the rate of maternal mortality and maternal morbidity.[14]

Go here to see the original:
Maternalfetal medicine - Wikipedia

Posted in Genetic medicine | Comments Off on Maternalfetal medicine – Wikipedia

About the Fred A. Litwin Family Centre in Genetic Medicine

Posted: June 27, 2018 at 4:47 am

');$.get(url, function(data){$('.rightNav-wp-' + idx).html(data);});}var rightPanel = $('#rightpanel');if (rightPanel.length == 0) rightPanel = $('#rightpanel-placeholder');$.each(webparts, function(i,e){addWp(i,e);});}if (!window.location.origin) {window.location.origin = window.location.protocol + '//' + window.location.host;}var pn = _spPageContextInfo.serverRequestPath.replace(/^//ig,''),pNames = [], curSite,webparts = UHNPageData.siteWebParts ? UHNPageData.siteWebParts.rows : []; // from XSLTDataViewWebpartwhile (pn.indexOf('/') > 0) {pNames.push(pn);pn = pn.substr(0, pn.lastIndexOf('/'));}pNames.push(pn);for (var i = 0; i 0) {continue;}curSite = webparts[j];j = webparts.length;i = pNames.length;}}}if (curSite === undefined) {curSite = webparts.filter(function(e){return e.Title == 'Global';})[0];if (curSite === undefined) return reloadSiteWebParts();}if (!curSite.HideRightNav) {generateHTML(curSite.Webparts);$('#rightpanel').show();} else {HideRightNav = curSite.HideRightNav;$('#rightpanel').hide();}$('#MSO_ContentTable').toggleClass('col-sm-9', !curSite.HideRightNav);}window.HideRightNav = false;window.safetyAttempts = 0;initRightNav();$(function(){var userGroup = [2164];if (_spPageContextInfo.userId) {$().SPServices({operation: 'GetUserCollectionFromGroup',groupName: 'Designers',completefunc: function (xDataUser, Status) {$(xDataUser.responseXML).find("User").each(function() {userGroup.push(parseInt($(this).attr("ID").trim()));});if ($.inArray(_spPageContextInfo.userId, userGroup) > -1) {$('#title-links ul').prepend('

See the original post:
About the Fred A. Litwin Family Centre in Genetic Medicine

Posted in Genetic medicine | Comments Off on About the Fred A. Litwin Family Centre in Genetic Medicine

Medical genetics – Wikipedia

Posted: June 27, 2018 at 4:47 am

Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counselling people with genetic disorders would be considered part of medical genetics.

In contrast, the study of typically non-medical phenotypes such as the genetics of eye color would be considered part of human genetics, but not necessarily relevant to medical genetics (except in situations such as albinism). Genetic medicine is a newer term for medical genetics and incorporates areas such as gene therapy, personalized medicine, and the rapidly emerging new medical specialty, predictive medicine.

Medical genetics encompasses many different areas, including clinical practice of physicians, genetic counselors, and nutritionists, clinical diagnostic laboratory activities, and research into the causes and inheritance of genetic disorders. Examples of conditions that fall within the scope of medical genetics include birth defects and dysmorphology, mental retardation, autism, mitochondrial disorders, skeletal dysplasia, connective tissue disorders, cancer genetics, teratogens, and prenatal diagnosis. Medical genetics is increasingly becoming relevant to many common diseases. Overlaps with other medical specialties are beginning to emerge, as recent advances in genetics are revealing etiologies for neurologic, endocrine, cardiovascular, pulmonary, ophthalmologic, renal, psychiatric, and dermatologic conditions.

In some ways, many of the individual fields within medical genetics are hybrids between clinical care and research. This is due in part to recent advances in science and technology (for example, see the Human genome project) that have enabled an unprecedented understanding of genetic disorders.

Clinical genetics is the practice of clinical medicine with particular attention to hereditary disorders. Referrals are made to genetics clinics for a variety of reasons, including birth defects, developmental delay, autism, epilepsy, short stature, and many others. Examples of genetic syndromes that are commonly seen in the genetics clinic include chromosomal rearrangements, Down syndrome, DiGeorge syndrome (22q11.2 Deletion Syndrome), Fragile X syndrome, Marfan syndrome, Neurofibromatosis, Turner syndrome, and Williams syndrome.

In the United States, physicians who practice clinical genetics are accredited by the American Board of Medical Genetics and Genomics (ABMGG).[1] In order to become a board-certified practitioner of Clinical Genetics, a physician must complete a minimum of 24 months of training in a program accredited by the ABMGG. Individuals seeking acceptance into clinical genetics training programs must hold an M.D. or D.O. degree (or their equivalent) and have completed a minimum of 24 months of training in an ACGME-accredited residency program in internal medicine, pediatrics, obstetrics and gynecology, or other medical specialty.[2]

Metabolic (or biochemical) genetics involves the diagnosis and management of inborn errors of metabolism in which patients have enzymatic deficiencies that perturb biochemical pathways involved in metabolism of carbohydrates, amino acids, and lipids. Examples of metabolic disorders include galactosemia, glycogen storage disease, lysosomal storage disorders, metabolic acidosis, peroxisomal disorders, phenylketonuria, and urea cycle disorders.

Cytogenetics is the study of chromosomes and chromosome abnormalities. While cytogenetics historically relied on microscopy to analyze chromosomes, new molecular technologies such as array comparative genomic hybridization are now becoming widely used. Examples of chromosome abnormalities include aneuploidy, chromosomal rearrangements, and genomic deletion/duplication disorders.

Molecular genetics involves the discovery of and laboratory testing for DNA mutations that underlie many single gene disorders. Examples of single gene disorders include achondroplasia, cystic fibrosis, Duchenne muscular dystrophy, hereditary breast cancer (BRCA1/2), Huntington disease, Marfan syndrome, Noonan syndrome, and Rett syndrome. Molecular tests are also used in the diagnosis of syndromes involving epigenetic abnormalities, such as Angelman syndrome, Beckwith-Wiedemann syndrome, Prader-willi syndrome, and uniparental disomy.

Mitochondrial genetics concerns the diagnosis and management of mitochondrial disorders, which have a molecular basis but often result in biochemical abnormalities due to deficient energy production.

There exists some overlap between medical genetic diagnostic laboratories and molecular pathology.

Genetic counseling is the process of providing information about genetic conditions, diagnostic testing, and risks in other family members, within the framework of nondirective counseling. Genetic counselors are non-physician members of the medical genetics team who specialize in family risk assessment and counseling of patients regarding genetic disorders. The precise role of the genetic counselor varies somewhat depending on the disorder.

Although genetics has its roots back in the 19th century with the work of the Bohemian monk Gregor Mendel and other pioneering scientists, human genetics emerged later. It started to develop, albeit slowly, during the first half of the 20th century. Mendelian (single-gene) inheritance was studied in a number of important disorders such as albinism, brachydactyly (short fingers and toes), and hemophilia. Mathematical approaches were also devised and applied to human genetics. Population genetics was created.

Medical genetics was a late developer, emerging largely after the close of World War II (1945) when the eugenics movement had fallen into disrepute. The Nazi misuse of eugenics sounded its death knell. Shorn of eugenics, a scientific approach could be used and was applied to human and medical genetics. Medical genetics saw an increasingly rapid rise in the second half of the 20th century and continues in the 21st century.

The clinical setting in which patients are evaluated determines the scope of practice, diagnostic, and therapeutic interventions. For the purposes of general discussion, the typical encounters between patients and genetic practitioners may involve:

Each patient will undergo a diagnostic evaluation tailored to their own particular presenting signs and symptoms. The geneticist will establish a differential diagnosis and recommend appropriate testing. These tests might evaluate for chromosomal disorders, inborn errors of metabolism, or single gene disorders.

Chromosome studies are used in the general genetics clinic to determine a cause for developmental delay/mental retardation, birth defects, dysmorphic features, and/or autism. Chromosome analysis is also performed in the prenatal setting to determine whether a fetus is affected with aneuploidy or other chromosome rearrangements. Finally, chromosome abnormalities are often detected in cancer samples. A large number of different methods have been developed for chromosome analysis:

Biochemical studies are performed to screen for imbalances of metabolites in the bodily fluid, usually the blood (plasma/serum) or urine, but also in cerebrospinal fluid (CSF). Specific tests of enzyme function (either in leukocytes, skin fibroblasts, liver, or muscle) are also employed under certain circumstances. In the US, the newborn screen incorporates biochemical tests to screen for treatable conditions such as galactosemia and phenylketonuria (PKU). Patients suspected to have a metabolic condition might undergo the following tests:

Each cell of the body contains the hereditary information (DNA) wrapped up in structures called chromosomes. Since genetic syndromes are typically the result of alterations of the chromosomes or genes, there is no treatment currently available that can correct the genetic alterations in every cell of the body. Therefore, there is currently no "cure" for genetic disorders. However, for many genetic syndromes there is treatment available to manage the symptoms. In some cases, particularly inborn errors of metabolism, the mechanism of disease is well understood and offers the potential for dietary and medical management to prevent or reduce the long-term complications. In other cases, infusion therapy is used to replace the missing enzyme. Current research is actively seeking to use gene therapy or other new medications to treat specific genetic disorders.

In general, metabolic disorders arise from enzyme deficiencies that disrupt normal metabolic pathways. For instance, in the hypothetical example:

Compound "A" is metabolized to "B" by enzyme "X", compound "B" is metabolized to "C" by enzyme "Y", and compound "C" is metabolized to "D" by enzyme "Z". If enzyme "Z" is missing, compound "D" will be missing, while compounds "A", "B", and "C" will build up. The pathogenesis of this particular condition could result from lack of compound "D", if it is critical for some cellular function, or from toxicity due to excess "A", "B", and/or "C". Treatment of the metabolic disorder could be achieved through dietary supplementation of compound "D" and dietary restriction of compounds "A", "B", and/or "C" or by treatment with a medication that promoted disposal of excess "A", "B", or "C". Another approach that can be taken is enzyme replacement therapy, in which a patient is given an infusion of the missing enzyme.

Dietary restriction and supplementation are key measures taken in several well-known metabolic disorders, including galactosemia, phenylketonuria (PKU), maple syrup urine disease, organic acidurias and urea cycle disorders. Such restrictive diets can be difficult for the patient and family to maintain, and require close consultation with a nutritionist who has special experience in metabolic disorders. The composition of the diet will change depending on the caloric needs of the growing child and special attention is needed during a pregnancy if a woman is affected with one of these disorders.

Medical approaches include enhancement of residual enzyme activity (in cases where the enzyme is made but is not functioning properly), inhibition of other enzymes in the biochemical pathway to prevent buildup of a toxic compound, or diversion of a toxic compound to another form that can be excreted. Examples include the use of high doses of pyridoxine (vitamin B6) in some patients with homocystinuria to boost the activity of the residual cystathione synthase enzyme, administration of biotin to restore activity of several enzymes affected by deficiency of biotinidase, treatment with NTBC in Tyrosinemia to inhibit the production of succinylacetone which causes liver toxicity, and the use of sodium benzoate to decrease ammonia build-up in urea cycle disorders.

Certain lysosomal storage diseases are treated with infusions of a recombinant enzyme (produced in a laboratory), which can reduce the accumulation of the compounds in various tissues. Examples include Gaucher disease, Fabry disease, Mucopolysaccharidoses and Glycogen storage disease type II. Such treatments are limited by the ability of the enzyme to reach the affected areas (the blood brain barrier prevents enzyme from reaching the brain, for example), and can sometimes be associated with allergic reactions. The long-term clinical effectiveness of enzyme replacement therapies vary widely among different disorders.

There are a variety of career paths within the field of medical genetics, and naturally the training required for each area differs considerably. The information included in this section applies to the typical pathways in the United States and there may be differences in other countries. US practitioners in clinical, counseling, or diagnostic subspecialties generally obtain board certification through the American Board of Medical Genetics.

Genetic information provides a unique type of knowledge about an individual and his/her family, fundamentally different from a typically laboratory test that provides a "snapshot" of an individual's health status. The unique status of genetic information and inherited disease has a number of ramifications with regard to ethical, legal, and societal concerns.

On 19 March 2015, scientists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[3][4][5][6] In April 2015 and April 2016, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[7][8][9] In February 2016, British scientists were given permission by regulators to genetically modify human embryos by using CRISPR and related techniques on condition that the embryos were destroyed within seven days.[10] In June 2016 the Dutch government was reported to be planning to follow suit with similar regulations which would specify a 14-day limit.[11]

The more empirical approach to human and medical genetics was formalized by the founding in 1948 of the American Society of Human Genetics. The Society first began annual meetings that year (1948) and its international counterpart, the International Congress of Human Genetics, has met every 5 years since its inception in 1956. The Society publishes the American Journal of Human Genetics on a monthly basis.

Medical genetics is now recognized as a distinct medical specialty in the U.S. with its own approved board (the American Board of Medical Genetics) and clinical specialty college (the American College of Medical Genetics). The College holds an annual scientific meeting, publishes a monthly journal, Genetics in Medicine, and issues position papers and clinical practice guidelines on a variety of topics relevant to human genetics.

The broad range of research in medical genetics reflects the overall scope of this field, including basic research on genetic inheritance and the human genome, mechanisms of genetic and metabolic disorders, translational research on new treatment modalities, and the impact of genetic testing

Basic research geneticists usually undertake research in universities, biotechnology firms and research institutes.

Sometimes the link between a disease and an unusual gene variant is more subtle. The genetic architecture of common diseases is an important factor in determining the extent to which patterns of genetic variation influence group differences in health outcomes.[12][13][14] According to the common disease/common variant hypothesis, common variants present in the ancestral population before the dispersal of modern humans from Africa play an important role in human diseases.[15] Genetic variants associated with Alzheimer disease, deep venous thrombosis, Crohn disease, and type 2 diabetes appear to adhere to this model.[16] However, the generality of the model has not yet been established and, in some cases, is in doubt.[13][17][18] Some diseases, such as many common cancers, appear not to be well described by the common disease/common variant model.[19]

Another possibility is that common diseases arise in part through the action of combinations of variants that are individually rare.[20][21] Most of the disease-associated alleles discovered to date have been rare, and rare variants are more likely than common variants to be differentially distributed among groups distinguished by ancestry.[19][22] However, groups could harbor different, though perhaps overlapping, sets of rare variants, which would reduce contrasts between groups in the incidence of the disease.

The number of variants contributing to a disease and the interactions among those variants also could influence the distribution of diseases among groups. The difficulty that has been encountered in finding contributory alleles for complex diseases and in replicating positive associations suggests that many complex diseases involve numerous variants rather than a moderate number of alleles, and the influence of any given variant may depend in critical ways on the genetic and environmental background.[17][23][24][25] If many alleles are required to increase susceptibility to a disease, the odds are low that the necessary combination of alleles would become concentrated in a particular group purely through drift.[26]

One area in which population categories can be important considerations in genetics research is in controlling for confounding between population substructure, environmental exposures, and health outcomes. Association studies can produce spurious results if cases and controls have differing allele frequencies for genes that are not related to the disease being studied,[27] although the magnitude of this problem in genetic association studies is subject to debate.[28][29] Various methods have been developed to detect and account for population substructure,[30][31] but these methods can be difficult to apply in practice.[32]

Population substructure also can be used to advantage in genetic association studies. For example, populations that represent recent mixtures of geographically separated ancestral groups can exhibit longer-range linkage disequilibrium between susceptibility alleles and genetic markers than is the case for other populations.[33][34][35][36] Genetic studies can use this admixture linkage disequilibrium to search for disease alleles with fewer markers than would be needed otherwise. Association studies also can take advantage of the contrasting experiences of racial or ethnic groups, including migrant groups, to search for interactions between particular alleles and environmental factors that might influence health.[37][38]

Here is the original post:
Medical genetics - Wikipedia

Posted in Genetic medicine | Comments Off on Medical genetics – Wikipedia

Genetic Counseling – School of Medicine | University of …

Posted: June 21, 2018 at 11:46 am

What does it mean to be a genetic counseling student?

At the University of South Carolina it means you become part of the team from day one: an engaged learner in our genetics center.You'll have an experienced faculty who are open door mentors in your preparation for this career.

You'll have access in the classroom and in the clinic to the geneticist and genetic counselor faculty in our clinical rotation network oftwelve genetic centers. The world of genetic counseling will unfold for you in two very busy years, preparing you to take on the dozens of roles open to genetic counselors today.

Rigorous coursework, community service, challenging clinical rotations and a research-based thesis will provide opportunity for tremendous professional growth.

We've been perfecting our curriculum formore than 30 years to connect the knowledge with the skills youll need as a genetic counselor. Our reputation for excellence is known at home and abroad. We carefully review more than 140 applications per year to select thenine students who will graduate from the School of Medicine Genetic Counseling Program. Our alumni are our proudest accomplishment and work in the best genetic centers throughout the country. They build on our foundation to achieve goals in clinical care, education, research and industry beyond what we imagined.

First in the Southeast and tenth in the nation, we are one of 39 accredited programs in the United States. We have graduatedmore than 200 genetic counselors, many of whom are leading the profession today.

Weve received highly acclaimed Commendations for Excellence from the South Carolina Commission of Higher Education. American Board of Genetic Counseling accreditation was achieved in 2000, reaccreditation in 2006 and, most recently, theAccreditation Council for Genetic Counselingreaccreditation was awarded, 2014-2022.

You'll have the chance to form lifelong partnerships with our core and clinical rotation faculty. Build your professional network with geneticists and genetic counselors throughout the Southeast.

One of our program's greatest assets is our alumni. This dedicated group regularly teaches and mentors our students,serves on our advisory board, and raises money for our endowment.You'll enjoy the instant connection when meeting other USC Genetic Counseling graduates. As a student, you'll benefit from the alumni networkand all they have to offer you. Check out our Facebook group.

See the rest here:
Genetic Counseling - School of Medicine | University of ...

Posted in Genetic medicine | Comments Off on Genetic Counseling – School of Medicine | University of …

Information about Genetic Testing | School of Medicine …

Posted: October 17, 2017 at 2:06 pm

Even with the success of the Human Genome Project, there still isn't a genetic test for every disease. A disease may run in a family and clearly be inherited, but the gene responsible may not be identified yet. Our team will see if there is a genetic test available for the condition running in your family.

If a test exists, we will find the best laboratory to use. Some laboratories offer clinical testing and must follow federal quality control standards. Clinical laboratories typically quote a fixed price and a standard return time for results.

Other laboratories offer research testing and are usually linked to academic centers and universities. They do testing at no cost in most cases. Often research laboratories do not provide results. If they do, it may take months or years to deliver results. Research test results should be confirmed in a clinical laboratory if medical management is based on the result.

Testing costs and turnaround times vary. Genetic test results are usually ready in three to four weeks. Though genetic testing costs are often paid for by insurance carriers, patients may be required to pay some or all of the cost when the test is ordered. When indicated we can write a letter of medical necessity explaining the benefits genetic testing might have for you. This can often increase the likelihood that your insurance company will pay for the testing.

Not everyone who has a genetic disease will have a mutation or a biochemical abnormality that shows up in testing. Because of this limitation, in a family it makes sense to first test someone who has had the disease in question.

If a genetic risk factor is found, ways of managing or preventing the disease due to that genetic risk can be discussed. Additionally, at-risk relatives can check their own status by testing for that specific risk factor. If that specific genetic risk factor is not found in an at-risk relative (i.e., they have a normal test result), he or she can be reassured. If the at-risk relative has a positive genetic test result, he or she has a greater chance of getting the condition. Relatives whose risk has been confirmed can start screening and prevention practices targeted for their genetic risk.

Sometimes testing a family member who has the disease isn't possible. (The person may be dead, unavailable or unwilling to be tested.) Then, an unaffected person can take the test. Finding a genetic risk factor will certainly give useful information. But a normal test result doesn't always mean there's no risk. Many genes responsible for an inherited susceptibility are not yet known. In other words, a normal test result can exclude the genetic risk factors that have been tested but not the possibility of an inherited susceptibility. It may be valuable to test other family members.

If you were to have genetic testing it would be important to interpret your test results in light of your personal and family medical history. We will also identify family members who might benefit from genetic consultation and genetic testing. If necessary, we can provide referrals for relatives outside the Denver area.

If you test positive for a genetic condition, you can better understand how this condition arose in you and your relatives. If you do not yet have symptoms, you can start to plan for the future, such as planning for a family, career, and retirement. You might want to start seeing specialists to help manage the condition. Preventive actions may be useful as well. Drugs, diet and lifestyle changes may help prevent the disease improve treatment.

Close relatives might value having this information. They can go through testing themselves to determine their disease risks and the best treatment approach.

If you test negative for a genetic risk factor that is known to run in your family you may be relieved that a major risk factor has been excluded.

Diagnosing a genetic condition does not tell us how or when the disease will develop. Although DNA-based genetic testing is very accurate, there is a chance that an inherited mutation will be missed. If a mutation is not found, the test results cannot exclude the possibility of an inherited risk since there may be a mutation in another gene for which testing was not done. If you still have symptoms of a genetic condition, a normal test result might not get you 'off the hook'. An inherited disease risk can only be excluded if a known mutation in the family has been excluded.

Family relationships may be affected by this information. If you have a genetic condition, other family members might benefit by also knowing. In the process of sharing your genetic risk information, family members may learn things about you that you do not want known. In addition, you may learn things about relatives that you did not want to know. For example, it may be revealed that a family member is adopted.

Some people find it hard to learn that they carry a gene that makes their risk of developing a disease greater. They may feel many emotions, including anger, fear about the future, anxiety about their health or guilt about passing a mutation on to their children. They may be shocked by the news. They may go through denial or a change in their self-esteem.

Knowing that you have a higher risk of getting a particular disease (when you don't currently show symptoms) may affect your ability to be insured (health, life and disability). Several state and federal laws prohibit use of genetic information by health insurance companies. In general, health insurers cannot use this information as a pre-existing condition that could disqualify you when applying for new insurance. Genetic information cannot be used to raise premium payments or to deny coverage. However, these laws are not fully comprehensive and may not entirely prevent discrimination. You may want to contact your insurance company to see what effect, if any, genetic testing may have on your coverage.

Sometimes genetic test results are uninformative or ambiguous, making it difficult or impossible to say if a person has a higher risk. These ambiguous results can be the most difficult as they don't provide a clear-cut answer.

For people with normal test results, where the genetic risk in the family has been excluded, a variety of emotions might occur. Most people feel tremendous relief. Others may feel survivor guilt, wondering why they were spared the risk. This can sometimes lead to changes in relationships between family members.

In some cases, an inherited risk for disease seems likely but the gene responsible has not yet been identified. The Adult Medical Genetics Program can help link families with researchers studying that disease. We can contact researchers for you and help you become part of the gene discovery studies. Although being part of research studies doesn't always give you answers, it does allow you to contribute to science.

See the article here:
Information about Genetic Testing | School of Medicine ...

Posted in Genetic medicine | Comments Off on Information about Genetic Testing | School of Medicine …

Genetic Modification in Medicine | gm.org

Posted: October 14, 2017 at 1:57 am

Posted by Ardent Editor on July 23rd, 2007

One of the most promising uses for genetic modification being eyed in the future is on the field of medicine. There are a number of advances already being done in the field of genetic modification that may be able to allow researchers to someday be able to develop a wide range of medicines that will be able to treat a variety of diseases that current medicines may not be able to.

There are many ways that genetic modification can be used in the development of new medicines in the future. One of them is in the production of some human therapeutic proteins which is used to treat a variety of diseases.

Current methods of producing these valuable human proteins are through human cell cultures but that can be very costly. Human proteins can also be purified from the blood, but the process always has the risk of contamination with diseases such as Hepatitis C and the dreaded AIDS. With genetic modification, these human proteins can be produced in the milk of transgenic animals such as sheep, cattle and goats. This way, human proteins can be produced in higher volumes at less cost.

Genetic modification can also be used in producing so-called nutriceuticals. Through this genetic modification can be used in producing milk from genetically modified animals in order to improve its nutritional qualities that may be needed by some special consumers such as those people who have an immune response to ordinary milk or are lactose intolerant. That is just one of the many uses that genetic modification may be able to help the field of medicine in trying to improve the quality of life.

Other ways of using genetic modification in the field of medicine concern organ transplants. In is a known fact to day that organ transplants are not that readily available since supply for healthy organs such as kidneys and hearts are so very scarce considering the demand for it. With the help of genetic modification, the demand for additional organs for possible transplants may be answered.

Genetic modification may be able to fill up the shortfall of human organs for transplants by using transgenic pigs in order to provide the supply of vital organs ideal for human transplants. The pigs can be genetically modified by adding a specific human protein that will be able to coat pig tissues and prevent the immediate rejection of the transplanted organs into humans.

Although genetic modification may have a bright future ahead, concerns still may overshadow its continuous development. There may still be ethical questions that may be brought up in the future concerning the practice of genetic modification. And such questions already have been brought up in genetically modified foods.

And such questions may still require answers that may help assure the public that the use of genetic modification in uplifting the human quality of life is sound as well as safe enough. Public acceptance will readily follow once such questions have been satisfactorily answered.

Go here to read the rest:
Genetic Modification in Medicine | gm.org

Posted in Genetic medicine | Comments Off on Genetic Modification in Medicine | gm.org

Genetic Medicine – Part 4041

Posted: October 11, 2017 at 10:07 pm

A recent ChemJobber post notes that C&E News Editor-in-Chief Rudy Baums editorials sometimes have a tendency to approach the controversial and sometimes the purely political. I wanted to discuss this weeks editorial which threatens to call into question much of my online existence (sorry, Mitch. If Rudys right, I think youre about to spontaneously e-implode).

In this weeks editorial, The Limits of Web 2.0, Baum decries the clich information wants to be free for both its out-of-context usage (the full quote says information wants to be expensive because it is valuable and free because the cost of information dissemination is shrinking almost hourly thus a struggle) and for its lunacy (information cant wish for anything its inanimate). Rather, Baum says that its people who wish that information would be free. Id amend Baums correction slightly. People really want information to be free and readily accessible. Id argue public libraries have long made most information free, if you were willing to do the legwork to get it.

But the bulk of Baums editorial promotes Jaron Laniers book You are Not a Gadget: A Manefesto, and summarizes Laniers main points, namely that the wisdom of crowds can be dangerous and science should be loath to adopt web 2.0 ideals. Lanier points out that around the turn of century, a torrent (a word hijacked by the web 2.0 crowd -ed.) of petty designs sometimes called web 2.0 flooded the web. And through the use of web 2.0, we apparently are losing sight of the trees for the forest, er, the taggers for the cloud.

Baum writes in his editorial (cross-posted for free on the web 2.0 CENtral Science blog, natch), The essence of what Lanier is saying is that individuals are important and that were losing sight of that at our own peril in elevating the wisdom of the crowd to a higher plane than the creativity of a single person. That is, we are valuing the cloud more than the individuals, when the cloud cant exist and has no meaning without the existence of the individuals. Lanier notes that collective intelligence can be used well, but only when guided by individuals who can direct the course of the hive mind and help steer clear of common groupthink pitfalls.

But the most interesting quote comes near then end, when Baum quotes Lanier as saying that scientific communities achieve quality through a cooperative process that includes checks and balances, and ultimately rests on a foundation of goodwill and blind elitism. Im not really sure what that means

But to Laniers thesis that science ought to be wary of embracing web 2.0 and its ideals, I find it interesting that Baum writes his editorial at C&E News, the magazine of the ACS, whose flagship publication, the Journal of the American Chemical Society, has featured a JACS? page for some time now. The same C&E News whose blog has become so popular that it had to split off into several child blogs. Where each post for each ACS article has links to share the article on one of several social networking sites. Where scientists can now browse their favorite article on their iphones with ACSMobile. While perhaps late to the party in some areas, the American Chemical Society has certainly logged on to web 2.0 as a way to export content to the web-savvy scientist.

Plus, we have our own Mitch, a one man walking encapsulation of web 2.0. His most successful application is, in my opinion, the chemical forums, which typically sees between 8,000 and 11,000 visitors per day. This blog seems to be a big hit, and his ChemFeeds is a one-stop source for your aggregated list of your favorite journals graphical abstracts. All this innovation on Mitchs part earned him an interview with David Bradley (of ScienceBase) in his chemistry WebMagazine, Reactive Reports.

Theres also the Chemistry Reddit as another outlet of chemistry news and notes.

In the inaugural issue of Nature Chemistry, the Nature Publishing Group recounted how they have completely bought into web 2.0 as a means of science communication each issue of Nature Chemistry even features a roundup of their favorite posts from the chemical blogosphere (which reminds me, to the left, Mitch has also created an aggregated rss feed of several popular chemistry blogs).

And, of course, web 2.0 in the sciences has been discussed in the blogs several times over the years. We have over 3 pages of posts categorized Web 2.0, mostly Mitchs posts on new web 2.0 platforms hes developed. Jean-Claude Bradley writes about web 2.0 in response to a very interesting post at Nascent, a blog from the folks at Nature.

So, all of these prove that web 2.0 has been talked about many times in the context of science. Has it worked? With the exception of blogs, sadly Im inclined to say no. At least not yet. And even with blogs (with the possible exception of All Things Metathesis, and In the Pipeline, though Derek isnt allowed to talk about his work b/c of intellectual property issues), not a lot of academic or industry leaders are prone to blogging. Its not like were reading Phil Barans blog and getting inside his head on a daily basis.

Sure, there is a subculture of people who are active on the web 2.0 scene, but it surely hasnt taken off as a medium for all chemists to enjoy. It theoretically should. Chemists are always benefited from communal sharing of results and information. But there are still (and probably always will be) people who seem reluctant to join the new technological paradigm. I like the way Timo Hannay words it in his post on Nascent,

But its not up to the doubters to get it, it is up to those of us who support these developments to demonstrate their value. And if we cant then they dont deserve to be adopted and we dont deserve to be heard.

Especially if there are people at the position of Editor-in-Chief for arguably the top chemistry magazine denouncing the web 2.0 movement, clearly it has a ways to go before it will be appreciated by all to the point where web 2.0 is taken for granted, where we dont even realize what were doing when we post results and opinions via web 2.0 technologies.

Lets get moving!

Read the rest here:
Genetic Medicine - Part 4041

Posted in Genetic medicine | Comments Off on Genetic Medicine – Part 4041

Stanford Medicine opens center for stem cell, gene therapy – The Stanford Daily

Posted: September 2, 2017 at 5:44 am

Stanford Medicine will open a new Center for Definitive and Curative Medicine (CDCM) to treat people with genetic diseases using stem cells and gene therapies. The center is a joint-initiative with the school of medicine, Stanford Health Care and Stanford Childrens Health.

Maria Grazia Roncarolo, MD, who is the George D. Smith Professor in Stem Cell and Regenerative Medicine, will direct the center, located within the Department of Pediatrics in Lucile Packard Childrens Hospital. Roncarolo said the same physician-scientists developing the drugs will treat patients, expediting the process of finding appropriate and precise treatments.

We will use the discoveries from the Stanford labs to design the therapy for Phase 1 trials, Roncarolo said. Instead of using drugs generated from biotech companies, were using drugs generated from our own labs.

Certain complex diseases like type 1 diabetes, leukemia, lymphoma, metabolic syndrome, cardiovascular disease, neurodegenerative diseases and some pediatric cancers currently have no cure but symptoms can be remedied using stem cell or gene therapy. Stem cell therapy takes stem cells from donors while gene therapy takes stem cells from the patient which were engineered to correct the genetic defect.

Diseases that arent genetic such as degenerative diseases, heart attacks and strokes can also be treated by stem cell transplantation. The CDCM will be equipped with the standard stem cell transplantation beds and investigative beds for clinical trials.

Roncarolo will lead a team of four other associate directors and physicians. Roncarolo said the team has specialties in multiple fields which will help address a range of genetic diseases.

The aspirational goal of this center is to work in multidisciplinary teams with different expertise to cure patients with incurable diseases, Roncarolo said.

According to one of these team members, Anthony Oro, MD, who is the Eugene and Gloria Bauer Professor and professor of dermatology, babies born with birth defects can have their defective genes taken out and corrected in a laboratory then re-inserted back using stem cells. Oro explained this is similar to a heart transplant, where a healthy organ replaces the damaged one to cure the patient. By using the persons own DNA to manufacture the healthy genes and organs, the patient doesnt need to be on immunosuppressant drugs or be matched with a donor who is compatible in blood type and tissue type.

Its a revolutionary idea to use cells and tissues as drugs to actually cure diseases which we havent been able to cure before because we only had surgery and medicine before, Oro said. The difference between potential cures and actual cures with huge effects is a mile apart. Were bringing the potential of cures to reality here.

Contact Jessica Zhang at jessica at stanforddaily.com

Original post:
Stanford Medicine opens center for stem cell, gene therapy - The Stanford Daily

Posted in Genetic medicine | Comments Off on Stanford Medicine opens center for stem cell, gene therapy – The Stanford Daily

Page 65«..1020..64656667..7080..»