Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Genetics
Immunotherapy drug targets tumor’s genetics instead of body part – Monroe Evening News
Posted: July 10, 2017 at 6:43 am
WASHINGTON (AP) Colon cancer. Uterine cancer. Pancreatic cancer.
Whatever the tumor, the more gene mutations lurking inside, the better chance your immune system has to fight back.
Thats the premise behind the recent approval of a landmark drug, the first cancer therapy ever cleared based on a tumors genetics instead of the body part it struck first.
Now thousands of patients with worsening cancer despite standard treatment can try this immunotherapy as long as genetic testing of the tumor shows theyre candidates.
Its like having a lottery ticket, said Johns Hopkins oncologist Dr. Dung Le, who helped prove the new use for the immunotherapy Keytruda. Weve got to figure out how to find these patients, because its such a great opportunity for them.
Today, doctors diagnose tumors by where they originate breast cancer in the breast, colon cancer in the colon and use therapies tested specifically for that organ.
In contrast, the Food and Drug Administration labeled Keytruda the first tissue-agnostic treatment, for adults and children.
Seemingly unrelated cancers occasionally carry a common genetic flaw called a mismatch repair defect. Despite small studies, the FDA found the evidence convincing that for a subset of patients, that flaw can make solid tumors susceptible to immunotherapy doctors otherwise wouldnt have tried.
We thought these would be the hardest tumors to treat, but its like an Achilles heel, said Hopkins cancer geneticist Bert Vogelstein.
Last month, FDA Commissioner Scott Gottlieb told a Senate subcommittee his agency will simplify drug development for diseases that all have a similar genetic fingerprint even if they have a slightly different clinical expression.
Its too early to know if whats being dubbed precision immunotherapy will have lasting benefits, but heres a look at the science.
WHOS A CANDIDATE?
Hopkins estimates about 4 percent of cancers are mismatch repair-deficient, potentially adding up to 60,000 patients a year.
Widely available tests that cost $300 to $600 can tell whos eligible.
The FDA said the flaw is more common in colon, endometrial and gastrointestinal cancers but occasionally occurs in a list of others.
Say, have I been tested for this? is Les advice for patients.
MUTATIONS AND MORE MUTATIONS
Most tumors bear 50 or so mutations in various genes, Vogelstein said. Melanomas and lung cancers, spurred by sunlight and tobacco smoke, may have twice as many. Tumors with a mismatch repair defect can harbor 1,500 mutations.
Why? When DNA copies itself, sometimes the strands pair up wrong to leave a typo a mismatch. Normally the body spell checks and repairs those typos.
Without that proofreading, mutations build up, not necessarily the kind that trigger cancer but bystanders in a growing tumor.
THE PLOT THICKENS
Your immune system could be a potent cancer fighter except that too often, tumors shield themselves.
Mercks Keytruda and other so-called checkpoint inhibitors can block one of those shields, allowing immune cells to recognize a tumor as a foreign invader and attack. Until now, those immunotherapies were approved only for a few select cancers Keytruda hit the market for melanoma in 2014 and they work incredibly well for some patients but fail in many others.
Learning whos a good candidate is critical for drugs that can cost $150,000 a year and sometimes cause serious side effects.
In 2012, Hopkins doctors testing various immunotherapies found the approach failed in all but one of 20 colon cancer patients. When perplexed oncologists told Vogelstein, a light bulb went off.
Sure enough, the one patient who fared well had a mismatch repair defect and a mind-boggling number of tumor mutations. The more mutations, the greater the chance that at least one produces a foreign-looking protein that is a beacon for immune cells, Vogelstein explained.
It was time to see if other kinds of cancer might respond, too.
WHATS THE DATA?
The strongest study, published in the journal Science, tested 86 such patients with 12 different cancers, including some who had entered hospice. Half had their tumors at least shrink significantly and 18 saw their cancer become undetectable.
Its not clear why the other half didnt respond. Researchers found a hint, in three patients, that new mutations might form that could resist treatment.
But after two years of Keytruda infusions, 11 of the complete responders have stopped the drug and remain cancer-free for a median of eight months and counting.
Catherine Katie Rosenbaum, 67, is one of those successes. The retired teacher had her uterus removed when endometrial cancer struck, but five years later tumors returned, scattered throughout her pelvis and colon.
She tried treatment after treatment until in 2014, her doctor urged the Hopkins study.
Rosenbaum took a train from Richmond, Virginia, to Baltimore for infusions every two weeks and then, after some fatigue and diarrhea side effects, once a month. Then the side effects eased and her tumors started disappearing.
A year into the study she was well enough to swim a mile for a Swim Across America cancer fundraiser.
Nothing else had worked, so I guess we could say it was a last hope, said Rosenbaum, who now wants other patients to know about the option.
See the article here:
Immunotherapy drug targets tumor's genetics instead of body part - Monroe Evening News
Posted in Genetics
Comments Off on Immunotherapy drug targets tumor’s genetics instead of body part – Monroe Evening News
Genetics may lie at the heart of crop yield limitation – Phys.org – Phys.Org
Posted: July 10, 2017 at 6:43 am
July 5, 2017 Comparison of growth differences in wild-type (left) and growth-repressor mutant (right) Arabidopsis plants. Credit: Dr Nick Pullen
You might think that plants grow according to how much nutrition, water and sunlight they are exposed to, but new research by Dr Nick Pullen and a team from the John Innes Centre, UK shows that the plant's own genetics may be the real limiting factor.
"This could have potentially big implications for the agricultural industry," says Dr Pullen, "Our model plant is in the same family as cabbages, so it's easy to imagine creating giant cabbages or growing them to the desired market size faster than at present."
It was previously assumed that plant growth was generally resource-limited, meaning that plants would only grow as large and fast as they could photosynthesise. However, Dr Pullen and his team present evidence that plant growth is actually "sink-limited", meaning that genetic regulation and cell division rates have a much bigger role in controlling plant growth than previously thought: "We are proposing that plant growth is not physically limited by Net Primary Productivity (NPP) or the environment, but instead is limited genetically in response to these signals to ensure they do not become limiting."
By genetically altering the growth repressors in Arabidopsis, Dr Pullen and his team were able to create mutant strains. They identified the metabolic rates of the different plant strains by measuring rates of photosynthesis and respiration, as well as comparing the size and weight of the plants to monitor differences in physical growth.
Dr Pullen and the team also grew the mutant plant strains at different temperatures to see if this changed their results: "When grown at different temperatures we still find a difference in size of our plants between wildtype and the mutants. This suggests our results should be applicable in different climates."
The impact of these results is wide-reaching, and Dr Pullen suggests that it may even change how we think about global climate data: "Climate models need to incorporate genetic elements because at present most do not, and their predictions would be much improved with a better understanding of plant carbon demand."
Explore further: Revealed: New step in plant mastermind hormone's pathway
Plants are stationary. This means that the way they grow must be highly internally regulated to use the surrounding resources in the most-advantageous way possible.
Garden and potted plants with white spots on their leaves are so popular that they are specially selected for this feature. An international research team has now identified a new mutation in the plant Lotus japonicus which ...
Researchers have discovered a new gene that enables plants to regulate their growth in different temperatures.
Scientists have identified a new mutant plant that accumulates excessive amounts of starch, which could help to boost crop yields and increase the productivity of plants grown for biofuels.
New research from an Iowa State University scientist identifies a genetic mechanism that governs growth and drought tolerance in plants, a development that could lead to better performing traits in crops.
Because plants cannot relocate when resources become scarce, they need to efficiently regulate their growth by responding to environmental cues. Drought is the most important cause of reduced plant growth and crop yield, ...
Those who crave brownies or hot cocoa may be happy to hear that heroes too small to be seen may help to protect the world's chocolate supply. Scientists at the Smithsonian Tropical Research Institute (STRI) in Panama found ...
New research shows a species of diatom, a single-celled algae, thought to be asexual does reproduce sexually, and scientists learned it's a common compound - ammonium - that puts the ubiquitous organism in the mood.
The orangutan population on the island of Borneo has shrunk by a quarter in the last decade, researchers said Friday, urging a rethink of strategies to protect the critically-endangered great ape.
As the old saying goes, teaching someone to fish is far more helpful than just giving them a fish. Now, research from WorldFish and MIT takes that adage a step further: Better yet, the study found, is working with the fishermen ...
After observing the mating habits of chacma baboons living in the wild over a four-year period, researchers have found that males of the species often use long-term sexual intimidation to control their mates. The findings ...
A University of Kentucky plant pathologist is part of an international team of researchers who have uncovered an important link to a disease which left unchecked could prove devastating to wheat. UK College of Agriculture, ...
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
See the article here:
Genetics may lie at the heart of crop yield limitation - Phys.org - Phys.Org
Posted in Genetics
Comments Off on Genetics may lie at the heart of crop yield limitation – Phys.org – Phys.Org
North American genetics take centre stage in Wicklow – Agriland
Posted: July 10, 2017 at 6:43 am
Victor Jackson milks a herd of 140 pedigree registered Holstein Friesian cows, alongside his nephew Richard, in Crossnacole, Kiltegan, Co. Wicklow.
The Jackson family welcomed hundreds of visitors to their Crossnacole Holsteins operation on Thursday, July 6, for the 25th Irish Holstein Friesian Association (IHFA) national open day.
We registered our first pedigree Holsteins in 1983. Over the years we decided to import embryos from the top cow families in North America, Victor said.
Those embryos form the backbone of the herd today some 20 years later.
The herd has progressed in terms of production and type and has grown to 140Holstein Friesian cows.
Thats about where we intend to stay. Our farm is fully developed now. We have 127ac and we dont intend on leasing any more. Were happy with how the herd is performing at the moment, Victor added.
The Crossnacole herd produces 1.4m litres annually, withan average yield of 10,000L at 3.91% butterfat and 3.35% protein.
90% of the herd is classified to Very Good and Excellent conformation the top two grades of the IHFA classification scoring system.
The Jacksons have always produced winter milk and attribute this, as well as a limited land base, as to why they chose the Holstein Friesian cow.
We needed a high-producing cow to produce large volumes of milk off forage indoors; its for that reason weve stuck with the Holstein.
Jackson houses in mid-October and provides a diet of high-quality silage and a total mixed ration (TMR) consisting of grass silage, maize silage, whole beet and brewers grains. Concentrate is fed to yield in the parlour.
In the spring, grazed grass is maximised in the cows diet. Jackson usually turns the cows out around March 17, with cows out night and day by April 10.
The Crossnacole herd contains some of the very best Holstein cow families. These include some of thetop North American cow families, such as the renowned Paradise family.
Jackson selects stock to deliver in terms of functionality, quality and efficiency of yields.
My breeding policy is for medium-sized, balanced, capacious cows with the ability to consume large volumes of roughage, Jackson stated.
Regarding sire selection, Jackson said: Were looking for high-type bulls, whose daughters will develop slowly into really good cows; bulls that are breeding good feet and legs, good udders and positive for kilograms of fat and protein.
Jackson aims to calve heifers at two-years-old. However, there is some leeway with being a liquid milk herd.
Being a liquid milk herd, we have the luxury of letting some heifers or cows slip a little. We dont have to cull entirely on fertility. One thing about the Holstein cow is that she will milk on.
The Holstein has an unbelievable ability to milk on through a long lactation.We produce almost 2,000L outside the 305-day period, Jackson said.
The rest is here:
North American genetics take centre stage in Wicklow - Agriland
Posted in Genetics
Comments Off on North American genetics take centre stage in Wicklow – Agriland
How culture, passion and genetics are fueling a Nigerian takeover of US sports – CBS sports.com (blog)
Posted: July 1, 2017 at 6:43 pm
It wasn't just coincidence to Bobby Burton. The 47-year-old Houston native had been covering college football recruiting for more than 20 years. With increased frequency, the best players he saw were more Americanized than American.
Burton lives in a Houston recruiting hotbed, but what he increasingly saw created a recruiting quandary. Who were these kids with the strange names? They were polite, dedicated and often studs.
They absolutely were Nigerian, or the second-generation offspring of Nigerians, playing the hell out of American football.
"You're always looking for the next thing in recruiting," said Burton, a writer for 247Sports.
This one hit him between the eyes.
All of it made sense when Burton did the math. Nigeria is the seventh most populous nation in the world (190 million). There are more Nigerian immigrants in the United States (376,000) than anywhere in the world. The Houston metro area is home to most Nigerians in the country (about 150,000).
Somehow their culture, their drive, their family structure and, oh yes, their bodies seemed to fit football.
With some meticulous research, Burton determined that in the 2016 NFL Draft there were as many players taken from Lagos, Nigeria, as from the city of Chicago (three).
"Unbelievable, unbelievable," said Hakeem Olajuwon, the acknowledged pied piper for Nigerian athletes after coming out the University of Houston in 1984 and becoming a member of the Naismith Memorial Basketball Hall of Fame.
"You can see the talents coming out."
It turns out, this phenomenon was bound to happen.
"I think it was kind of that moment in time," Burton said. "It's gone past the point of coincidence It's no longer just [an] anomaly. It's part of the fabric of football and football recruiting in this country."
Their story goes beyond college football -- or even college athletics. Forget any athletic stereotype, Nigerians have a fierce family pride and dogged belief in education -- particularly higher education -- that allows them to succeed in this country.
These noble West African natives and their descendants are the American Dream.
"There is an honor about them," Southern California Trojans coach Clay Helton said.
Helton counts at least five first- or second-generation Nigerians on his roster.
"They're such a regal people," said Chris Plonsky, the women's athletic director at Texas Longhorns .
Oh, and they can play. In the space of four picks at the end of the first round and beginning of the second of that 2016 NFL Draft, three were of Nigerian descent ( Ole Miss Rebels ' Robert Nkemdiche , Texas A&M's Germain Ifedi and Oklahoma State Cowboys 's Emmanuel Ogbah ).
While the NCAA doesn't keep statistics on nationality (only race), Nigerian influence on college sports is obvious. Among the Power Five, only the SEC didn't have at least one player of Nigerian heritage on its all-conference first or second teams in 2016.
The past three seasons, at least one player of Nigerian heritage has finished in the top 25 nationally in tackles.
At least 80 players of Nigerian ancestry have populated professional football, soccer, basketball and even car racing in recent years. In 1987, Christian Okoye ("The Nigerian Nightmare") became the first Nigerian-born NFL player.
Before Okoye, Olajuwon was the inspiration.
"You're totally right," said Emmanuel Acho , a Nigerian-American who played linebacker at Texas and in the NFL. "If you want to start with Hakeem Olajuwon or you want to start with Christian Okoye, [it doesn't matter]."
Hakeem's background in soccer and handball helped his footwork in basketball. Those Phi Slama Jama teams in the mid-1980s changed the game.
But what about the scores of second-generation Nigerians -- those born into a family with at least one Nigerian-born parent? In the 2016 NFL Draft alone, there were three times as many Nigerian players with hereditary ties to the country's dominant tribe -- the Igbo -- (six) than draftees from Florida State Seminoles (two).
Oluwole Betiku might be the next Nigerian phenom in the NFL. The sophomore linebacker is already the talk of Southern California, where they affectionately they call him "Wole" (woe-lay).
Betiku was discovered at a basketball camp in Nigeria. At age 15, he rode 11 hours in a bus to that camp in hopes of finding a better life for his impoverished family.
Desperation doesn't begin to describe it. Seventy percent of the Nigerian population is below the poverty line. Forty percent of the population is illiterate. The AIDS rate there is the highest in the world.
"We have oil everywhere," Sonny Acho said of his native land.
Acho is father of Sam and another Texas/NFL linebacker, Emmanuel. Sonny has become an icon not only in his Dallas community but also for his Nigerian outreach.
"We have a corrupt culture: Get all you can!" he said of Nigeria. "Only a few politicians live large. Millions live in poverty. These are the people that we are trying to go help."
Sam and Emmanuel have been on an estimated 15-20 mission trips back to their parents' homeland. They have recruited friends and teammates to provide basic needs to villages.
"People talk about modern-day miracles," Sam explained. "I saw a lady that was blind, and she received her sight through prayer."
That required some reconfirmation. The mission trip did include some doctors who were removing cataracts. Wasn't that what Sam witnessed?
"She starts praying, praying, praying," Sam said. "The next thing she says is, 'Amen.' I'm standing around the way just kind of seeing what's going on. The lady starts freaking out. They hold up this card and ask her what color it is.
"She says, 'Yellow.'"
A more conventional miracle: Out of that Nigerian camp, Betiku eventually got referred to former Penn State Nittany Lions star LaVar Arrington, who became his legal guardian and brought him to the U.S. Betiku didn't take up football until he was a sophomore at Serra High School in Los Angeles.
At that point, he was so nave to the sport, Wole shed his shoulder pads as an annoyance. Just getting on the field for the Trojans for five games as a freshman was a win.
"I'll never forget him absolutely breaking down into tears one day in our defensive team meeting," Helton said. "They had showed some tape on him and a little bit of praise. He said, 'Coach, if you could imagine where I was a couple of years ago to where I'm sitting right now. I just thank God for this opportunity.'"
If you want to secure one of these talents, you might want to place a call to Lou Ayeni. He is as plugged in to the Nigerian recruiting scene as anyone. Both parents of Iowa State Cyclones 's running backs coach are from Lagos, Nigeria's capital.
Babs and Flora have PhDs. Dad is a statistical engineer. Mom is a biomedical statistician. One sister, Tina, is a nationally noted oncologist who treated the mother of Iowa State coach Matt Campbell.
"She's trying to find a cure for ovarian cancer," Lou said. "My mom makes fun of me. You went to Northwestern Wildcats to coach football? I don't understand it."
That was after playing tailback and safety for the Wildcats under Randy Walker and surviving eight surgeries in his career. That was after his mother all but hand-picked the elite school for her son.
"My mom says, 'You're going to the best academic school you can go to,'" Lou recalled. "I was high school player of the year in Minnesota. I was enamored with Wisconsin Badgers . My first Big Ten visit was Iowa Hawkeyes . They were really intriguing schools to me."
Flora then interjected: Nothing is happening until you visit Northwestern.
"We go through the academic piece. First thing she says is, 'You're coming here,'" Lou said. "Some Nigerian families are like that."
As an Ayeni, Lou did take the road less traveled. He knows those Dallas and Houston hotbeds.
Running back Kene Nwangwu was the state high jump champion out of Dallas, not the kind of player who come to Ames, Iowa. He was offered by every Big 12 school. Iowa State got him.
"It was an easy sell for me," Ayeni said. "His family is very similar to my family -- 4.0 GPA, yes sir, no sir."
Ayeni says he can see Nigerian talent just by watching tape.
"Some of them," he said. "If I hear the name and watch them, I'll know if they're Nigerian."
Their names are often lyrical, peaceful and meant to convey both their faith and future -- Blessing, Sunday, Passionate, Peace, Promise, Princess.
Former Iowa State offensive lineman Oni Omoile was part of a royal bloodline in Nigeria. His nickname on the team quickly became "Prince."
"We know each other by our last names," Sonny Acho said. "You give me somebody's last name, not only will I know that person is from Nigeria, I will even tell you where the person is from. It tells you the tribe and the language the person speaks."
"Acho" means "I have found what I'm looking for," according to Sonny. Burton says he knows Nigerians by another definition.
"I've been doing this a long time," he said. "I can't remember a Nigerian kid ever having grade problems. It's not the physical nature of their ability. It's the maximization of what they have."
There are other cultures that stress education and family. Why are Nigerians different to be the subject of this talent/recruiting boom?
The Immigration and Nationality Act of 1965 was a direct result of the growing civil rights movement. It relaxed immigration quotas. The Refugee Act of 1980 made it easier for African immigrants to come here. That was important for those fleeing conflict-impacted areas, such as Nigeria.
That Nigerian U.S. population of 376,000 is roughly the size of New Orleans. That sample size has produced an athletic revolution.
WNBA players Chiney and Nneke Ogwumike -- from the Houston suburb of Tomball -- were the only other siblings besides the Mannings to be drafted No. 1 overall in a U.S. professional sports league (2012, '14).
They are part of the fabric of a metro area. Half of all African immigrants in Houston are from Nigeria
"Why is there such a concentration in Houston?" asked Stephen Klineberg, a sociology professor at Rice. "It's the classic story of immigration. You go where you know people. You go there because your cousin is there."
And the climate is roughly the same. The humidity and warmth of Houston is similar to Lagos. That gives rise to the some of the first families of Nigerian-American sports -- the Achos, the Orakpos, the Okafors.
All-American linebacker Brian Orakpo came out of Houston to win a national championship at Texas. He has been selected for the Pro Bowl in half of his eight pro seasons.
Emeka Okafor was the first member of his Nigerian family born in the United States. The former UConn basketball star and No. 2 overall draft pick played 10 NBA seasons. Distant cousin Jahlil Okafor was the No. 3 pick overall in 2015 out of Duke.
The Nigerian surge in athletics is best described another way: Half of all Nigerians have arrived in the country since 2000. Twenty-nine percent of those immigrants age 25 or older hold a master's degree. That's compared to 11 percent of the overall U.S. population. Eight percent of those Nigerians hold doctorate degrees compared to 1 percent of the U.S. population. This 2008 story calls them the most educated ethnicity in the U.S.
The NCAA's antiquated bylaws constantly remind us a degree doesn't necessarily equal an education. But in the Nigerian culture, education is the foundation for life.
Sam Acho could have played anywhere. His athletic talent was evident. But he was also being recruited by elite schools including several in the Ivy League. Sonny had to be convinced Texas was worthy of his son.
"Sam got into Texas' McCombs School of Business," Sonny said. "That solved the problem. Mack Brown basically knew we were strong people. Anything outside of that was going to cause a problem. They allowed us to be involved in the boy's lives. It's all about academics first and football second."
In 2010, Sam won the Campbell Trophy, the so-called "Academic Heisman" for the nation's top football scholar-athlete. Sam has a master's in international business. Emmanuel has a master's in psychology.
As kids, they led somewhat of a cloistered life. Such is the influence of parents. Sonny said former USC coach Pete Carroll once pulled Sam from a group of 300 and tried to get him to commit.
So you can sort of understand a natural skepticism.
"My kids couldn't do sleepovers," Sonny said. "I don't know what you have going on in your house. I'm not willing to let my son go over there and something goes wrong and then they accuse my son of raping many African parents will be like that."
A large part of this story is simple math and demographics. Nearly 16 percent of the United States' population has ties to Africa, and nearly five percent of its immigrant population is from Nigeria. The only countries in the world larger than Nigeria are Pakistan, Brazil, Indonesia, the United States, India and China. According to a new United Nations report, Nigeria will be the third-most populous country in the world by 2050, overtaking the United States.
There are more native Nigerians in the U.S. than from any other African nation. In 1980, that number was 25,000. As the refugee laws began to loosen, in every decade from the 1980s through the 2000s, at least 10 million immigrants came to the U.S.
Eighty-eight percent of those were of Asian, Latin American, Caribbean or African descent, Klineberg said.
"It's a new immigration stream that has never existed before in American history," he added.
Nigerian families tend to be large, accomplished and -- as mentioned -- extremely close. Florida State All-ACC defensive tackle Derrick Nnadi says he talks to each of his six siblings daily via social media.
"Every day we have a whole group chat," he said.
A brother, Bradley, is an actor in Southern California. A sister, Ashley, got into the nursing program at Old Dominion. Derrick somehow ended up the kid with his hand in the dirt -- although one with a 3.12 grade-point average last semester.
"I have four jobs," Derrick said. "Go to class, study, get conditioned, play football. That really boils down to two jobs."
You shouldn't even have to ask. Consider his father, Fred Nnadi. He came to the U.S. with his brother decades ago determined to carve out a life as an engineer.
But like a lot of immigrants, he was hindered by his nationality and the language barrier.
"I went to a job interview one time. I had three degrees going in," Fred said. "I applied to be a meter reader. The supervisor doesn't have the degree I have.
"He hired me and didn't say a word. When I left, he started tell me he wished he had the education I had. I had to feed my family. That's why we emphasize education."
But perhaps the only reason Derrick is at Florida State in the first place is that Fred survived the brutal Nigerian civil war from 1967-70.
Up to two million might have died in the bloody conflict. It evolved as Nigeria was finding its identity as an independent nation after separating from the United Kingdom in 1960.
As a teenager, Fred voluntarily joined what he said were the equivalent of U.S. Army Rangers, fighting behind enemy lines. This was in the days of governmental conscription.
"It was a war of genocide It was a terrible war," Fred said. "That war, they have not recovered. I'm not kidding you. I don't care what anybody says."
Those who survived at least had the chance to pass on their genes in the United States. Fred's father had been a tribal chief back in the homeland with "many wives" who "when he walked on land, the ground shook."
"I have so many brothers and sisters," Fred said. "We were in the hundreds. He was a very great man. I have to tell you, when you look at Derrick, he's black and big. You're looking at my father."
That memory of Chief Ezeoha explains some of the why the 6-foot-1, 312-pound Derrick became one of three "Seminole Warriors" on the team by throwing up 525 pounds on the bench.
"I have a video if you want to see it," Derrick said proudly. "I will never shy from showing the video."
After that civil war, a series of oppressive dictators emerged. Lately, the ISIS-affiliated Boko Haram has terrorized Nigerians.
Like all Nigerian athletes spoken to for this story, they seem to be Americans first. Some have been back to the homeland. All of them can't forget it.
"Killing this goat right in front of us and slicing it's neck," USC tight end Daniel Imatorbhebhe said while recalling a visit from his childhood. "[I remember] it running it around. We ate it later in the day. It was spicy."
In one sense, Imatorbhebhe is as American as the corner McDonald's. He was born in Nigeria but grew up in suburban Atlanta before signing with Florida Gators and immediately transferring to USC.
Imatorbhebhe's mother is a biomedical consultant. His father worked for a mortgage company before the financial crash. His brother, Josh, is a Trojans receiver.
"It's tough because it's like we're not really seen as in the some mold as an African-American kid," Daniel said. "Teammates have always said, 'Y'all are just built different. What do you attribute that to? Is it what you eat?'"
Yes, if you consider Nigerian staples oxtail, coconut rice and fufu the diet of champions. The family is also Yoruba, another common tribe in Nigeria.
Read more here:
How culture, passion and genetics are fueling a Nigerian takeover of US sports - CBS sports.com (blog)
Posted in Genetics
Comments Off on How culture, passion and genetics are fueling a Nigerian takeover of US sports – CBS sports.com (blog)
After vote, Accelerated Genetics slated to merge – La Crosse Tribune
Posted: July 1, 2017 at 6:43 pm
Accelerated Genetics and Select Sires Inc. will be a merged cooperative.
According to a news release, the merger follows a June 22 vote by Accelerate Genetics officials. The vote green-lights an agreement recommended by both companies boards of directors. The smaller Accelerated Genetics has reported financial difficulty in the past. The larger Ohio-based Select Sires will acquire Accelerated Genetics assets, including a bull farm in Westby.
Both companies specialize in artificial insemination of cattle. The companies have an established working relationship that started in 2001 when the companies allied in international markets.
Accelerated Genetics has been searching for a partner who could enhance the business and move it forward, said Scott Dahlk, Accelerated Genetics Board chairman. Joining forces with Select Sires is a positive move for both the member-owners and producers worldwide.
The company said Accelerated Genetics assets, employees and sales representatives will be integrated into the organization. Both companies operate under the cooperative-business model and share similar structures, according to the company.
By working together we will be stronger, said David Thorbahn, Select Sires president and chief executive officer. The value and expertise gained by joining the people from both organizations allow us to offer our customers a broader genetics program in addition to an outstanding animal health product line. Its very exciting to work together, enabling our organizations the ability to expand genetic research, technical support, service, and programs with people who are passionate about the dairy and beef industries.
Continue reading here:
After vote, Accelerated Genetics slated to merge - La Crosse Tribune
Posted in Genetics
Comments Off on After vote, Accelerated Genetics slated to merge – La Crosse Tribune
Autism genetics, explained | Spectrum | Autism Research News – Spectrum
Posted: July 1, 2017 at 6:43 pm
Download PDF
Researchers have known that genes contribute to autism since the 1970s, when a team found that identical twins often share the condition. Since then, scientists have been racking up potential genetic culprits in autism, a process that DNA-decoding technologies have accelerated in the past decade.
As this work has progressed, scientists have unearthed a variety of types of genetic changes that can underlie autism. The more scientists dig into DNA, the more intricate its contribution to autism seems to be.
Since the first autism twin study in 1977, several teams have compared autism rates in twins and shown that autism is highly heritable. When one identical twin has autism, there is about an 80 percent chance that the other twin has it too. The corresponding rate for fraternal twins is around 40 percent.
However, genetics clearly does not account for all autism risk. Environmental factors also contribute to the condition although researchers disagree on the relative contributions of genes and environment. Some environmental risk factors for autism, such as exposure to a maternal immune response in the womb or complications during birth, may work with genetic factors to produce autism or intensify its features.
Genetics in motion: The secret to understanding autism lies largely in our DNA.
Not really. There are several conditions associated with autism that stem from mutations in a single gene, including fragile X and Rett syndromes. But less than 1 percent of non-syndromic cases of autism stem from mutations in any single gene. So far, at least, there is no such thing as an autism gene meaning that no gene is consistently mutated in every person with autism. There also does not seem to be any gene that causes autism every time it is mutated.
Still, the list of genes implicated in autism is growing. Researchers have tallied 65 genes they consider strongly linked to autism, and more than 200 others that have weaker ties. Many of these genes are important for communication between neurons or control the expression of other genes.
Changes, or mutations, in the DNA of these genes can lead to autism. Some mutations affect a single DNA base pair, or letter. In fact, everyone has thousands of these genetic variants. A variant that is found in 1 percent or more of the population is considered common and is called a single nucleotide polymorphism, or SNP.
Common variants typically have subtle effects and may work together to contribute to autism. Rare variants, which are found in less than 1 percent of people, tend to have stronger effects. Many of the mutations linked to autism so far have been rare. It is significantly more difficult to find common variants for autism risk, although some studies are underway.
Other changes, known as copy number variations (CNVs), show up as deletions or duplications of long stretches of DNA and often include many genes.
But mutations that contribute to autism are probably not all in genes, which make up less than 2 percent of the genome. Researchers are trying to wade into the remaining 98 percent of the genome to look for irregularities associated with autism. So far, these regions are poorly understood.
No. At the molecular level, the effects of mutations may differ, even among SNPs. Mutations can be either harmful or benign, depending on how much they alter the corresponding proteins function. A missense mutation, for example, swaps one amino acid in the protein for another. If the substitution doesnt significantly change the protein, it is likely to be benign. A nonsense mutation, on the other hand, inserts a stop sign within a gene, causing protein production to halt prematurely. The resulting protein is too short and functions poorly, if at all.
Most mutations are inherited from parents, and they can be common or rare. Mutations can also arise spontaneously in an egg or sperm, and so are found only in the child and not in her parents. Researchers can find these rare de novo mutations by comparing the DNA sequences of people who have autism with those of their unaffected family members. Spontaneous mutations that arise after conception are usually mosaic, meaning they affect only some of the cells in the body.
Perhaps. Girls with autism seem to have more mutations than do boys with the condition. And boys with autism sometimes inherit their mutations from unaffected mothers. Together, these results suggest that girls may be somehow resistant to mutations that contribute to autism and need a bigger genetic hit to have the condition.
Clinicians routinely screen the chromosomes of a developing baby to identify large chromosomal abnormalities, including CNVs. There are prenatal genetic tests for some syndromes associated with autism, such as fragile X syndrome. But even if a developing baby has these rare mutations, there is no way to know for sure whether he will later be diagnosed with autism.
Originally posted here:
Autism genetics, explained | Spectrum | Autism Research News - Spectrum
Posted in Genetics
Comments Off on Autism genetics, explained | Spectrum | Autism Research News – Spectrum
The problematics of genetics and the Aryan issue – The Hindu
Posted: July 1, 2017 at 6:43 pm
The Hindu | The problematics of genetics and the Aryan issue The Hindu Tony Joseph's article (How genetics is settling the Aryan migration debate, June 17) heavily leans on two recent studies (which I will refer to after their first author: Silva et al. and Reich et al.) but conceals important methodological issues ... |
The rest is here:
The problematics of genetics and the Aryan issue - The Hindu
Posted in Genetics
Comments Off on The problematics of genetics and the Aryan issue – The Hindu
Genetics – Wikipedia
Posted: October 20, 2016 at 1:44 am
This article is about the general scientific term. For the scientific journal, see Genetics (journal).
Genetics is the study of genes, genetic variation, and heredity in living organisms.[1][2] It is generally considered a field of biology, but it intersects frequently with many of the life sciences and is strongly linked with the study of information systems.
The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied 'trait inheritance', patterns in the way traits were handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance) and within the context of a population. Genetics has given rise to a number of sub-fields including epigenetics and population genetics. Organisms studied within the broad field span the domain of life, including bacteria, plants, animals, and humans.
Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intra- or extra-cellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate due to lack of water and nutrients in its environment.
The word genetics stems from the Ancient Greek genetikos meaning "genitive"/"generative", which in turn derives from genesis meaning "origin".[3][4][5]
The observation that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding.[6] The modern science of genetics, seeking to understand this process, began with the work of Gregor Mendel in the mid-19th century.[7]
Prior to Mendel, Imre Festetics, a Hungarian noble, who lived in Kszeg before Mendel, was the first who used the word "genetics". He described several rules of genetic inheritance in his work The genetic law of the Nature (Die genetische Gestze der Natur, 1819). His second law is the same as what Mendel published. In his third law, he developed the basic principles of mutation (he can be considered a forerunner of Hugo de Vries.)[8]
Other theories of inheritance preceded his work. A popular theory during Mendel's time was the concept of blending inheritance: the idea that individuals inherit a smooth blend of traits from their parents.[9] Mendel's work provided examples where traits were definitely not blended after hybridization, showing that traits are produced by combinations of distinct genes rather than a continuous blend. Blending of traits in the progeny is now explained by the action of multiple genes with quantitative effects. Another theory that had some support at that time was the inheritance of acquired characteristics: the belief that individuals inherit traits strengthened by their parents. This theory (commonly associated with Jean-Baptiste Lamarck) is now known to be wrongthe experiences of individuals do not affect the genes they pass to their children,[10] although evidence in the field of epigenetics has revived some aspects of Lamarck's theory.[11] Other theories included the pangenesis of Charles Darwin (which had both acquired and inherited aspects) and Francis Galton's reformulation of pangenesis as both particulate and inherited.[12]
Modern genetics started with Gregor Johann Mendel, a scientist and Augustinian friar who studied the nature of inheritance in plants. In his paper "Versuche ber Pflanzenhybriden" ("Experiments on Plant Hybridization"), presented in 1865 to the Naturforschender Verein (Society for Research in Nature) in Brnn, Mendel traced the inheritance patterns of certain traits in pea plants and described them mathematically.[13] Although this pattern of inheritance could only be observed for a few traits, Mendel's work suggested that heredity was particulate, not acquired, and that the inheritance patterns of many traits could be explained through simple rules and ratios.
The importance of Mendel's work did not gain wide understanding until the 1890s, after his death, when other scientists working on similar problems re-discovered his research. William Bateson, a proponent of Mendel's work, coined the word genetics in 1905.[14][15] (The adjective genetic, derived from the Greek word genesis, "origin", predates the noun and was first used in a biological sense in 1860.)[16] Bateson both acted as a mentor and was aided significantly by the work of women scientists from Newnham College at Cambridge, specifically the work of Becky Saunders, Nora Darwin Barlow, and Muriel Wheldale Onslow.[17] Bateson popularized the usage of the word genetics to describe the study of inheritance in his inaugural address to the Third International Conference on Plant Hybridization in London, England, in 1906.[18]
After the rediscovery of Mendel's work, scientists tried to determine which molecules in the cell were responsible for inheritance. In 1911, Thomas Hunt Morgan argued that genes are on chromosomes, based on observations of a sex-linked white eye mutation in fruit flies.[19] In 1913, his student Alfred Sturtevant used the phenomenon of genetic linkage to show that genes are arranged linearly on the chromosome.[20]
Although genes were known to exist on chromosomes, chromosomes are composed of both protein and DNA, and scientists did not know which of the two is responsible for inheritance. In 1928, Frederick Griffith discovered the phenomenon of transformation (see Griffith's experiment): dead bacteria could transfer genetic material to "transform" other still-living bacteria. Sixteen years later, in 1944, the AveryMacLeodMcCarty experiment identified DNA as the molecule responsible for transformation.[21] The role of the nucleus as the repository of genetic information in eukaryotes had been established by Hmmerling in 1943 in his work on the single celled alga Acetabularia.[22] The HersheyChase experiment in 1952 confirmed that DNA (rather than protein) is the genetic material of the viruses that infect bacteria, providing further evidence that DNA is the molecule responsible for inheritance.[23]
James Watson and Francis Crick determined the structure of DNA in 1953, using the X-ray crystallography work of Rosalind Franklin and Maurice Wilkins that indicated DNA had a helical structure (i.e., shaped like a corkscrew).[24][25] Their double-helix model had two strands of DNA with the nucleotides pointing inward, each matching a complementary nucleotide on the other strand to form what looks like rungs on a twisted ladder.[26] This structure showed that genetic information exists in the sequence of nucleotides on each strand of DNA. The structure also suggested a simple method for replication: if the strands are separated, new partner strands can be reconstructed for each based on the sequence of the old strand. This property is what gives DNA its semi-conservative nature where one strand of new DNA is from an original parent strand.[27]
Although the structure of DNA showed how inheritance works, it was still not known how DNA influences the behavior of cells. In the following years, scientists tried to understand how DNA controls the process of protein production.[28] It was discovered that the cell uses DNA as a template to create matching messenger RNA, molecules with nucleotides very similar to DNA. The nucleotide sequence of a messenger RNA is used to create an amino acid sequence in protein; this translation between nucleotide sequences and amino acid sequences is known as the genetic code.[29]
With the newfound molecular understanding of inheritance came an explosion of research.[30] A notable theory arose from Tomoko Ohta in 1973 with her amendment to the neutral theory of molecular evolution through publishing the nearly neutral theory of molecular evolution. In this theory, Ohta stressed the importance of natural selection and the environment to the rate at which genetic evolution occurs.[31] One important development was chain-termination DNA sequencing in 1977 by Frederick Sanger. This technology allows scientists to read the nucleotide sequence of a DNA molecule.[32] In 1983, Kary Banks Mullis developed the polymerase chain reaction, providing a quick way to isolate and amplify a specific section of DNA from a mixture.[33] The efforts of the Human Genome Project, Department of Energy, NIH, and parallel private efforts by Celera Genomics led to the sequencing of the human genome in 2003.[34]
At its most fundamental level, inheritance in organisms occurs by passing discrete heritable units, called genes, from parents to progeny.[35] This property was first observed by Gregor Mendel, who studied the segregation of heritable traits in pea plants.[13][36] In his experiments studying the trait for flower color, Mendel observed that the flowers of each pea plant were either purple or whitebut never an intermediate between the two colors. These different, discrete versions of the same gene are called alleles.
In the case of the pea, which is a diploid species, each individual plant has two copies of each gene, one copy inherited from each parent.[37] Many species, including humans, have this pattern of inheritance. Diploid organisms with two copies of the same allele of a given gene are called homozygous at that gene locus, while organisms with two different alleles of a given gene are called heterozygous.
The set of alleles for a given organism is called its genotype, while the observable traits of the organism are called its phenotype. When organisms are heterozygous at a gene, often one allele is called dominant as its qualities dominate the phenotype of the organism, while the other allele is called recessive as its qualities recede and are not observed. Some alleles do not have complete dominance and instead have incomplete dominance by expressing an intermediate phenotype, or codominance by expressing both alleles at once.[38]
When a pair of organisms reproduce sexually, their offspring randomly inherit one of the two alleles from each parent. These observations of discrete inheritance and the segregation of alleles are collectively known as Mendel's first law or the Law of Segregation.
Geneticists use diagrams and symbols to describe inheritance. A gene is represented by one or a few letters. Often a "+" symbol is used to mark the usual, non-mutant allele for a gene.[39]
In fertilization and breeding experiments (and especially when discussing Mendel's laws) the parents are referred to as the "P" generation and the offspring as the "F1" (first filial) generation. When the F1 offspring mate with each other, the offspring are called the "F2" (second filial) generation. One of the common diagrams used to predict the result of cross-breeding is the Punnett square.
When studying human genetic diseases, geneticists often use pedigree charts to represent the inheritance of traits.[40] These charts map the inheritance of a trait in a family tree.
Organisms have thousands of genes, and in sexually reproducing organisms these genes generally assort independently of each other. This means that the inheritance of an allele for yellow or green pea color is unrelated to the inheritance of alleles for white or purple flowers. This phenomenon, known as "Mendel's second law" or the "Law of independent assortment", means that the alleles of different genes get shuffled between parents to form offspring with many different combinations. (Some genes do not assort independently, demonstrating genetic linkage, a topic discussed later in this article.)
Often different genes can interact in a way that influences the same trait. In the Blue-eyed Mary (Omphalodes verna), for example, there exists a gene with alleles that determine the color of flowers: blue or magenta. Another gene, however, controls whether the flowers have color at all or are white. When a plant has two copies of this white allele, its flowers are whiteregardless of whether the first gene has blue or magenta alleles. This interaction between genes is called epistasis, with the second gene epistatic to the first.[41]
Many traits are not discrete features (e.g. purple or white flowers) but are instead continuous features (e.g. human height and skin color). These complex traits are products of many genes.[42] The influence of these genes is mediated, to varying degrees, by the environment an organism has experienced. The degree to which an organism's genes contribute to a complex trait is called heritability.[43] Measurement of the heritability of a trait is relativein a more variable environment, the environment has a bigger influence on the total variation of the trait. For example, human height is a trait with complex causes. It has a heritability of 89% in the United States. In Nigeria, however, where people experience a more variable access to good nutrition and health care, height has a heritability of only 62%.[44]
The molecular basis for genes is deoxyribonucleic acid (DNA). DNA is composed of a chain of nucleotides, of which there are four types: adenine (A), cytosine (C), guanine (G), and thymine (T). Genetic information exists in the sequence of these nucleotides, and genes exist as stretches of sequence along the DNA chain.[45]Viruses are the only exception to this rulesometimes viruses use the very similar molecule, RNA, instead of DNA as their genetic material.[46] Viruses cannot reproduce without a host and are unaffected by many genetic processes, so tend not to be considered living organisms.
DNA normally exists as a double-stranded molecule, coiled into the shape of a double helix. Each nucleotide in DNA preferentially pairs with its partner nucleotide on the opposite strand: A pairs with T, and C pairs with G. Thus, in its two-stranded form, each strand effectively contains all necessary information, redundant with its partner strand. This structure of DNA is the physical basis for inheritance: DNA replication duplicates the genetic information by splitting the strands and using each strand as a template for synthesis of a new partner strand.[47]
Genes are arranged linearly along long chains of DNA base-pair sequences. In bacteria, each cell usually contains a single circular genophore, while eukaryotic organisms (such as plants and animals) have their DNA arranged in multiple linear chromosomes. These DNA strands are often extremely long; the largest human chromosome, for example, is about 247 million base pairs in length.[48] The DNA of a chromosome is associated with structural proteins that organize, compact and control access to the DNA, forming a material called chromatin; in eukaryotes, chromatin is usually composed of nucleosomes, segments of DNA wound around cores of histone proteins.[49] The full set of hereditary material in an organism (usually the combined DNA sequences of all chromosomes) is called the genome.
While haploid organisms have only one copy of each chromosome, most animals and many plants are diploid, containing two of each chromosome and thus two copies of every gene.[37] The two alleles for a gene are located on identical loci of the two homologous chromosomes, each allele inherited from a different parent.
Many species have so-called sex chromosomes that determine the gender of each organism.[50] In humans and many other animals, the Y chromosome contains the gene that triggers the development of the specifically male characteristics. In evolution, this chromosome has lost most of its content and also most of its genes, while the X chromosome is similar to the other chromosomes and contains many genes. The X and Y chromosomes form a strongly heterogeneous pair.
When cells divide, their full genome is copied and each daughter cell inherits one copy. This process, called mitosis, is the simplest form of reproduction and is the basis for asexual reproduction. Asexual reproduction can also occur in multicellular organisms, producing offspring that inherit their genome from a single parent. Offspring that are genetically identical to their parents are called clones.
Eukaryotic organisms often use sexual reproduction to generate offspring that contain a mixture of genetic material inherited from two different parents. The process of sexual reproduction alternates between forms that contain single copies of the genome (haploid) and double copies (diploid).[37] Haploid cells fuse and combine genetic material to create a diploid cell with paired chromosomes. Diploid organisms form haploids by dividing, without replicating their DNA, to create daughter cells that randomly inherit one of each pair of chromosomes. Most animals and many plants are diploid for most of their lifespan, with the haploid form reduced to single cell gametes such as sperm or eggs.
Although they do not use the haploid/diploid method of sexual reproduction, bacteria have many methods of acquiring new genetic information. Some bacteria can undergo conjugation, transferring a small circular piece of DNA to another bacterium.[51] Bacteria can also take up raw DNA fragments found in the environment and integrate them into their genomes, a phenomenon known as transformation.[52] These processes result in horizontal gene transfer, transmitting fragments of genetic information between organisms that would be otherwise unrelated.
The diploid nature of chromosomes allows for genes on different chromosomes to assort independently or be separated from their homologous pair during sexual reproduction wherein haploid gametes are formed. In this way new combinations of genes can occur in the offspring of a mating pair. Genes on the same chromosome would theoretically never recombine. However, they do via the cellular process of chromosomal crossover. During crossover, chromosomes exchange stretches of DNA, effectively shuffling the gene alleles between the chromosomes.[53] This process of chromosomal crossover generally occurs during meiosis, a series of cell divisions that creates haploid cells.
The first cytological demonstration of crossing over was performed by Harriet Creighton and Barbara McClintock in 1931. Their research and experiments on corn provided cytological evidence for the genetic theory that linked genes on paired chromosomes do in fact exchange places from one homolog to the other.
The probability of chromosomal crossover occurring between two given points on the chromosome is related to the distance between the points. For an arbitrarily long distance, the probability of crossover is high enough that the inheritance of the genes is effectively uncorrelated.[54] For genes that are closer together, however, the lower probability of crossover means that the genes demonstrate genetic linkage; alleles for the two genes tend to be inherited together. The amounts of linkage between a series of genes can be combined to form a linear linkage map that roughly describes the arrangement of the genes along the chromosome.[55]
Genes generally express their functional effect through the production of proteins, which are complex molecules responsible for most functions in the cell. Proteins are made up of one or more polypeptide chains, each of which is composed of a sequence of amino acids, and the DNA sequence of a gene (through an RNA intermediate) is used to produce a specific amino acid sequence. This process begins with the production of an RNA molecule with a sequence matching the gene's DNA sequence, a process called transcription.
This messenger RNA molecule is then used to produce a corresponding amino acid sequence through a process called translation. Each group of three nucleotides in the sequence, called a codon, corresponds either to one of the twenty possible amino acids in a protein or an instruction to end the amino acid sequence; this correspondence is called the genetic code.[56] The flow of information is unidirectional: information is transferred from nucleotide sequences into the amino acid sequence of proteins, but it never transfers from protein back into the sequence of DNAa phenomenon Francis Crick called the central dogma of molecular biology.[57]
The specific sequence of amino acids results in a unique three-dimensional structure for that protein, and the three-dimensional structures of proteins are related to their functions.[58][59] Some are simple structural molecules, like the fibers formed by the protein collagen. Proteins can bind to other proteins and simple molecules, sometimes acting as enzymes by facilitating chemical reactions within the bound molecules (without changing the structure of the protein itself). Protein structure is dynamic; the protein hemoglobin bends into slightly different forms as it facilitates the capture, transport, and release of oxygen molecules within mammalian blood.
A single nucleotide difference within DNA can cause a change in the amino acid sequence of a protein. Because protein structures are the result of their amino acid sequences, some changes can dramatically change the properties of a protein by destabilizing the structure or changing the surface of the protein in a way that changes its interaction with other proteins and molecules. For example, sickle-cell anemia is a human genetic disease that results from a single base difference within the coding region for the -globin section of hemoglobin, causing a single amino acid change that changes hemoglobin's physical properties.[60] Sickle-cell versions of hemoglobin stick to themselves, stacking to form fibers that distort the shape of red blood cells carrying the protein. These sickle-shaped cells no longer flow smoothly through blood vessels, having a tendency to clog or degrade, causing the medical problems associated with this disease.
Some DNA sequences are transcribed into RNA but are not translated into protein productssuch RNA molecules are called non-coding RNA. In some cases, these products fold into structures which are involved in critical cell functions (e.g. ribosomal RNA and transfer RNA). RNA can also have regulatory effects through hybridization interactions with other RNA molecules (e.g. microRNA).
Although genes contain all the information an organism uses to function, the environment plays an important role in determining the ultimate phenotypes an organism displays. This is the complementary relationship often referred to as "nature and nurture". The phenotype of an organism depends on the interaction of genes and the environment. An interesting example is the coat coloration of the Siamese cat. In this case, the body temperature of the cat plays the role of the environment. The cat's genes code for dark hair, thus the hair-producing cells in the cat make cellular proteins resulting in dark hair. But these dark hair-producing proteins are sensitive to temperature (i.e. have a mutation causing temperature-sensitivity) and denature in higher-temperature environments, failing to produce dark-hair pigment in areas where the cat has a higher body temperature. In a low-temperature environment, however, the protein's structure is stable and produces dark-hair pigment normally. The protein remains functional in areas of skin that are colder such as its legs, ears, tail and face so the cat has dark-hair at its extremities.[61]
Environment plays a major role in effects of the human genetic disease phenylketonuria.[62] The mutation that causes phenylketonuria disrupts the ability of the body to break down the amino acid phenylalanine, causing a toxic build-up of an intermediate molecule that, in turn, causes severe symptoms of progressive mental retardation and seizures. However, if someone with the phenylketonuria mutation follows a strict diet that avoids this amino acid, they remain normal and healthy.
A popular method for determining how genes and environment ("nature and nurture") contribute to a phenotype involves studying identical and fraternal twins, or other siblings of multiple births.[63] Because identical siblings come from the same zygote, they are genetically the same. Fraternal twins are as genetically different from one another as normal siblings. By comparing how often a certain disorder occurs in a pair of identical twins to how often it occurs in a pair of fraternal twins, scientists can determine whether that disorder is caused by genetic or postnatal environmental factors whether it has "nature" or "nurture" causes. One famous example is the multiple birth study of the Genain quadruplets, who were identical quadruplets all diagnosed with schizophrenia.[64] However such tests cannot separate genetic factors from environmental factors affecting fetal development.
The genome of a given organism contains thousands of genes, but not all these genes need to be active at any given moment. A gene is expressed when it is being transcribed into mRNA and there exist many cellular methods of controlling the expression of genes such that proteins are produced only when needed by the cell. Transcription factors are regulatory proteins that bind to DNA, either promoting or inhibiting the transcription of a gene.[65] Within the genome of Escherichia coli bacteria, for example, there exists a series of genes necessary for the synthesis of the amino acid tryptophan. However, when tryptophan is already available to the cell, these genes for tryptophan synthesis are no longer needed. The presence of tryptophan directly affects the activity of the genestryptophan molecules bind to the tryptophan repressor (a transcription factor), changing the repressor's structure such that the repressor binds to the genes. The tryptophan repressor blocks the transcription and expression of the genes, thereby creating negative feedback regulation of the tryptophan synthesis process.[66]
Differences in gene expression are especially clear within multicellular organisms, where cells all contain the same genome but have very different structures and behaviors due to the expression of different sets of genes. All the cells in a multicellular organism derive from a single cell, differentiating into variant cell types in response to external and intercellular signals and gradually establishing different patterns of gene expression to create different behaviors. As no single gene is responsible for the development of structures within multicellular organisms, these patterns arise from the complex interactions between many cells.
Within eukaryotes, there exist structural features of chromatin that influence the transcription of genes, often in the form of modifications to DNA and chromatin that are stably inherited by daughter cells.[67] These features are called "epigenetic" because they exist "on top" of the DNA sequence and retain inheritance from one cell generation to the next. Because of epigenetic features, different cell types grown within the same medium can retain very different properties. Although epigenetic features are generally dynamic over the course of development, some, like the phenomenon of paramutation, have multigenerational inheritance and exist as rare exceptions to the general rule of DNA as the basis for inheritance.[68]
During the process of DNA replication, errors occasionally occur in the polymerization of the second strand. These errors, called mutations, can affect the phenotype of an organism, especially if they occur within the protein coding sequence of a gene. Error rates are usually very low1 error in every 10100million basesdue to the "proofreading" ability of DNA polymerases.[69][70] Processes that increase the rate of changes in DNA are called mutagenic: mutagenic chemicals promote errors in DNA replication, often by interfering with the structure of base-pairing, while UV radiation induces mutations by causing damage to the DNA structure.[71] Chemical damage to DNA occurs naturally as well and cells use DNA repair mechanisms to repair mismatches and breaks. The repair does not, however, always restore the original sequence.
In organisms that use chromosomal crossover to exchange DNA and recombine genes, errors in alignment during meiosis can also cause mutations.[72] Errors in crossover are especially likely when similar sequences cause partner chromosomes to adopt a mistaken alignment; this makes some regions in genomes more prone to mutating in this way. These errors create large structural changes in DNA sequence duplications, inversions, deletions of entire regions or the accidental exchange of whole parts of sequences between different chromosomes (chromosomal translocation).
Mutations alter an organism's genotype and occasionally this causes different phenotypes to appear. Most mutations have little effect on an organism's phenotype, health, or reproductive fitness.[73] Mutations that do have an effect are usually deleterious, but occasionally some can be beneficial.[74] Studies in the fly Drosophila melanogaster suggest that if a mutation changes a protein produced by a gene, about 70 percent of these mutations will be harmful with the remainder being either neutral or weakly beneficial.[75]
Population genetics studies the distribution of genetic differences within populations and how these distributions change over time.[76] Changes in the frequency of an allele in a population are mainly influenced by natural selection, where a given allele provides a selective or reproductive advantage to the organism,[77] as well as other factors such as mutation, genetic drift, genetic draft,[78]artificial selection and migration.[79]
Over many generations, the genomes of organisms can change significantly, resulting in evolution. In the process called adaptation, selection for beneficial mutations can cause a species to evolve into forms better able to survive in their environment.[80] New species are formed through the process of speciation, often caused by geographical separations that prevent populations from exchanging genes with each other.[81] The application of genetic principles to the study of population biology and evolution is known as the "modern synthesis".
By comparing the homology between different species' genomes, it is possible to calculate the evolutionary distance between them and when they may have diverged. Genetic comparisons are generally considered a more accurate method of characterizing the relatedness between species than the comparison of phenotypic characteristics. The evolutionary distances between species can be used to form evolutionary trees; these trees represent the common descent and divergence of species over time, although they do not show the transfer of genetic material between unrelated species (known as horizontal gene transfer and most common in bacteria).[82]
Although geneticists originally studied inheritance in a wide range of organisms, researchers began to specialize in studying the genetics of a particular subset of organisms. The fact that significant research already existed for a given organism would encourage new researchers to choose it for further study, and so eventually a few model organisms became the basis for most genetics research.[83] Common research topics in model organism genetics include the study of gene regulation and the involvement of genes in development and cancer.
Organisms were chosen, in part, for convenienceshort generation times and easy genetic manipulation made some organisms popular genetics research tools. Widely used model organisms include the gut bacterium Escherichia coli, the plant Arabidopsis thaliana, baker's yeast (Saccharomyces cerevisiae), the nematode Caenorhabditis elegans, the common fruit fly (Drosophila melanogaster), and the common house mouse (Mus musculus).
Medical genetics seeks to understand how genetic variation relates to human health and disease.[84] When searching for an unknown gene that may be involved in a disease, researchers commonly use genetic linkage and genetic pedigree charts to find the location on the genome associated with the disease. At the population level, researchers take advantage of Mendelian randomization to look for locations in the genome that are associated with diseases, a method especially useful for multigenic traits not clearly defined by a single gene.[85] Once a candidate gene is found, further research is often done on the corresponding gene the orthologous gene in model organisms. In addition to studying genetic diseases, the increased availability of genotyping methods has led to the field of pharmacogenetics: the study of how genotype can affect drug responses.[86]
Individuals differ in their inherited tendency to develop cancer,[87] and cancer is a genetic disease.[88] The process of cancer development in the body is a combination of events. Mutations occasionally occur within cells in the body as they divide. Although these mutations will not be inherited by any offspring, they can affect the behavior of cells, sometimes causing them to grow and divide more frequently. There are biological mechanisms that attempt to stop this process; signals are given to inappropriately dividing cells that should trigger cell death, but sometimes additional mutations occur that cause cells to ignore these messages. An internal process of natural selection occurs within the body and eventually mutations accumulate within cells to promote their own growth, creating a cancerous tumor that grows and invades various tissues of the body.
Normally, a cell divides only in response to signals called growth factors and stops growing once in contact with surrounding cells and in response to growth-inhibitory signals. It usually then divides a limited number of times and dies, staying within the epithelium where it is unable to migrate to other organs. To become a cancer cell, a cell has to accumulate mutations in a number of genes (37) that allow it to bypass this regulation: it no longer needs growth factors to divide, it continues growing when making contact to neighbor cells, and ignores inhibitory signals, it will keep growing indefinitely and is immortal, it will escape from the epithelium and ultimately may be able to escape from the primary tumor, cross the endothelium of a blood vessel, be transported by the bloodstream and will colonize a new organ, forming deadly metastasis. Although there are some genetic predispositions in a small fraction of cancers, the major fraction is due to a set of new genetic mutations that originally appear and accumulate in one or a small number of cells that will divide to form the tumor and are not transmitted to the progeny (somatic mutations). The most frequent mutations are a loss of function of p53 protein, a tumor suppressor, or in the p53 pathway, and gain of function mutations in the ras proteins, or in other oncogenes.
DNA can be manipulated in the laboratory. Restriction enzymes are commonly used enzymes that cut DNA at specific sequences, producing predictable fragments of DNA.[89] DNA fragments can be visualized through use of gel electrophoresis, which separates fragments according to their length.
The use of ligation enzymes allows DNA fragments to be connected. By binding ("ligating") fragments of DNA together from different sources, researchers can create recombinant DNA, the DNA often associated with genetically modified organisms. Recombinant DNA is commonly used in the context of plasmids: short circular DNA molecules with a few genes on them. In the process known as molecular cloning, researchers can amplify the DNA fragments by inserting plasmids into bacteria and then culturing them on plates of agar (to isolate clones of bacteria cells). ("Cloning" can also refer to the various means of creating cloned ("clonal") organisms.)
DNA can also be amplified using a procedure called the polymerase chain reaction (PCR).[90] By using specific short sequences of DNA, PCR can isolate and exponentially amplify a targeted region of DNA. Because it can amplify from extremely small amounts of DNA, PCR is also often used to detect the presence of specific DNA sequences.
DNA sequencing, one of the most fundamental technologies developed to study genetics, allows researchers to determine the sequence of nucleotides in DNA fragments. The technique of chain-termination sequencing, developed in 1977 by a team led by Frederick Sanger, is still routinely used to sequence DNA fragments.[91] Using this technology, researchers have been able to study the molecular sequences associated with many human diseases.
As sequencing has become less expensive, researchers have sequenced the genomes of many organisms, using a process called genome assembly, which utilizes computational tools to stitch together sequences from many different fragments.[92] These technologies were used to sequence the human genome in the Human Genome Project completed in 2003.[34] New high-throughput sequencing technologies are dramatically lowering the cost of DNA sequencing, with many researchers hoping to bring the cost of resequencing a human genome down to a thousand dollars.[93]
Next generation sequencing (or high-throughput sequencing) came about due to the ever-increasing demand for low-cost sequencing. These sequencing technologies allow the production of potentially millions of sequences concurrently.[94][95] The large amount of sequence data available has created the field of genomics, research that uses computational tools to search for and analyze patterns in the full genomes of organisms. Genomics can also be considered a subfield of bioinformatics, which uses computational approaches to analyze large sets of biological data. A common problem to these fields of research is how to manage and share data that deals with human subject and personally identifiable information. See also genomics data sharing.
On 19 March 2015, a leading group of biologists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[96][97][98][99] In April 2015, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[100][101]
Follow this link:
Genetics - Wikipedia
Posted in Genetics
Comments Off on Genetics – Wikipedia
genetics facts, information, pictures | Encyclopedia.com …
Posted: October 20, 2016 at 1:44 am
I. Genetics And BehaviorP. L. Broadhurst
BIBLIOGRAPHY
II. Demography and Population GeneticsJean Sutter
BIBLIOGRAPHY
III. Race and GeneticsJ. N. Spuhler
BIBLIOGRAPHY
Behavior genetics is a relatively new cross-disciplinary specialization between genetics and Psychology. It is so new that it hardly knows what to call itself. The term behavior genetics is gaining currency in the United States; but in some quarters there, and certainly elsewhere, the term psycho-genetics is favored. Logically, the best name would be genetical psychology, since the emphasis is on the use of the techniques of genetics in the analysis of behavior rather than vice versa; but the in evitable ambiguity of that term is apparent. Psy chologists generally use the terms genetic or genetical in two senses: in the first and older sense of developmental, or ontogenetic; and in the second, more recent usage relating to the analysis of inheritance. The psychologist G. Stanley Hall coined the term genetic before the turn of the century to denote developmental studies (witness the Journal of Genetic Psychology), and Alfred Binet even used the term psychogenetic in this sense. But with the rapid rise of the discipline now known as genetics after the rediscovery of the Mendelian laws in 1900, William Bateson, one of the founders of this new science, pre-empted the term genetic in naming it, thereby investing genetic with the double meaning that causes the current confusion. Psychological genetics, with its obvious abbreviation, psychogenetics, is probably the best escape from the dilemma.
Importance of genetics in behavior. The importance of psychogenetics lies in the fundamental nature of the biological processes in our understanding of human social behavior. The social sciences, and psychology in particular, have long concentrated on environmental determinants of behavior and neglected hereditary ones. But it is clear that in many psychological functions a substantial portion of the observed variation, roughly of the order of 50 per cent for many traits, can be ascribed to hereditary causation. To ignore this hereditary contribution is to impede both action and thought in this area.
This manifold contribution to behavioral variation is not a static affair. Heredity and environment interact, and behavior is the product, rather than the sum, of their respective contributions. The number of sources of variability in both he redity and environment is large, and the consequent number of such possible products even larger. Nevertheless, these outcomes are not incalculable, and experimental and other analyses of their limits are of immense potential interest to the behavioral scientist. The chief theoretical interest lies in the analysis of the evolution of behavior; and the chief practical significance, so far as can be envisaged at present, lies in the possibilities psychogenetics has for the optimization of genetic potential by manipulation of the environmental expression of it.
Major current approaches. The major approaches to the study of psychogenetics can be characterized as the direct, or experimental, and the indirect, or observational. The former derive principally from the genetical parent of this hybrid discipline and involve the manipulation of the heredity of experimental subjects, usually by restricting the choice of mates in some specially defined way. Since such techniques are not possible with human subjects a second major approach exists, the indirect or observational, with its techniques derived largely from psychology and sociology. The two approaches are largely complementary in the case of natural genetic experiments in human populations, such as twinning or cousin marriages. Thus, the distinction between the two is based on the practicability of controlling in some way the essentially immutable genetic endowmentin a word, the genotypeof the individuals subject to investigation. With typical experimental animals (rats, mice, etc.) and other organisms used by the geneticist, such as the fruit fly and many microorganisms, the genotype can often be specified in advance and populations constructed by the hybridization of suitable strains to meet this specification with a high degree of accuracy. Not so with humans, where the genotype must remain as given, and indeed where its details can rarely be specified with any degree of accuracy except for certain physical characteristics, such as blood groups. Observational, demographic, and similar techniques are therefore all that are available here. The human field has another disadvantage in rigorous psychogenetic work: the impossibility of radically manipulating the environmentfor example, by rearing humans in experimental environ ments from birth in the way that can easily be done with animals in the laboratory. Since in psychogenetics, as in all branches of genetics, one deals with a phenotypein this case, behavior and since the phenotype is the end product of the action, or better still, interaction of genotype and environment, human psychogenetics is fraught with double difficulty. Analytical techniques to be mentioned later can assist in resolving some of these difficulties.
Definition. To define psychogenetics as the study of the inheritance of behavior is to adopt a misleadingly narrow definition of the area of study, and one which is unduly restrictive in its emphasis on the hereditarian point of view. Just as the parent discipline of genetics is the analysis not only of the similarities between individuals but also of the differences between them, so psychogenetics seeks to understand the basis of individual differences in behavior. Any psychogenetic analysis must therefore be concerned with the environmental determinants of behavior (conventionally implicated in the genesis of differences) in addition to the hereditary ones (the classic source of resemblances). But manifestly this dichotomy does not always operate, so that for this reason alone the analysis of environmental effects must go hand in hand with the search for genetic causation. This is true even if the intention is merely to exclude the influence of the one the better to study the other; but the approach advocated here is to study the two in tandem, as it were, and to determine the extent to which the one interacts with the other. Psychogenetics is best viewed as that specialization which concerns itself with the interaction of heredity and environment, insofar as they affect behavior. To attempt greater precision is to become involved in subtle semantic problems about the meanings of terms.
At first sight many would tend to restrict environmental effects to those operating after the birth of the organism, but to do so would be to exclude prenatal environmental effects that have been shown to be influential in later behavior. On the other hand, to broaden the concept of environment to include all influences after fertilization the point in time at which the genotype is fixed permits consideration of the reciprocal influence of parts of the genotype upon each other. Can environment include the rest of the genotype, other than that part which is more or less directly concerned with the phenotype under consideration? This point assumes some importance since there are characteristics, not behavioralat least, none that are behavioral have so far been reported whose expression depends on the nature of the other genes present in the organism. In the absence of some of them, or rather certain alleles of the gene pairs, the value phenotypically observed would be different from what it would be if they were present. That is, different components of the genotype, in interplay with one another, modify phenotypic expression of the characteristic they in fluence. Can such indirect action, which recalls that of a chemical catalyst, best be considered as environmental or innate? It would be preferable to many to regard this mechanism as a genetic effect rather than an environmental one in the usually accepted sense. Hence, the definition of the area of study as one involving the interaction of heredity and environment, while apparently adding complexity, in fact serves to reduce confusion.
It must be conceded that this view has not as yet gained general acceptance. In some of the work reviewed in the necessarily brief survey of the major findings in this area, attempts have been made to retain a rather rigid dichotomy between heredity and environmentnature versus nurture in fact, an either/or proposition that the facts do not warrant. The excesses of both sides in the controversies of the 1920sfor example, the famous debate between Watson and McDougall over the relative importance of learned (environmental) and instinctive (genetic) determinants of behavior show the fallacies that extreme protagonists on either side can entertain if the importance of the interaction effect is ignored.
Gene action. The nature of gene action as such is essentially conducive to interaction with the environment, since the behavioral phenotype we observe is the end product of a long chain of action, principally biochemical, originating in the chromosome within the individual cell. A chromosome has a complex structure, involving DNA (deoxyribonucleic acid) and the connections of DNA with various proteins, and may be influenced in turn by another nucleic acid, RNA (ribonucleic acid), also within the cell but external to the nucleus. There are complex structures and sequences of processes, anatomical, physiological, and hormonal, which underlie normal development and differentiation of structure and function in the growth, development, and maturation of the organism. Much of this influence is determined genetically in the sense that the genotype of the organism, fixed at conception, determines how it proceeds under normal environmental circumstances. But it would be a mistake to regard any such sequence as rigid or immutable, as we shall see.
The state of affairs that arises when a number of genetically determined biochemical abnormalities affect behavior is illustrative of the argument. Many of these biochemical deficiencies or inborn errors of metabolism in humans are the outcome of a chain of causation starting with genie structures, some of them having known chromosomal locations. Their effects on the total personalitythat is, the sum total of behavorial variation that makes the individual uniquecan range from the trivial to the intense. The facility with which people can taste a solution of phenylthiocarbamide (PTC), a synthetic substance not found in nature, varies in a relatively simple genetical way: people are either tasters or nontasters in certain rather well-defined proportions, with a pattern of inheritance determined probably by one gene of major effect. But being taste blind or not is a relatively unimportant piece of behavior, since one is never likely to encounter it outside a genetical experiment. (It should perhaps be added that there is some evidence that the ability to taste PTC may be linked with other characteristics of some importance, such as susceptibility to thyroid disease.) Nevertheless, this example is insignificant compared with the psychological effect of the absence of a biochemical link in patients suffering from phenylketonuria. They are unable to metabolize phenylalanine to tyrosine in the liver, with the result that the phenylalanine accumulates and the patient suffers multiple defects, among which is usually gross intellectual defect, with an IQ typically on the order of 30. This gross biochemical failure is mediated by a single recessive gene that may be passed on in a family unnoticed in heterozygoussingle doseform but becomes painfully apparent in the unfortunate individual who happens to receive a double dose and consequently is homozygous for the defect.
Alternatively, a normal dominant gene may mutate to the recessive form and so give rise to the trouble. While mutation is a relatively rare event individually, the number of genes in each individualprobably on the order of ten thousand and the number of individuals in a population make it statistically a factor to be reckoned with. One of the best documented cases of a deleterious mutation of this kind giving rise to a major defect relates to the hemophilia transmitted, with certain important political consequences, to some of the descendants of Queen Victoria of England. The dependence of the last tsarina of Russia on the monk Rasputin was said to be based in part on the beneficial therapeutic effect of his hypnotic techniques on the uncontrollable bleeding of the Tsarevitch Alexis. Victoria was almost certainly heterozygous for hemophilia and, in view of the absence of any previous record of the defect in the Hanoverian dynasty, it seems likely that the origin of the trouble was a mutation in one of the germ cells in a testicle of Victorias father, the duke of Kent, before Victoria was conceived in August 1818.
But however it comes about, a defect such as phenylketonuria can be crippling. Fortunately, its presence can be diagnosed in very early life by a simple urine test for phenyl derivatives. The dependence of the expression of the genetic defect on the environmental circumstances is such that its effect can be mitigated by feeding the afflicted infant with a specially composed diet low in the phenylalanine with which the patients biochemical make-up cannot cope. Here again, therefore, one sees the interaction of genotype and environment in this case the type of food eaten. Many of the human biochemical defects that have been brought to light in recent years are rather simply determined genetically, in contrast with the prevailing beliefs about the bases of many behavioral characteristics including intelligence, personality, and most psychotic and neurotic disorders. This is also true of several chromosomal aberrations that have been much studied recently and that are now known to be implicated in various conditions of profound behavioral importance. Prominent among these is Downs syndrome (mongolism) with, again, effects including impairment of cognitive power. [SeeIntelligence and Intelligence Testing; Mental Disorders, articles onBiological AspectsandGenetic Aspects.]
Sex as a genetic characteristic. The sex difference is perhaps the most striking genetically determined difference in behavior and the one that is most often ignored in this connection. Primary sex is completely determined genetically at the moment of fertilization of the ovum; in mammals sex depends on whether the spermatozoon effecting fertilization bears an X or a Y chromosome to combine with the X chromosome inevitably contributed by the ovum. The resulting gamete then has the form of an XX (female) or an XY (male) individual. This difference penetrates every cell of every tissue of the resulting individual and in turn is responsible for the observable gross differences in morphology. These, in turn, subserve differences of physiological function, metabolism, and endocrine function which profoundly influence not only those aspects of behavior relating to sexual behav ior and reproductive function in the two sexes but many other aspects as well. But behavior is also influenced by social and cultural pressures, so that the resulting sex differences in behavior as observed by the psychologist are especially good examples of a phenotype that must be the and product of both genetic and environmental forces. There is a large literature on sex differences in human behavior and a sizable one on such differ ences in animal behavior, but there has been little attempt to assess this pervasive variation in terms of the relative contribution of genetic and environmental determinants. This is partly because of the technical difficulties of the problem, in the sense that all subjects must be of either one sex or the othercrossing males with females will always result in the same groups as those one started with, either males or femalesthere being, in general, no genetically intermediate sex against which to evaluate either and identical twins being inevitably of like sex. It is also partly because the potential of genetic analyses that do not involve direct experi mentation has not been realized. This is especially so since the causal routes whereby genetic determinants of sex influence many of the behavioral phenotypes observed are often better understood than in other cases where the genetic determinants underlying individual differences manifest in a population are not so clear-cut. [SeeIndividualDifferences, article onSex Differences.]
Sex linkage. There is one exception to the general lack of interest in the biometrical analysis of sex differences having behavioral connotations: sex-linked conditions. That is to say, it is demonstrated or postulated that the gene or genes responsible for the behavioroften a defect, as in the case of color blindness, which has a significantly greater incidence in males than in femalesare linked with the sex difference by virtue of their location on the sex chromosome determining genetic sex. Thus it is that sex can be thought of as a chromosomal difference of regular occurrence, as opposed to aberrations of the sort which give rise to pathological conditions, such as Downs syndrome. Indeed there are also various anomalies of genetic sex that give rise to problems of sexual identity, in which the psychological and overt be havioral consequences can be of major importance for the individual. While the evidence in such cases of environmental modification of the causative genetic conditions is less dramatic than in phenylketonuria, interaction undoubtedly exists, since these chromosomal defects of sex differentiation can in some cases be alleviated by appropriate surgical and hormonal treatment. [SeeSexual BEHavior, article onSexual Deviation: Psychological Aspects; andVision, article onColor Vision and Color Blindness.]
Human psychogenetics. It is abundantly clear that most of the phenotypes the behavioral scientist is interested in are multidetermined, both environmentally and genetically. The previous examples, however, are the exception rather than the rule, and their prominence bears witness that our understanding of genetics and behavior is as yet so little advanced that the simpler modes of genetic expression have been the first to be explored. In genetics itself, the striking differences in seed configuration used by Mendel in his classic crosses of sweet peas are determined by major genes with full dominance acting simply. But such clear-cut expression, especially of dominance, is unusual in human psychogenetics, and more complex statistical techniques are necessary to evaluate multiple genetic and environmental effects acting to produce the observed phenotype.
Whatever the analysis applied to the data gathered in other fields, in human psychogenetics the method employed cannot be the straightforward Mendelian one of crossbreeding which, in various elaborations, remains the basic tool of the geneticist today. Neither can it be the method of selection artificial, as opposed to naturalthat is other wise known as selective breeding. Indeed, none of the experimental techniques that can be applied to any other organism, whatever the phenotype being measured, is applicable to man, since experimental mating is effectively ruled out as a permissible technique in current cultures. It may be remarked in passing that such has not always been the case. The experiment of the Mogul emperor, Akbar, who reared children in isolation to determine their natural religion (and merely produced mutes) and the eugenics program of J. H. Noyes at the Oneida Community in New York State in the nineteenth century are cases in point. The apparent inbreeding of brother with sister among the rulers of ancient Egypt in the eighteenth dynasty (sixteenth to fourteenth century B.C.), which is often quoted as an example of the absence in humans of the deleterious effects of inbreeding (inbreeding depression), may not be all it seems. It is likely that the definition of sister and brother in this context did not necessarily have the same biological relevance that it has today but was rather a cultural role that could be defined, at least in this case, at will.
Twin study. In the absence of the possibility of an experimental approach, contemporary re search in human psychogenetics must rely on natural genetic experiments. Of these, the one most widely used and most industriously studied is the phenomenon of human twinning. Credit for the recognition of the value of observations on twins can be given to the nineteenth-century English scientist entist Francis Galton, who pioneered many fields of inquiry. He may be justly regarded as the father of psychogenetics for the practical methods he introduced into this field, such as the method of twin study, as well as for his influence which extended, although indirectly, even to the American experimenters in psychogenetics during the early decades of the present century.
Twin births are relatively rare in humans and vary in frequency with the ethnic group. However, the extent to which such ethnic groups differ among themselves behaviorally as a result of the undoubted genetic differences, of which incidence of multiple births is but one example, is controversial. As is well known, there are two types of twins: the monozygotic or so-called identical twins, derived from a single fertilized ovum that has split into two at an early stage in development, and the dizygotic or so-called fraternal twins, developed from two separate ova fertilized by different spermatozoa. These two physical types are not always easy to differentiate, although this difficulty is relatively miner in twin study. Nonetheless, they have led to two kinds of investigation. The first relates to differences in monozygotic twins who have identical hereditary make-up but who have been reared apart and thus subjected to different environmental influences during childhood; and the second relates to the comparison of the two types of twins usually restricted to like-sex pairs, since fraternal twins can differ in sex. The latter method supposes all differences between monozygotic pairs to be due to environmental origin, whereas the (greater) difference between dizygotic pairs is of environmental plus genetic origin. Thus, the relative contribution of the two sources of variation can be evaluated.
Findings obtained from either method have not been especially clear-cut, both because of intractable problems regarding the relative weight to be placed upon differences in the environment in which the twins have been reared and because of the sampling difficulties, which are likely to be formidable in any twin study. Nevertheless, interesting inferences can be drawn from twin study. The investigation of separated monozygotic twins has shown that while even with their identical heredity they can differ quite widely, there exists a significant resemblance in basic aspects of personality including intelligence, introversion, and neurotic tendencies, and that these resemblances can persist despite widely different environments in which the members of a pair are reared. Such findings emphasize the need to consider the contribution of genotype and environment in an inter active senseclearly some genotypes represented in the personality of monozygotic twin pairs are sensitive to environmentally induced variation, whereas others are resistant to it.
Comparisons between monozygotic and dizygotic twins reared together suggest that monozygotic twins more closely resemble each other in many aspects of personality, especially those defining psychological factors such as neuroticism and introversion-extroversion. The increase in the differences between the two types of twins when factor measures are usedas opposed to simple test scoressuggests that a more basic biological stratum is tapped by factor techniques, since the genetic determination seems greater than where individual tests are employed. Here again, the de gree to which any phenotype is shown to be hereditary in origin is valid only for the environment in which it developed and is measured; different environments may well yield different results. The problems of environmental control in human samples are so intractable that some students of the subject have questioned whether the effort and undoubted skill devoted to twin study have been well invested, in view of the inherent and persisting equivocality of the outcome.
Multivariate methods. Methods of twin study, introduced largely to improve upon the earlier methods of familial correlation (parents with off spring, sib with sib, etc.), have been combined with them. Familial correlation methods them selves have not been dealt with here, since within-family environments are bound to be even greater contaminants in determining the observed behavior than environments in twin study methods. Never theless, used on a large scale and in conjunction with twin study and with control subjects selected at random from a population, multivariate methods show promise for defining the limits of environmental and genotypic interaction. So far, the solutions to the problems of biometrical analysis posed by this type of investigation have been only partial, and the sheer weight of effort involved in locating and testing the requisite numbers of subjects standing in the required relationships has deterred all but a few pioneers. Despite the undoubtedly useful part such investigations have played in defining the problems involved, the absence of the possibility of experimental breeding has proved a drawback in the provision of socially useful data.
Animal psychogenetics. Recourse has often been had to nonhuman subjects. The additional problem thereby incurred of the relevance of comparative data to human behavior is probably balanced by the double refinements of the control of both the heredity and the environment of the experimental subjects. Two major methods of genetics have been employed, both intended to produce subjects of predetermined genotype: the crossbreeding of strains of animals of known genotype; and phenotypic selection, the mating of like with like to increase a given characteristic in a population.
Selection. Behavioral phenotypes of interest have been studied by the above methods, often using laboratory rodents. For example, attributes such as intelligence, activity, speed of conditioning, and emotionality have been selectively bred in rats.
Selection for emotional behavior in the rat will serve as an example of the techniques used and the results achieved. Rats, in common with many other mammalian species, defecate when afraid. A technique of measuring individual differences in emotional arousal is based on this propensity. The animal under test is exposed to mildly stressful noise and light stimulation in an open field or arena. The number of fecal pellets deposited serves as an index of disturbance, and in this way the extremes among a large group of rats can be characterized as high or low in emotional responsiveness. Continued selection from within the high and low groups will in time produce two distinct strains. Control of environmental variables is achieved by a rigid standardization of the conditions under which the animals are reared before being subjected to the test as adults. Careful checks on maternal effects, both prenatal and postnatal, reveal these effects to be minimal.
Such an experiment does little beyond establishing the importance of the genetic effect on the given strains in the given environment. While there are techniques for assessing the relative importance of the genetic and environmental contributions to the variation observed under selection, they are better suited to the analysis of the outcome of experiments using the alternative major genetical method, that of crossbreeding of inbred strains.
Crossbreeding. Strains used in crossbreeding experiments have usually been inbred for a phenotypic character of interest, although not usually a behavioral one. However, this does not preclude the use of these inbred strains for behavioral studies, since linkage relationships among genes ensure that selection for factors multidetermined genetically often involves multiple changes in characteristics other than those selected for, and behavior is no exception to this rule. Moreover, the existence of such inbred strains constitutes perhaps the most important single advantage of animals as subjects, since it enables simplifying assumptions regarding the homozygosity or genetic uniformity of such strains to be made in analysis of the outcome of crosses. Members of inbred strains are theoretically as alike as monozygotic twin pairs, so that genetic relationshipswhich in human populations can be investigated only after widespread efforts to find themcan be multiplied at will in laboratory animals.
This approach allows a more sensitive analysis of the determinants, both environmental and genetic, of the behavioral phenotype under observation. In addition, the nature of the genetic forces can be further differentiated into considerations of the average dominance effects of the genes in volved, the extent to which they tend to increase or decrease the metrical expression of the behavioral phenotype, and the extent to which the different strains involved possess such increasers or de creases. Finally, rough estimates of the number of these genes can be given. But the analysis depends upon meeting requirements regarding the scaling of the metric upon which the behavior is measured and is essentially a statistical one. That is, only average effects of cumulative action of the relatively large number of genes postulated as in volved can be detected. Gone are the elegantly simple statistics derived from the classical Men-delian analyses of genes of major effect, often displaying dominance, like those encountered incertain human inborn errors of metabolism. There is little evidence of the existence of comparable genes of major effect mediating behavior in laboratory animals, although some have been studied in in sects, especially the fruit fly.
A typical investigation of a behavioral phenotype might take the form of identifying two inbred strains known to differ in a behavioral trait, measuring individuals from these strains, and then systematically crossing them and measuring all offspring. When this was done for the runway performance of mice, an attribute related to their temperamental wildness, the results, analyzed by the techniques of biometrical genetics, showed that the behavior was controlled by at least three groups of genes (a probable underestimate). The contributions of these groups were additive to each other and independent of the environment when measured on a logarithmic scale but interacted with each other and with the environment on a linear scale. These genes showed a significant average dominance effect, and there was a preponderance of dominant genes in the direction of greater wildness. The heritability ratio of the contributions of nature and nurture was around seven to three.
The use of inbred lines may be restricted to first filial crosses if a number of such crosses are made from several different lines. This increases precision of analysis in addition to allowing a proportionate decrease in the amount of laboratory work. One investigation examined the exploratory behavior of six different strains of rats in an open field of the kind used for the selection mentioned above. On a linear scale there were no untoward environmental effects, including specifically prenatal maternal ones. The heritability ratio was high, around nine to one; and while there was a significant average dominance component among the genes determining exploration, there was no preponderance of dominants or recessively acting genes among increasers or decreasers. The relative standing in this respect of the parental strains could be established with some precision.
Limitations. While the methods described above have allowed the emergence of results that ultimately may assist our understanding of the mechanisms of behavioral inheritance, it cannot be said that much substantial progress has yet been made. Until experiments explore the effect of a range of different genotypes interacting with a range of environments of psychological interest and consequence, little more can be expected. Manipulating heredity in a single standard environment or manipulating the environment of a single standard genotype can only provide conclusions so limited to both the genotypes and conditions employed that they have little usefulness in a wider context. When better experiments are performed, as seems likely in the next few decades, then problems of some sociological importance and interest will arise in the application of these experiments to the tasks of maximizing genetic potential and perfecting environmental control for the purpose of so doing. A new eugenics may well develop, but grappling with the problems of its impact on contemporary society had best be left to future generations.
P. L. Broadhurst
[Directly related are the entriesEugenics; Evolution; Mental Disorders, article onGenetic Aspects. Other relevant material may be found inIndividual Differences, article onSex Differences; Instinct; Intelligence and Intelligence Testing; Mental Ertardation; Psychology, article onConstitutional Psychology.]
Broadhurst, P. L. 1960 Experiments in Psychogenetics: Applications of Biometrical Genetics to the Inheritance of Behavior. Pages 1-102 in Hans J. Eysenck (editor), Experiments in Personality. Volume 1: Psychogenetics and Psychopharmacology. London: Routledge. Selection and crossbreeding methods applied to laboratory rats.
Catteix, RaymondB.; Stice, GlenF.; and Kristy, Nor TonF. 1957 A First Approximation to Nature-Nurture Ratios for Eleven Primary Personality Factors in Objective Tests. Journal of Abnormal and Social Psychology 54:143159. Pioneer multivariate analysis combining twin study and familial correlations.
Fuller, JohnL.; and Thompson, W. Robert 1960 Be havior Genetics. New York: Wiley. A comprehen sive review of the field.
Mather, Kenneth1949 Biometrical Genetics: The Study of Continuous Variation. New York: Dover. The classic work on the analysis of quantitative char acteristics.
Shields, James1962 Monozygotic Twins Brought Up Apart and Brought Up Together: An Investigation Into the Genetic and Environmental Causes of Variation in Personality. Oxford Univ. Press.
The best available definition of population genetics is doubtless that of Malcot: It is the totality of mathematical models that can be constructed to represent the evolution of the structure of a population classified according to the distribution of its Mendelian genes (1955, p. 240). This definition, by a probabilist mathematician, gives a correct idea of the constructed and abstract side of this branch of genetics; it also makes intelligible the rapid development of population genetics since the advent of Mendelism.
In its formal aspect this branch of genetics might even seem to be a science that is almost played out. Indeed, it is not unthinkable that mathematicians have exhausted all the structural possibilities for building models, both within the context of general genetics and within that of the hypothesesmore or less complex and abstractthat enable us to characterize the state of a population.
Two major categories of models can be distinguished: determinist models are those in which variations in population composition over time are rigorously determined by (a) a known initial state of the population; (b) a known number of forces or pressures operating, in the course of generations, in an unambiguously defined fashion (Male-cot 1955, p. 240). These pressures involve mutation, selection, and preferential marriages (by consanguinity, for instance). Determinist models, based on ratios that have been exactly ascertained from preceding phenomena, can be expressed only in terms of populations that are infinite in the mathematical sense. In fact, it is only in this type of population that statistical regularities can emerge (Malecot 1955). In these models the composition of each generation is perfectly defined by the composition of the preceding generation.
Stochastic models, in contrast to determinist ones, involve only finite populations, in which the gametes that, beginning with the first generation, are actually going to give birth to the new generation represent only a finite number among all possible gametes. The result is that among these active, or useful, gametes (Malecot 1959), male or female, the actual frequency of a gene will differ from the probability that each gamete had of carrying it at the outset.
The effect of chance will play a prime role, and the frequencies of the genes will be able to drift from one generation to the other. The effects of random drift and of genetic drift become, under these conditions, the focal points for research.
The body of research completed on these assumptions does indeed form a coherent whole, but these results, in spite of their brilliance, are marked by a very noticeable formalism. In reality, the models, although of great importance at the conceptual level, are often too far removed from the facts. In the study of man, particularly, the problems posed are often too complex for the solutions taken directly from the models to describe concrete reality.
Not all these models, however, are the result of purely abstract speculation; construction of some of them has been facilitated by experimental data. To illustrate this definition of population genetics and the problems that it raises, this article will limit itself to explaining one determinist model, both because it is one of the oldest and simplest to under stand and because it is one of those most often verified by observation.
A determinist model. Let us take the case of a particular human population: the inhabitants of an island cut off from outside contacts. It is obvious that great variability exists among the genes carried by the different inhabitants of this island. The genotypes differ materially from one another; in other words, there is a certain polymorphism in the populationpolymorphism that we can define in genetic terms with the help of a simple example.
Let us take the case of autosome (not connected with sex) gene a, transmitting itself in a mono-hybrid diallely. In relation to it individuals can be classified in three categories: homozygotes whose two alleles are a (a/a); heterozygotes, carriers of a and its allele a (a/a); and the homozygotes who are noncarriers of a (a/a). At any given moment or during any given generation, these three categories of individuals exist within the population in certain proportions relative to each other.
Now, according to Mendels second law (the law of segregation), the population born out of a cross between an individual who is homozygote for a (a/a) and an individual who is homozygote for a (a/a) will include individuals a/a, a/a, and a/a in the following proportions: one-fourth a/a, one-half a/a, and one-fourth a/a. In this popu lation the alleles a and a have the same frequency, one-half, and each sex produces half a and half a. If these individuals are mated randomly, a simple algebraic calculation quickly demonstrates that individuals of the generation following will be quan titatively distributed in the same fashion: one-fourth a/a, one-half a/a, and one-fourth a/a. It will be the same for succeeding generations.
It can therefore be stated that the genetic structure of such a population does not vary from one generation to the other. If we designate by p the initial proportion of a/a individuals and by q that of a/a individuals, we get p + q = 1, or the totality of the population. Applying this system of symbols to the preceding facts, it can be easily shown that the proportion of individuals of all three categories in the first generation born from a/a and a/a equals p2, 2pq, q2. In the second and third generation the frequency of individuals will always be similar: p2, 2pq, q2.
Until this point, we have remained at the individual level. If we proceed to that of the gametes carrying a or a and to that of genes a and a, we observe that their frequencies intermingle. In the type of population discussed above, the formula p2, 2pq, q2 still applies perfectly, therefore, to the gametes and genes. This model, which can be regarded as a formalization of the Hardy-Weinberg law, has other properties, but our study of it will stop here. (For a discussion of the study of isolated populations, see Sutter & Tabah 1951.)
Model construction and demographic reality. The Hardy-Weinberg law has been verified by numerous studies, involving both vegetable and animal species. The findings in the field of human blood groups have also been studied for a long time from a viewpoint derived implicitly from this law, especially in connection with their geographic distribution. Under the system of reproduction by sexes, a generation renews itself as a result of the encounter of the sexual cells (gametes) produced by individuals of both sexes belonging to the living generation. In the human species it can be said that this encounter takes place at random. One can imagine the advantage that formal population genetics can take of this circumstance, which can be compared to drawing marked balls by lot from two different urns. Model construction, already favored by these circumstances, is favored even further if the characteristics of the population utilized are artificially defined with the help of a certain number of hypotheses, of which the following is a summary description:
(1) Fertility is identical for all couples; there is no differential fertility.
(2) The population is closed; it cannot, there fore, be the locus of migrations (whether immigration or emigration).
(3) Marriages take place at random; there is no assortative mating.
(4) There are no systematic preferential marriages (for instance, because of consanguinity).
(5) Possible mutations are not taken into consideration.
(6) The size of the population is clearly denned. On the basis of these working hypotheses, the whole of which constitutes panmixia, it was possible, not long after the rediscovery of Mendels laws, to construct the first mathematical models. Thus, population genetics took its first steps forward, one of which was undoubtedly the Hardy-Weinberg law.
Mere inspection of the preceding hypotheses will enable the reader to judge how, taken one by one, they conflict with reality. In fact, no human population can be panmictic in the way the models are.
The following evidence can be cited in favor of this conclusion:
(1) Fertility is never the same with all couples. In fact, differential fertility is the rule in human populations. There is always a far from negligible sterility rate of about 18 per cent among the large populations of Western civilization. On the other hand, the part played by large families in keeping up the numbers of these populations is extremely important; we can therefore generalize by emphasizing that for one or another reason individ uals carrying a certain assortment of genes reproduce themselves more or less than the average number of couples. That is what makes for the fact that in each population there is always a certain degree of selection. Hypothesis (1) above, essential to the construction of models, is therefore very far removed from reality.
(2) Closed populations are extremely rare. Even among the most primitive peoples there is always a minimum of emigration or immigration. The only cases where one could hope to see this condition fulfilled at the present time would be those of island populations that have remained extremely primitive.
(3) With assortative mating we touch on a point that is still obscure; but even if these phe nomena remain poorly understood, it can nevertheless be said that they appear to be crucial in determining the genetic composition of populations. This choice can be positive: the carriers of a given characteristic marry among each other more often than chance would warrant. The fact was demonstrated in England by Pearson and Lee (1903): very tall individuals have a tendency to marry each other, and so do very short ones. Willoughby (1933) has reported on this question with respect to a great number of somatic characteristics other than heightfor example, coloring of hair, eyes and skin, intelligence quotient, and so forth. Inversely, negative choice makes individuals with the same characteristics avoid marrying one another. This mechanism is much less well known than the above. The example of persons of violent nature (Dahlberg 1943) and of red-headed individuals has been cited many times, although it has not been possible to establish valid statistics to support it.
(4) The case of preferential marriages is not at all negligible. There are still numerous areas where marriages between relatives (consanguineous marriages) occur much more frequently than they would as the result of simple random encounters. In addition, recent studies on the structures of kinship have shown that numerous populations that do not do so today used to practice preferential marriagemost often in a matrilinear sense. These social phenomena have a wide repercussion on the genetic structure of populations and are capable of modifying them considerably from one generation to the other.
(5) Although we do not know exactly what the real rates of mutation are, it can be admitted that their frequency is not negligible. If one or several genes mutate at a given moment in one or several individuals, the nature of the gene or genes is in this way modified; its stability in the population undergoes a disturbance that can considerably transform the composition of that population.
(6) The size of the population and its limits have to be taken into account. We have seen that this is one of the essential characteristics important in differentiating two large categories of models.
The above examination brings us into contact with the realities of population: fertility, fecundity, nuptiality, mortality, migration, and size are the elements that are the concern of demography and are studied not only by this science but also very often as part of administrative routine. Leaving aside the influence of size, which by definition is of prime importance in the technique of the models, there remain five factors to be examined from the demographic point of view. Mutation can be ruled out of consideration, because, although its importance is great, it is felt only after the passage of a certain number of generations. It can therefore be admitted that it is not of immediate interest.
We can also set aside choice of a mate, because the importance of this factor in practice is still unknown. Accordingly, there remain three factors of prime importance: fertility, migration, and preferential marriage. Over the last decade the progressive disappearance of consanguineous marriage has been noted everywhere but in Asia. In many civilized countries marriage between cousins has practically disappeared. It can be stated, therefore, that this factor has in recent years become considerably less important.
Migrations remain very important on the genetic level, but, unfortunately, precise demographic data about them are rare, and most of the data are of doubtful validity. For instance, it is hard to judge how their influence on a population of Western culture could be estimated.
The only remaining factor, fertility (which to geneticists seems essential), has fortunately been studied in satisfactory fashion by demographers. To show the importance of differential fertility in human populations, let us recall a well-known cal culation made by Karl Pearson in connection with Denmark. In 1830, 50 per cent of the children in that country were born of 25 per cent of the parents. If that fertility had been maintained at the same rate, 73 per cent of the second-generation Danes and 97 per cent of the third generation would have been descended from the first 25 per cent. Similarly, before World War I, Charles B. Davenport calculated, on the basis of differential fertility, that 1,000 Harvard graduates would have only 50 descendants after two centuries, while 1,000 Rumanian emigrants living in Boston would have become 100,000.
Human reproduction involves both fecundity (capacity for reproduction) and fertility (actual reproductive performance). These can be estimated for males, females, and married couples treated as a reproductive unit. Let us rapidly review the measurements that demography provides for geneticists in this domain.
Crude birth rate. The number of living births in a calendar year per thousand of the average population in the same year is known as the crude birth rate. The rate does not seem a very useful one for geneticists: there are too many different groups of childbearing age; marriage rates are too variable from one population to another; birth control is not uniformly diffused, and so forth.
General fertility rate. The ratio of the number of live births in one year to the average number of women capable of bearing children (usually defined as those women aged 15 to 49) is known as the general fertility rate. Its genetic usefulness is no greater than that of the preceding figure. Moreover, experience shows that this figure is not very different from the crude birth rate.
Age-specific fertility rates. Fertility rates according to the age reached by the mother during the year under consideration are known as age-specific fertility rates. Demographic experience shows that great differences are observed here, depending on whether or not the populations are Malthusianin other words, whether they practice birth control or not. In the case of a population where the fertility is natural, knowledge of the mothers age is sufficient. In cases where the population is Malthusian, the figure becomes interesting when it is calculated both by age and by age group of the mothers at time of marriage, thus combining the mothers age at the birth of her child and her age at marriage. This is generally known as the age-specific marital fertility rate. If we are dealing with a Malthusian population, it is preferable, in choosing the sample to be studied, to take into consideration the age at marriage rather than the age at the childs birth. Thus, while the age at birth is sufficient for natural populations, these techniques cannot be applied indiscriminately to all populations.
Family histories. Fertility rates can also be calculated on the basis of family histories, which can be reconstructed from such sources as parish registries (Fleury & Henry 1965) or, in some countries, from systematic family registrations (for instance, the Japanese koseki or honseki). The method for computing the fertility rate for, say, the 25-29-year-old age group from this kind of data is first to determine the number of legitimate births in the group. It is then necessary to make a rigorous count of the number of years lived in wedlock between their 25th and 30th birthdays by all the women in the group; this quantity is known as the groups total woman-years. The number of births is then divided by the number of woman-years to obtain the groups fertility rate. This method is very useful in the study of historical problems in genetics, since it is often the only one that can be applied to the available data.
Let us leavefer tility rates in order to examine rates of reproduction. Here we return to more purely genetic considerations, since we are looking for the mechanism whereby one generation is replaced by the one that follows it. Starting with a series of fertility rates by age groups, a gross reproduction rate can be calculated that gives the average number of female progeny that would be born to an age cohort of women, all of whom live through their entire reproductive period and continue to give birth at the rates prevalent when they themselves were born. The gross reproduction rate obtaining for a population at any one time can be derived by combining the rates for the different age cohorts.
A gross reproduction rate for a real generation can also be determined by calculating the average number of live female children ever born to women of fifty or over. As explained above, this rate is higher for non-Malthusian than for Malthusian populations and can be refined by taking into consideration the length of marriage.
We have seen that in order to be correct, it is necessary for the description of fertility in Malthusian populations to be closely related to the date of marriage. Actually, when a family reaches the size that the parents prefer, fertility tends to approach zero. The preferred size is evidently related to length of marriage in such a manner that fertility is more closely linked with length of marriage than with age at marriage. In recent years great progress has been made in the demographic analysis of fertility, based on this kind of data. This should en ablegeneticists to be more circumspect in their choice of sections of the population to be studied.
Americans talk of cohort analysis, the French of analysis by promotion (a term meaning year or class, as we might speak of the class of 1955). A cohort, or promotion, includes all women born within a 12-month period; to estimate fertility or mortality, it is supposed that these women are all born at the same moment on the first of January of that year. Thus, women born between January 1, 1900, and January 1, 1901, are considered to be exactly 15 years old on January 1, 1915; exactly 47 years old on January 1, 1947; and so forth.
The research done along these lines has issued in the construction of tables that are extremely useful in estimating fertility in a human population. As we have seen, it is more useful to draw up cohorts based on age at marriage than on age at birth. A fertility table set up in this way gives for each cohort the cumulative birth rate, by order of birth and single age of mother, for every woman surviving at each age, from 15 to 49. The progress that population genetics could make in knowing real genie frequencies can be imagined, if it could concentrate its research on any particular cohort and its descendants.
This rapid examination of the facts that demography can now provide in connection with fertility clearly reveals the variables that population genetics can use to make its models coincide with reality. The models retain their validity for genetics because they are still derived from basic genetic concepts; their application to actual problems, however, should be based on the kind of data mentioned above. We have voluntarily limited ourselves to the problem of fertility, since it is the most important factor in genetics research.
The close relationship between demography and population genetics that now appears can be illustrated by the field of research into blood groups. Although researchers concede that blood groups are independent of both age and sex, they do not explore the full consequences of this, since their measures are applied to samples of the population that are representative only in a demographic sense. We must deplore the fact that this method has spread to the other branches of genetics, since it is open to criticism not only from the demographic but from the genetic point of view. By proceeding in this way, a most important factor is overlookedthat of genie frequencies.
Let us admit that the choice of a blood group to be studied is of little impor tance when the characteristic is widely distributed throughout the populationfor instance, if each individual is the carrier of a gene taken into account in the system being studied (e.g., a system made up of groups A, B, and O). But this is no longer the case if the gene is carried only by a few individualsin other words, if its frequency attains 0.1 per cent or less. In this case (and cases like this are common in human genetics) the structure of the sample examined begins to take on prime importance.
A brief example must serve to illustrate this cardinal point. We have seen that in the case of rare recessive genes the importance of consan guineous marriages is considerable. The scarcer that carriers of recessive genes become in the pop ulation as a whole, the greater the proportion of such carriers produced by consanguineous marriages. Thus if as many as 25 per cent of all individuals in a population are carriers of recessive genes, and if one per cent of all marriages in that population are marriages between first cousins, then this one per cent of consanguineous unions will produce 1.12 times as many carriers of recessive genes as will be produced by all the unions of persons not so related. But if recessive genes are carried by only one per cent of the total population, then the same proportion of marriages between first cousins will produce 2.13 times as many carriers as will be produced by all other marriages. This production ratio increases to 4.9 if the total frequency of carriers is .01 per cent, to 20.2 if it is .005 per cent, and to 226 if it is .0001 per cent. Under these conditions, one can see the importance of the sampling method used to estimate the frequency within a population, not only of the individuals who are carriers but of the gametes and genes themselves.
Genealogical method. It should be emphasized that genetic studies based on genealogies remain the least controversial. Studying a population where the degrees of relationship connecting individuals are known presents an obvious interest. Knowing one or several characteristics of certain parents, we can follow what becomes of these in the descendants. Their evolution can also be considered from the point of view of such properties of genes as dominance, recessiveness, expressivity, and penetrance. But above all, we can follow the evolution of these characteristics in the population over time and thus observe the effects of differential fertility. Until now the genealogical method was applicable only to a numerically sparse population, but progress in electronic methods of data processing permits us to anticipate its application to much larger populations (Sutter & Tabah 1956).
Dynamic studies. In very large modern populations it would appear that internal analysis of cohorts and their descendants will bring in the future a large measure of certainty to research in population genetics. In any case, it is a sure way to a dynamic genetics based on demographic reality. For instance, it has been recommended that blood groups should be studied according to age groups; but if we proceed to do so without regard for demographic factors, we cannot make our observations dynamic. Thus, a study that limits itself to, let us say, the fifty- to sixty-year-old age group will have to deal with a universe that includes certain genetically dead elements, such as unmarried and sterile persons, which have no meaning from the dynamic point of view. But if a study is made of this same fifty- to sixty-year-old age group and then of the twenty- to thirty-year-old age group, and if in the older group only those individuals are considered who have descendants in the younger group, the dynamic potential of the data is maximized. It is quite possible to subject demographic cohorts to this sort of interpretation, because in many countries demographic statistics supply series of individuals classified according to the mothers age at their birth.
This discussion would not be complete if we did not stress another aspect of the genetic importance of certain demographic factors, revealed by modern techniques, which have truly created a demographic biology. Particularly worthy of note are the mothers age, order of birth, spacing between births, and size of family.
The mothers age is a great influence on fecundity. A certain number of couples become in capable of having a second child after the birth of the first child; a third child after the second; a fourth after the third; and so forth. This sterility increases with the length of a marriage and especially after the age of 35. It is very important to realize this when, for instance, natural selection and its effects are being studied.
The mothers age also strongly influences the frequency of twin births (monozygotic or dizygotic), spontaneous abortions, stillborn or abnormal births, and so on. Many examples can also be given of the influence of the order of birth, the interval between births, and the size of the family to illustrate their effect on such things as fertility, mortality, morbidity, and malformations.
It has been demonstrated above how seriously demographic factors must be taken into consideration when we wish to study the influence of the genetic structure of populations. We will leave aside the possible environmental influences, such as social class and marital status, since they have previously been codified by Osborn (1956/1957) and Larsson (19561957), among others. At the practical level, however, the continuing efforts to utilize vital statistics for genetic purposes should be pointed out. In this connection, the research of H. B. Newcombe and his colleagues (1965), who are attempting to organize Canadian national statistics for use in genetics, cannot be too highly praised. The United Nations itself posed the problem on the world level at a seminar organized in Geneva in 1960. The question of the relation between demography and genetics is therefore being posed in an acute form.
These problems also impinge in an important way on more general philosophical issues, as has been demonstrated by Haldane (1932), Fisher (1930), and Wright (1951). It must be recognized, however, that their form of Neo-Darwinism, although it is based on Mendelian genetics, too often neglects demographic considerations. In the future these seminal developments should be renewed in full confrontation with demographic reality.
Jean Sutter
[Directly related are the entriesCohort Analysis; Fertility; Fertility Control. Other relevant ma terial may be found inNuptiality; Race; SocialBehavior, Animal, article onThe Regulation of Animal Populations.]
Barclay, George W. 1958 Techniques of Population Analysis. New York: Wiley.
Dahlberg, Gunnar(1943)1948 Mathematical Methods for Population Genetics. New York and London: Inter-science. First published in German.
Dunn, Leslie C. (editor) 1951 Genetics in the Twentieth Century: Essays on the Progress of Genetics During Its First Fifty Years. New York: Macmillan.
Fisher, R. A. (1930) 1958 The Genetical Theory of Natural Selection. 2d ed., rev. New York: Dover.
Read more:
genetics facts, information, pictures | Encyclopedia.com ...
Posted in Genetics
Comments Off on genetics facts, information, pictures | Encyclopedia.com …
Basic Genetics
Posted: September 26, 2016 at 7:45 am
Tour of Basic Genetics
What are Traits?
Explore traits, the characteristics that make us unique.
What are DNA & Genes?
Get to know the molecule that holds the instructions for building every living thing.
What is Inheritance?
Learn how traits pass from parents to offspring.
What is Mutation?
Take a look at how variation occurs.
We are pleased to offer you a partial preview of our new Tour of Basic Genetics.
More chapters will be available soon. But we wanted to make the new chapters available as soon as possible, especially for those who are using mobile devices or the most-recent version of web browsers that no longer support Adobe Flash content.
Our flash-based old tour is still available.
How do Scientists Read Chromosomes?
To read a set of chromosomes, scientists look for key features to identify their similarities and differences.
Make a Karyotype
Try your hand at organizing a profile of human chromosomes.
Using Karyotypes To Diagnose Genetic Disorders
Certain genetic disorders can be diagnosed by looking at a person's chromosomes.
Are Telomeres The Key To Aging And Cancer?
Protective tips at the end of our chromosomes get shorter as we age.
Related content from Pigeon Breeding: Genetic Linkage Sex Linkage
What are dominant and recessive?
The terms dominant and recessive describe the inheritance patterns of certain traits. But what do they really mean?
Sexual vs. Asexual Reproduction
Compare the two ways for organisms to pass genetic information to their offspring.
The 4 Types of DNA and Molecular Genealogy
DNA analysis can help build the family tree. Find out about autosomal, x chromosome, y chromosome, and mitochondrial DNA.
Types of Proteins
Explore the types of proteins and learn about their varied functions.
Transcribe and Translate a Gene
See how cells "read" the information in a DNA sequence to build a protein, then build one yourself!
What makes a firefly glow?
Walk through protein synthesis with this animated example.
Prions
Mad Cow and Creutzfeldt-Jakob are examples of prion diseases. What makes them unusual, and why are they controversial?
Observable Human Characteristics
Take a look at several inherited human characteristics and learn more about them. Which variations do you have?
Traits Activities
Do these fun activities about inherited traits and disease risk with your family or at public gatherings.
Build a DNA Molecule
Find out how the DNA code letters A, C, G, and T make a DNA molecule by building one yourself.
Anatomy of a Gene
Introns, exons, and regulatory sequences: Examine the parts of a gene from "start" to "stop."
Things You May Not KNow About DNA
Put an end to these common misconceptions about DNA and Heredity.
How do Cells Read Genes?
See how cells interpret DNA sentences.
PTC: The Genetics of Bitter Taste
An accidental discovery leads to important clues about human evolution.
Genes and Blood Type
Take a look at the inheritance of the ABO blood typing system and the genes behind it.
The Time of Our Lives
Learn about the genetic underpinnings of biological clocks.
DNA Day is April 25th. Check out the NHGRI DNA Day website.
RNA: The Versatile Molecule
RNA's chemical structure gives it the flexibility to take on a variety of shapes and functions.
RNA's Role In The Central Dogma
Learn the essential roles of the three most plentiful types of RNA messenger, transfer, and ribosomal in the processes of transcription and translation.
Beyond the Central Dogma
Learn about some of the less-known roles of RNA.
The Outcome of Mutation
Small changes to DNA can lead to big variations in traits.
Homeotic Genes and Body Patterns
Bizarre mutations in fruit flies led to the discovery of genes that guide development.
Test Neurofibromin Activity In A Cell
See how a mutated protein can affect normal cell division.
Mutation and Haplotypes
Genetic variations can provide clues about common ancestry.
APA format:
Genetic Science Learning Center. (2016, March 1) Basic Genetics. Retrieved September 23, 2016, from http://learn.genetics.utah.edu/content/basics/
CSE format:
Basic Genetics [Internet]. Salt Lake City (UT): Genetic Science Learning Center; 2016 [cited 2016 Sep 23] Available from http://learn.genetics.utah.edu/content/basics/
Chicago format:
Genetic Science Learning Center. "Basic Genetics." Learn.Genetics.March 1, 2016. Accessed September 23, 2016. http://learn.genetics.utah.edu/content/basics/.
Continue reading here:
Basic Genetics
Posted in Genetics
Comments Off on Basic Genetics