Page 108«..1020..107108109110..120130..»

Category Archives: Stem Cell Therapy

CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up – Video

Posted: February 22, 2014 at 4:40 pm


CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up
Stem cell therapy for knee post operative interview. This patient came in with a knee meniscus tear and one year after his initial procedure patient is pain ...

By: ClinicellTech

See the original post here:
CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up - Video

Posted in Stem Cell Therapy | Comments Off on CLINICell Stem Cell Therapy for Knee Meniscus Tear 1 year Follow-Up – Video

'Largest ever' trial of adult stem cells in heart attack patients begins

Posted: February 22, 2014 at 4:40 pm

Current ratings for: 'Largest ever' trial of adult stem cells in heart attack patients begins

Public / Patient:

5 1 rating

Health Professionals:

3 1 rating

The largest ever trial of adult stem cell therapy in heart attack patients has begun at The London Chest Hospital in the UK.

Heart disease is the world's leading cause of death. Globally, more than 17 million people died from heart disease last year. In the US, over 1 million people suffer a heart attack each year, and about half of them die.

Heart attacks are usually caused by a clot in the coronary artery, which stops the supply of blood and oxygen to the heart. If the blockage is not treated within a few hours, then it causes the heart muscle to die.

The stem cell trial - titled "The effect of intracoronary reinfusion of bone marrow-derived mononuclear cells (BM-MNC) on allcause mortality in acute myocardial infarction," or "BAMI" for short - has been made possible due to a 5.9 million ($8.1 million) award from the European Commission.

The full study involves 19 partners across France, Germany, Italy, Finland, Denmark, Spain, Belgium, Poland, the Czech Republic and the UK.

See the rest here:
'Largest ever' trial of adult stem cells in heart attack patients begins

Posted in Stem Cell Therapy | Comments Off on 'Largest ever' trial of adult stem cells in heart attack patients begins

Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation

Posted: February 22, 2014 at 4:40 pm

21.02.2014 - (idw) Ruprecht-Karls-Universitt Heidelberg

Heidelberg researchers have been delving into the basic regulatory mechanisms of stem cell differentiation. Using the Drosophila melanogaster fruit fly as a model organism, the team led by Prof. Dr. Ingrid Lohmann at Heidelberg University's Centre for Organismal Studies was able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation. The scientists found that impairment of Hox gene function resulted in prematurely aged sperms. Press Release Heidelberg, 21 February 2014

Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation Heidelberg researchers study basic regulatory mechanisms of stem cell differentiation

Heidelberg researchers have been delving into the basic regulatory mechanisms of stem cell differentiation. Using the Drosophila melanogaster fruit fly as a model organism, the team led by Prof. Dr. Ingrid Lohmann at Heidelberg University's Centre for Organismal Studies was able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation. The scientists, working in the Maintenance and Differentiation of Stem Cells in Development and Disease Collaborative Research Centre (CRC 873), found that impairment of Hox gene function resulted in prematurely aged sperms.

As immature somatic cells, stem cells can mature into different types of cells, thus making them responsible for the development of all the tissues and organs in the body. They are also able to repair damaged adult cells. Advancements in medical research have shown that stem cells can be used to treat certain diseases. To fulfil the promise of stem cell therapy, it is important to discover the function of the respective stem cells and understand how they interact with their environment, that is, the surrounding cells and tissues, explains Prof. Lohmann, who heads the Developmental Biology research group at the Centre for Organismal Studies (COS).

This microenvironment, which stabilises and regulates stem cell activity, is called a stem cell niche. The Heidelberg research team investigated the niches in the testis of the fruit fly. The germline stem cells there produce daughter cells that develop into mature sperms. In our studies, we wanted to find out the nature, if any, of the relationship between germline stem cells and the gene Abd-B, states Prof. Lohmann, who further explains that Abd-B belongs to a family of developmental genes referred to as Hox genes. These Hox genes control the activity of a multitude of other genes that are responsible for the early development of an organism.

In CRC 873, funded by the German Research Foundation, medical and biological scientists investigate the basic regulatory mechanisms that control the self-renewal and differentiation of stem cells. Different model organisms like the fruit fly Drosophila melanogaster are used for their research, aimed at decoding the principles of stem cell control with the aim to also apply them to higher forms of life and eventually humans. The research results of Prof. Lohmann and her team were published in the journal Developmental Cell.

Original publication: F. Papagiannouli, L. Schardt, J. Grajcarek, N. Ha, I. Lohmann: The Hox Gene Abd-B Controls Stem Cell Niche Function in the Drosophila Testis. Developmental Cell, Vol 28. Iss 2, 189-202 (27 January 2014), doi: 10.1016/j.devcel.2013.12.016

Internet information: Research group of Ingrid Lohmann: http://www.cos.uni-heidelberg.de/index.php/i.lohmann?l=_e

Contact: Prof. Dr. Ingrid Lohmann Centre for Organismal Studies Phone: +49 6221 54-51312 ingrid.lohmann@bioquant.uni-heidelberg.de

The rest is here:
Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation

Posted in Stem Cell Therapy | Comments Off on Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation

Okyanos Heart Institute CEO Matt Feshbach to Speak on Panel at International Stem Cell Society Global Conference

Posted: February 21, 2014 at 10:45 pm

Freeport, The Bahamas (PRWEB) February 21, 2014

Okyanos Heart Institute, whose mission it is to bring a new standard of care and a better quality of life to patients with coronary artery disease using adult stem cell therapy, announces CEO Matt Feshbach will present at the STEMSO Conference. He will join a panel to discuss the opportunities available through the new stem cell research and Therapy Act. The conference will be held at the Grand Lucayan Resort in Freeport, Grand Bahamas, February 19-22, 2014. The panel discussion will be Friday, February 21 from 8:45 9:45 a.m.

The conference, titled Bridging the Gap: Research to Point of Care, brings together medical scientists, clinicians, regulatory experts, and investors to discuss progress in the field of research and clinical protocols and the process of taking promising therapies to fight chronic disease to market in a responsible manner.

Friday opening remarks will be delivered by Ian Rolle, President of Grand Bahama Port Authority from 8:30 a.m. to 8:45 a.m. followed by the panel presentation until 9:45 a.m. which, in addition to Rolle will include Feshbach, Mitchell Fuerst, Esq., managing partner, Fuerst, Ittleman, David and Joseph. The panel will be moderated by Arthur K. Parris, Jr. of Parris Whittaker.

"With the passing of the Bahamas Stem Cell Research and Therapy Act, which requires high standards of patient safety and care, we believe the Bahamas is an ideal location to bring internationally-approved, adult stem cell technology to patients with unmet medical needs such as chronic coronary artery disease (CAD), says Feshbach. I am pleased to discuss the opportunities available in the Bahamas with investors, doctors and other stakeholders interested in making the Bahamas a world-class destination for adult stem cell therapy."

The STEMSO 2014 Conference in Freeport, Grand Bahama poses a unique opportunity for medical organizations which focus on adult stem cell-based medical treatments, states Douglas Hammond, president of STEMSO. This conference will provide companies looking to expand their research or clinical practices to offshore locations many good reasons to choose the Bahamas. Those attending will be able to network and view the most advanced research and clinical protocols utilizing autologous and allogeneic stem cells in the world today.

The complete agenda can be found on the organizations website at http://www.stemso.org. Other speakers include stem cell researchers, scientists and practitioners from around the world with leading discoveries in the field, and investors in the healthcare space.

Registration is open for attending and exhibiting on STEMSOs website.

ABOUT OKYANOS HEART INSTITUTE: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow. For more information, go to http://www.okyanos.com/.

NEW MEDIA CONTENT: Okyanos LinkedIn Page: http://www.linkedin.com/company/okyanos-heart-institute Okyanos Facebook Page: https://www.facebook.com/OKYANOS Okyanos Twitter Page: https://twitter.com/#!/OkyanosHeart Okyanos Google+ Page: https://plus.google.com/+Okyanos/posts Okyanos You Tube Physician Channel: http://www.youtube.com/user/okyanosforphysicians

Follow this link:
Okyanos Heart Institute CEO Matt Feshbach to Speak on Panel at International Stem Cell Society Global Conference

Posted in Stem Cell Therapy | Comments Off on Okyanos Heart Institute CEO Matt Feshbach to Speak on Panel at International Stem Cell Society Global Conference

Stem Cell Treatment at "EmCell" – Video

Posted: February 19, 2014 at 5:47 pm


Stem Cell Treatment at "EmCell"
http://www.emcell.com/ Stem cell therapy is the rapidly developing area of modern medicine. Unique properties of fetal stem cells, the core of EmCell treatme...

By: Stem Cell Therapy Center "EMCELL"

See original here:
Stem Cell Treatment at "EmCell" - Video

Posted in Stem Cell Therapy | Comments Off on Stem Cell Treatment at "EmCell" – Video

Deep TCR sequencing reveals extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

Posted: February 19, 2014 at 1:43 pm

A new study describes the complexity of the new T cell repertoire following immune-depleting therapy to treat multiple sclerosis, improving our understanding of immune tolerance and clinical outcomes.

In the Immune Tolerance Network's (ITN) HALT-MS study, 24 patients with relapsing, remitting multiple sclerosis received high-dose immunosuppression followed by a transplant of their own stem cells, called an autologous stem cell transplant, to potentially reprogram the immune system so that it stops attacking the brain and spinal cord. Data published in the Journal of Clinical Investigation quantified and characterized T cell populations following this aggressive regimen to understand how the reconstituting immune system is related to patient outcomes.

ITN investigators used a high-throughput, deep-sequencing technology (Adaptive Biotechnologies, ImmunoSEQTM Platform) to analyze the T cell receptor (TCR) sequences in CD4+ and CD8+ cells to compare the repertoire at baseline pre-transplant, two months post-transplant and 12 months post-transplant.

Using this approach, alongside conventional flow cytometry, the investigators found that CD4+ and CD8+ lymphocytes exhibit different reconstitution patterns following transplantation. The scientists observed that the dominant CD8+ T cell clones present at baseline were expanded at 12 months post-transplant, suggesting these clones were not effectively eradicated during treatment. In contrast, the dominant CD4+ T cell clones present at baseline were undetectable at 12 months, and the reconstituted CD4+ T cell repertoire was predominantly composed of new clones.

The results also suggest the possibility that differences in repertoire diversity early in the reconstitution process might be associated with clinical outcomes. Nineteen patients who responded to treatment had a more diverse repertoire two months following transplant compared to four patients who did not respond. Despite the low number of non-responders, these comparisons approached statistical significance and point to the possibility that complexity in the T cell compartment may be important for establishing immune tolerance.

This is one of the first studies to quantitatively compare the baseline T cell repertoire with the reconstituted repertoire following autologous stem cell transplant, and provides a previously unseen in-depth analysis of how the immune system reconstitutes itself following immune-depleting therapy.

About The Immune Tolerance Network

The Immune Tolerance Network (ITN) is a research consortium sponsored by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. The ITN develops and conducts clinical and mechanistic studies of immune tolerance therapies designed to prevent disease-causing immune responses, without compromising the natural protective properties of the immune system. Visit http://www.immunetolerance.org for more information.

Story Source:

The above story is based on materials provided by Immune Tolerance Network. Note: Materials may be edited for content and length.

More:
Deep TCR sequencing reveals extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

Posted in Stem Cell Therapy | Comments Off on Deep TCR sequencing reveals extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india – Video

Posted: February 18, 2014 at 8:53 pm


stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india. Stem Cell Therapy done date 21/...

By: Neurogen Brain and Spine Institute

See original here:
stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india - Video

Posted in Stem Cell Therapy | Comments Off on stem cell therapy treatment for right brachial plexus by dr alok sharma, mumbai, india – Video

Scientists Get Closer to Rejuvenating Aging Muscles

Posted: February 17, 2014 at 11:49 pm

Posted: Monday, February 17, 2014, 7:00 AM

SUNDAY, Feb. 16, 2014 (HealthDay News) -- As millions of aging Baby Boomers know, muscle tone and strength declines with advancing age, regardless of gym workouts. Now scientists say they might have uncovered a clue as to why that happens -- and new cell targets to help reverse it.

In studies in aging mice, researchers at Stanford University found that, over time, the stem cells that help repair damaged muscle cells after injury are less able to do so.

This helps explain why regaining strength and recovering from a muscle injury gets more difficult with age, the researchers said in work published online Feb. 16 in the journal Nature Medicine.

"In the past, it's been thought that muscle stem cells themselves don't change with age, and that any loss of function is primarily due to external factors in the cells' environment," study senior author Helen Blau, director of Stanford's Baxter Laboratory for Stem Cell Biology, said in a university news release.

"However, when we isolated stem cells from older mice, we found that they exhibit profound changes with age," said Blau, a professor of microbiology and immunology at the university. "Two-thirds of the cells are dysfunctional when compared to those from younger mice, and the defect persists even when transplanted into young muscles."

The research also revealed, however, that there is a defect specific to old muscle stem cells that can be corrected, allowing scientists to rejuvenate the cells.

"Most exciting is that we also discovered a way to overcome the defect," Blau said. "As a result, we have a new therapeutic target that could one day be used to help elderly human patients repair muscle damage."

The muscle stem cells in 2-year-old mice are the equivalent of those found in 80-years-old humans. In conducting the study, the researchers found that many muscle stem cells from these mice had increased activity in a certain biological pathway that interferes with the production of the stem cells.

See the original post here:
Scientists Get Closer to Rejuvenating Aging Muscles

Posted in Stem Cell Therapy | Comments Off on Scientists Get Closer to Rejuvenating Aging Muscles

Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

Posted: February 17, 2014 at 11:49 pm

PUBLIC RELEASE DATE:

17-Feb-2014

Contact: Philip Bernstein, Ph.D. ITNCommunications@immunetolerance.org 240-235-6132 Immune Tolerance Network

WA, Seattle (February 17, 2014) A new study describes the complexity of the new T cell repertoire following immune-depleting therapy to treat multiple sclerosis, improving our understanding of immune tolerance and clinical outcomes.

In the Immune Tolerance Network's (ITN) HALT-MS study, 24 patients with relapsing, remitting multiple sclerosis received high-dose immunosuppression followed by a transplant of their own stem cells, called an autologous stem cell transplant, to potentially reprogram the immune system so that it stops attacking the brain and spinal cord. Data published today in the Journal of Clinical Investigation quantified and characterized T cell populations following this aggressive regimen to understand how the reconstituting immune system is related to patient outcomes.

ITN investigators used a high-throughput, deep-sequencing technology (Adaptive Biotechnologies, ImmunoSEQTM Platform) to analyze the T cell receptor (TCR) sequences in CD4+ and CD8+ cells to compare the repertoire at baseline pre-transplant, two months post-transplant and 12 months post-transplant.

Using this approach, alongside conventional flow cytometry, the investigators found that CD4+ and CD8+ lymphocytes exhibit different reconstitution patterns following transplantation. The scientists observed that the dominant CD8+ T cell clones present at baseline were expanded at 12 months post-transplant, suggesting these clones were not effectively eradicated during treatment. In contrast, the dominant CD4+ T cell clones present at baseline were undetectable at 12 months, and the reconstituted CD4+ T cell repertoire was predominantly comprised of new clones.

The results also suggest the possibility that differences in repertoire diversity early in the reconstitution process might be associated with clinical outcomes. Nineteen patients who responded to treatment had a more diverse repertoire two months following transplant compared to four patients who did not respond. Despite the low number of non-responders, these comparisons approached statistical significance and point to the possibility that complexity in the T cell compartment may be important for establishing immune tolerance.

This is one of the first studies to quantitatively compare the baseline T cell repertoire with the reconstituted repertoire following autologous stem cell transplant, and provides a previously unseen in-depth analysis of how the immune system reconstitutes itself following immune-depleting therapy.

###

Original post:
Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

Posted in Stem Cell Therapy | Comments Off on Extensive renewal of the T cell repertoire following autologous stem cell transplant in MS

Over 5,000 Cubans receive stem cell treatment: Expert

Posted: February 17, 2014 at 5:46 am

Havana, Feb 16 (IANS): More than 5,000 patients have received stem cell treatment in Cuba since its procedure was introduced in 2004, a medical expert said.

Porfirio Hernandez, researcher and vice director at the Hematology and Immunology Institute in Cuba, said the stem cell treatment method has been implemented in 13 of the 15 provinces in Cuba.

As a widely acknowledged pioneer of this practice, Hernandez said that more than 60 percent of patients receiving the treatment had suffered from severe ischemia at lower limbs and other blood vessel related ailments, reported Xinhua.

The therapy has also been used to reduce the sufferings of patients with severe orthopedic and cardiac problems, Hernandez added.

Stem cells are capable of self-renewing, regenerating tissues damaged by diverse disease, traumas, and ageing, and stimulating the creation of new blood vessels.

Please note that under 66A of the IT Act, sending offensive or menacing messages through electronic communication service and sending false messages to cheat, mislead or deceive people or to cause annoyance to them is punishable. It is obligatory on Daijiworld to provide the IP address and other details of senders of such comments, to the authority concerned upon request.

Hence, sending offensive comments using daijiworld will be purely at your own risk, and in no way will Daijiworld.com be held responsible.

Visit link:
Over 5,000 Cubans receive stem cell treatment: Expert

Posted in Stem Cell Therapy | Comments Off on Over 5,000 Cubans receive stem cell treatment: Expert

Page 108«..1020..107108109110..120130..»