Page 33«..1020..32333435..4050..»

Category Archives: Stem Cell Therapy

COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -…

Posted: May 14, 2020 at 7:42 pm

The Covid-19 (coronavirus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries including Life science Industry, and many more. Trade barriers are further restraining the demand- supply outlook. As government of different regions have already announced total lockdown and temporarily shutdown of industries, the overall production process being adversely affected; thus, hinder the overall Stem Cell Therapy market globally. This report on Stem Cell Therapy market provides the analysis on impact on Covid-19 on various business segments and country markets. The report also showcase market trends and forecast to 2027, factoring the impact of Covid -19 Situation.

To get sample Copy of the report, along with the TOC, Statistics, and Tables please visit @https://www.theinsightpartners.com/sample/TIPHE100000991/

Stem cell therapy is a technique which uses stem cells for the treatment of various disorders. Stem cell therapy is capable of curing broad spectrum of disorders ranging from simple to life threatening. These stem cells are obtained from different sources, such as, adipose tissue, bone marrow, embryonic stem cell and cord blood among others. Stem cell therapy is enables to treat more than 70 disorders, including degenerative as well as neuromuscular disorders. The ability of a stem cell to renew itself helps in replacing the damaged areas in the human body.

MARKET DYNAMICSIncrease in the number of stem cell banking facilities and rising awareness on the benefits of stem cell for curing various disorders are expected to drive the market during the forecast period. Rise in number of regulations to promote stem cell therapy and increase in number of funds for research in developing countries are expected to offer growth opportunities to the market during the coming years.

Key Players

The research provides answers to the following key questions:

The study conducts SWOT analysis to evaluate strengths and weaknesses of the key players in the Stem Cell Therapy market. Further, the report conducts an intricate examination of drivers and restraints operating in the market. The report also evaluates the trends observed in the parent market, along with the macro-economic indicators, prevailing factors, and market appeal according to different segments. The report also predicts the influence of different industry aspects on the Stem Cell Therapy market segments and regions.

Our reports will help clients solve the following issues:

Insecurity about the future:

Our research and insights help our clients anticipate upcoming revenue compartments and growth ranges. This will help our clients invest or divest their assets.

Understanding market opinions:

It is extremely vital to have an impartial understanding of market opinions for a strategy. Our insights provide a keen view on the market sentiment. We keep this reconnaissance by engaging with Key Opinion Leaders of a value chain of each industry we track.

Understanding the most reliable investment centers:

Our research ranks investment centers of market by considering their future demands, returns, and profit margins. Our clients can focus on most prominent investment centers by procuring our market research.

Evaluating potential business partners:

Our research and insights help our clients identify compatible business partners.

Interested in purchasing this Report? Click here @https://www.theinsightpartners.com/buy/TIPHE100000991/

Stem Cell Therapy Market Segmented by Region/Country: North America, Europe, Asia Pacific, Middle East & Africa, and Central & South America

About Us:

The Insight Partnersis a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.

We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget

Contact Us:

The Insight Partners,

Phone: +1-646-491-9876

Email:[emailprotected]

Read the original here:
COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -...

Posted in Stem Cell Therapy | Comments Off on COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -…

New Data for Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001 for Severe Hemoglobinopathies Accepted for Oral Presentation at the 25th European…

Posted: May 14, 2020 at 7:42 pm

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, May 14, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced that new data from two ongoing Phase 1/2 clinical trials of the CRISPR/Cas9 gene-editing therapy CTX001 in severe hemoglobinopathies have been accepted for an oral presentation at the EHA Congress, which will take place virtually from June 11-14, 2020.

An abstract posted online today includes 12 months of follow-up data for the first patient treated in the ongoing Phase 1/2 CLIMB-111 trial in transfusion-dependent beta thalassemia (TDT) and 6 months of follow-up data for the first patient treated in the ongoing Phase 1/2 CLIMB-121 trial in severe sickle cell disease (SCD). Updated data will be presented at EHA, including longer duration follow-up data for the first two patients treated in these trials and initial data for the second patient treated in the CLIMB-111 trial.

The accepted abstract is now available on the EHA conference website: https://ehaweb.org/congress/eha25/key-information-2/.

Abstract Title: Initial Safety and Efficacy Results With a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Hematopoietic Stem and Progenitor Cells in Transfusion-Dependent -Thalassemia and Sickle Cell DiseaseSession Title: Immunotherapy - ClinicalAbstract Code: S280

About the Phase 1/2 Study in Transfusion-Dependent Beta ThalassemiaThe ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with TDT. The study will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up study.

About the Phase 1/2 Study in Sickle Cell DiseaseThe ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with severe SCD. The study will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up study.

About CTX001CTX001 is an investigational ex vivo CRISPR gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth and is then replaced by the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and painful and debilitating sickle crises for SCD patients. CTX001 is the most advanced gene-editing approach in development for beta thalassemia and SCD.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex.

About the CRISPR-Vertex CollaborationCRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic partnerships with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases) related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the data that is expected to be presented at the European Hematology Associations upcoming congress; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com/ or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, information regarding the data that is expected to be presented at the European Hematology Association (EHA)s upcoming Congress. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of factors that could cause actual events or results to differ materially from those indicated by such forward-looking statements. Those risks and uncertainties include, among other things, that the development of CTX001 may not proceed or support registration due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and quarterly reports filed with theSecurities and Exchange Commissionand available through the company's website atwww.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167 reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.com orU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Read more:
New Data for Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001 for Severe Hemoglobinopathies Accepted for Oral Presentation at the 25th European...

Posted in Stem Cell Therapy | Comments Off on New Data for Investigational CRISPR/Cas9 Gene-Editing Therapy CTX001 for Severe Hemoglobinopathies Accepted for Oral Presentation at the 25th European…

2025 Projections: Cell Freezing Media for Cell Therapy Market Report by Type, Application and Regional Outlook – AlgosOnline

Posted: May 14, 2020 at 7:42 pm

The ' Cell Freezing Media for Cell Therapy market' report Added by Market Study Report, LLC, enumerates information about the industry in terms of market share, market size, revenue forecasts, and regional outlook. The report further illustrates competitive insights of key players in the business vertical followed by an overview of their diverse portfolios and growth strategies.

The new research report on the Cell Freezing Media for Cell Therapy market provides a comprehensive analysis of the business vertical and comprises of crucial information pertaining to the industry such as profits estimation, periodic deliverables, market size, market share, current revenue, and market tendencies.

Request a sample Report of Cell Freezing Media for Cell Therapy Market at:https://www.marketstudyreport.com/request-a-sample/2547285?utm_source=algosonline.com&utm_medium=TS

A brief summary of the performance analysis of the Cell Freezing Media for Cell Therapy market has been given in the report. Moreover, the report includes pivotal insights such as growth rate expected during the forecast period and key aspects affecting the market size. The Cell Freezing Media for Cell Therapy market report also elaborates on growth opportunities along with hindering factors associated with the industry vertical.

Main pointers highlighted in the Cell Freezing Media for Cell Therapy market report:

Unveiling the geographical landscape of the Cell Freezing Media for Cell Therapy market:

Cell Freezing Media for Cell Therapy Market Segmentation:

A gist of the details presented in the Cell Freezing Media for Cell Therapy market report:

A complete summary of the Cell Freezing Media for Cell Therapy market with regards to the product and application spectrum:

Product landscape:

Product types: With FBS and Without FBS

Key insights presented in the report:

Ask for Discount on Cell Freezing Media for Cell Therapy Market Report at:https://www.marketstudyreport.com/check-for-discount/2547285?utm_source=algosonline.com&utm_medium=TS

Application landscape:

Application segmentation: Human Embryonic Stem Cells, CAR-T Cell Therapy, Neural Stem Cell Therapy, Mesenchymal Stem Cell Therapy, Hematopoietic Stem Cell Transplantation and Other

Specifics provided in the report:

Other major pointers included in the report:

Some details about the competitive landscape of the Cell Freezing Media for Cell Therapy market include:

Vendor base of the industry: BioLife Solutions, Thermo Fisher Scientific, GE Healthcare, Zenoaq, Merck, Akron Biotechnology, WAK-Chemie Medical and Biological Industries

Competitive landscape parameters mentioned in the report include:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-cell-freezing-media-for-cell-therapy-market-growth-2020-2025

Some of the Major Highlights of TOC covers:

Development Trend of Analysis of Cell Freezing Media for Cell Therapy Market

Marketing Channel

Market Dynamics

Methodology/Research Approach

Related Reports:

2. Global Alginate Wound Dressing Market Growth (Status and Outlook) 2020-2025Alginate Wound Dressing Market report characterize imperative Portion and contenders of the market regarding market estimate, volume, esteem. This report likewise covers every one of the locales and nations of the world, which demonstrates a territorial improvement status, it additionally incorporates Business Profile, Introduction, Revenue and so on.Read More: https://www.marketstudyreport.com/reports/global-alginate-wound-dressing-market-growth-status-and-outlook-2020-2025

Read More Reports On: https://www.marketwatch.com/press-release/x-ray-non-destructive-testing-ndt-market-analysis-by-major-companies-size-segmentation-market-dynamics-size-industry-status-and-outlook-to-2025-2020-03-28

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Go here to read the rest:
2025 Projections: Cell Freezing Media for Cell Therapy Market Report by Type, Application and Regional Outlook - AlgosOnline

Posted in Stem Cell Therapy | Comments Off on 2025 Projections: Cell Freezing Media for Cell Therapy Market Report by Type, Application and Regional Outlook – AlgosOnline

Stem Cell Transplants in Cancer Treatment – National …

Posted: March 3, 2020 at 2:44 am

Stem cell transplants are procedures that restore blood-forming stem cells in people who have had theirs destroyed by the very high doses of chemotherapy or radiation therapy that are used to treat certain cancers.

Blood-forming stem cells are important because they grow into different types of blood cells. The main types of blood cells are:

You need all three types of blood cells to be healthy.

In a stem cell transplant, you receive healthy blood-forming stem cells through a needle in your vein. Once they enter your bloodstream, the stem cells travel to the bone marrow, where they take the place of the cells that were destroyed by treatment. The blood-forming stem cells that are used in transplants can come from the bone marrow, bloodstream, or umbilical cord. Transplants can be:

To reduce possible side effects and improve the chances that an allogeneic transplant will work, the donors blood-forming stem cells must match yours in certain ways. To learn more about how blood-forming stem cells are matched, see Blood-Forming Stem Cell Transplants.

Stem cell transplants do not usually work against cancer directly. Instead, they help you recover your ability to produce stem cells after treatment with very high doses of radiation therapy, chemotherapy, or both.

However, in multiple myeloma and some types of leukemia, the stem cell transplant may work against cancer directly. This happens because of an effect called graft-versus-tumor that can occur after allogeneic transplants. Graft-versus-tumor occurs when white blood cells from your donor (the graft) attack any cancer cells that remain in your body (the tumor) after high-dose treatments. This effect improves the success of the treatments.

Stem cell transplants are most often used to help people with leukemia and lymphoma. They may also be used for neuroblastoma and multiple myeloma.

Stem cell transplants for other types of cancer are being studied in clinical trials, which are research studies involving people. To find a study that may be an option for you, see Find a Clinical Trial.

The high doses of cancer treatment that you have before a stem cell transplant can cause problems such as bleeding and an increased risk of infection. Talk with your doctor or nurse about other side effects that you might have and how serious they might be. For more information about side effects and how to manage them, see the section on side effects.

If you have an allogeneic transplant, you might develop a serious problem called graft-versus-host disease. Graft-versus-host disease can occur when white blood cells from your donor (the graft) recognize cells in your body (the host) as foreign and attack them. This problem can cause damage to your skin, liver, intestines, and many other organs. It can occur a few weeks after the transplant or much later. Graft-versus-host disease can be treated with steroids or other drugs that suppress your immune system.

The closer your donors blood-forming stem cells match yours, the less likely you are to have graft-versus-host disease. Your doctor may also try to prevent it by giving you drugs to suppress your immune system.

Stem cells transplants are complicated procedures that are very expensive. Most insurance plans cover some of the costs of transplants for certain types of cancer. Talk with your health plan about which services it will pay for. Talking with the business office where you go for treatment may help you understand all the costs involved.

To learn about groups that may be able to provide financial help, go to the National Cancer Institute database, Organizations that Offer Support Services and search "financial assistance." Or call toll-free 1-800-4-CANCER (1-800-422-6237) for information about groups that may be able to help.

When you need an allogeneic stem cell transplant, you will need to go to a hospital that has a specialized transplant center. The National Marrow Donor Program maintains a list of transplant centers in the United States that can help you find a transplant center.

Unless you live near a transplant center, you may need to travel from home for your treatment. You might need to stay in the hospital during your transplant, you may be able to have it as an outpatient, or you may need to be in the hospital only part of the time. When you are not in the hospital, you will need to stay in a hotel or apartment nearby. Many transplant centers can assist with finding nearby housing.

A stem cell transplant can take a few months to complete. The process begins with treatment of high doses of chemotherapy, radiation therapy, or a combination of the two. This treatment goes on for a week or two. Once you have finished, you will have a few days to rest.

Next, you will receive the blood-forming stem cells. The stem cells will be given to you through an IV catheter. This process is like receiving a blood transfusion. It takes 1 to 5 hours to receive all the stem cells.

After receiving the stem cells, you begin the recovery phase. During this time, you wait for the blood cells you received to start making new blood cells.

Even after your blood counts return to normal, it takes much longer for your immune system to fully recoverseveral months for autologous transplants and 1 to 2 years for allogeneic or syngeneic transplants.

Stem cell transplants affect people in different ways. How you feel depends on:

Since people respond to stem cell transplants in different ways, your doctor or nurses cannot know for sure how the procedure will make you feel.

Doctors will follow the progress of the new blood cells by checking your blood counts often. As the newly transplanted stem cells produce blood cells, your blood counts will go up.

The high-dose treatments that you have before a stem cell transplant can cause side effects that make it hard to eat, such as mouth sores and nausea. Tell your doctor or nurse if you have trouble eating while you are receiving treatment. You might also find it helpful to speak with a dietitian. For more information about coping with eating problems see the booklet Eating Hints or the section on side effects.

Whether or not you can work during a stem cell transplant may depend on the type of job you have. The process of a stem cell transplant, with the high-dose treatments, the transplant, and recovery, can take weeks or months. You will be in and out of the hospital during this time. Even when you are not in the hospital, sometimes you will need to stay near it, rather than staying in your own home. So, if your job allows, you may want to arrange to work remotely part-time.

Many employers are required by law to change your work schedule to meet your needs during cancer treatment. Talk with your employer about ways to adjust your work during treatment. You can learn more about these laws by talking with a social worker.

Read the original:
Stem Cell Transplants in Cancer Treatment - National ...

Posted in Stem Cell Therapy | Comments Off on Stem Cell Transplants in Cancer Treatment – National …

Stem Cell Therapy | ANOVA IRM

Posted: March 3, 2020 at 2:44 am

What is Regenerative Medicine?

Regenerative Medicine is a new field of medicine with one goal in mind: to heal and restore normal function of damaged tissues and organs. Just like the human body itself, regenerative medicine utilizes stem cells to replace damaged cells and tissues. Stem Cells are, therefore, considered to be one of the most powerful tools in treating diseases. They go beyond conventional methods to repair and regenerate disease-related damage, by returning tissues and organs to a healthier state.

Stem cells exist in many different types as they have been identified in various tissues and organs. Each type of stem cell is classified by: their origin in the body, and their potential (potency) to differentiate (transform) into other cell types. This potential varies among stem cell types.

Some stem cells are capable of differentiating themselves into any cell type of body (pluripotent). Others, on the other hand, are able to transform into many cell types (multipotent), while some are only able to differentiate themselves into few (oligopotent) or one cell type (unipotent).

Having this in mind, it is important to note that not all stem cell types are suitable for treating patients. For example, the use of Embryonic Stem Cells (ESCs) for treating patients is restricted due to ethical issues, and their potential to grow into tumors.

One of the safest and most effective forms of stem cell treatments, which we employ at ANOVA, make use of autologous stem cells, i.e. stem cells derived from the patient themselves. By using autologous stem cells for the treatment of patients, there is very minimal to no risk of tumor formation, the transmission of infectious diseases or adverse immune reactions.

Bone Marrow Concentrate (BMC) and Mesenchymal Stem Cells (MSCs) are the most abundant form of autologous adult stem cells that are well suited for clinical use. They are relatively easily harvested from the bone marrow (BMCs) or from the subcutaneous ("under the skin") fat (MSCs).

Currently, most therapies at ANOVA are based on cell-free secretion of MSCs. We are also offering combination therapies with Platelet Rich Plasma (PRP), a medium that is rich in growth factors and other cytokines (molecules from the immune system) that stimulates healing, as well as BMC in the near future. Both can additionally be supplemented with our stem cell treatments as they seamlessly synergize together.

ANOVA offers individualized stem cell therapies that are best suited for the particular condition of the patient, and for the patient only. The application of these therapies depends entirely on the patients medical condition.

Overview

Numerous types of stem cell therapies are available at ANOVA. Stem cell research brought insights that allowed for technological advancements in therapies and expanding the knowledge of the underlying mechanisms of stem cells. This has allowed for more effective therapies to be developed.

BMC

Bone Marrow Concentrate (BMC) is one of the most commonly applied source of stem cells. Despite the fact that the actual number of stem cells in BMC is biologically limited, several other (regenerative) factors in BMC have been shown to deliver promising results in the treatment of numerous diseases.

Stem Cell Secretome

Stem Cell Therapies 2.0: The ANOVA Stem Cell Secretome Therapy is the next generation of stem cell-based therapies. It was designed to harness and mass produce the healing essences of stem cells (paracrine and regenerative factors, extracellular vesicles, exosomes) in a uniquely designed laboratory process.

MSCs

Fat (adipose) derived Mesenchymal Stem Cells (MSC | adMSCs) are a commonly used source of stem cells, because of their availability and robustness. They communicate to other cells with a broad spectrum of secreted paracrine and regenerative factors. They are our favorite source of stem cells for the production of the secretome.

Platelet Rich Plasma (PRP)

Platelet Rich Plasma (PRP) is a blood-derived, cellular product with concentrated supply of regenerative growth factors and cytokines. Its efficacy has been proven in some orthopedic conditions. When used in combination with our stem cell therapies, its efficacy is synergistically enhanced.

Stem Cells, as explained previously, have the power to differentiate into any cell type, all the way from: bone cells to brain cells, heart cells, nerve cells, kidney cells, etc. This is what defines Stem Cells. However, the potency to differentiate into any body cell type is not what defines their healing powers, as not all stem cell types are able to transform into any cell type. Only a selected few, such as Bone Marrow (BMC) and Mesenchymal Stem Cells (MSCs), have been identified to differentiate into most cells type and have been successfully used in medicine to treat diseases. They have been shown to hold several major therapeutic effects, such as:

After initial damage to tissues or organs, such as mechanical forces in trauma or the lack of blood supply in strokes and heart attacks, further damage is caused by immune processes and inflammation. Subcritically injured cells, which are usually found in the vicinity of the damaged tissue or organ, primarily commit suicide instead of repairing themselves. This process further increases the damaged tissue volume. To repair this damage, which is (potentially) possible in most organs by the specific stem cells residing in them, is very slow or does not happen at all without external stimulation. In such cases, stem cells therapies have been demonstrated to be extremely effective in stimulating repair and limiting further damage.

Early stem cell research indicated that stem cells heal by replacing damaged cells in injured organs. Now, it has become evident that the major effects of tissue repair are not entirely based on direct stem cell implantation, but rather by the secretion of soluble (paracrine) factors from the stem cells themselves.

This discovery has prompted the Anova scientists to explore a completely new therapeutical approach in regenerative medicine, which has ultimately lead to the development of our novel, safe, cell-free treatment: The ANOVA's Stem Cell Secretome Therapy.

ANOVA's Stem Cell therapy method utilizes autologous stem cells, i.e. cells that are derived from the patient itself, to mass produce the secretory factors (that retain the regenerative powers of stem cells), At Anova, a minimally invasive mini-liposuction procedure is performed, which allows for the isolation of stem cells from the subcutaneous fat (adipose tissue) of the patient.

This method does not rely on direct stem cell transplantation to treat numerous diseases and support anti-aging. Latest scientific research has shown that stem cell-free therapies, such as at Anova's, offer the same efficacy as traditional stem cell transplantation therapies, with higher safety and minimized risk for the patient.

See original here:
Stem Cell Therapy | ANOVA IRM

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy | ANOVA IRM

Types of Stem Cell Transplants for Cancer Treatment …

Posted: March 3, 2020 at 2:44 am

In a typical stem cell transplant for cancer very high doses of chemo are used, sometimes along with radiation therapy, to try to kill all the cancer cells. This treatment also kills the stem cells in the bone marrow. Soon after treatment, stem cells are given to replace those that were destroyed. These stem cells are given into a vein, much like a blood transfusion. Over time they settle in the bone marrow and begin to grow and make healthy blood cells. This process is called engraftment.

There are 2 main types of transplants. They are named based on who gives the stem cells.

In this type of transplant, your own stem cells are removed, or harvested, from your blood before you get treatment that destroys them. Your stem cells are removed from either your bone marrow or your blood, and then frozen. (You can learn more about this process at Whats It Like to Donate Stem Cells?) After you get high doses of chemo and/or radiation, the stem cells are thawed and given back to you.

One advantage of autologous stem cell transplant is that youre getting your own cells back. You dont have to worry about the new stem cells (called the engrafted cells or the graft) attacking your body (graft-versus-host disease) or about getting a new infection from another person. But there can still be graft failure, which means the cells dont go into the bone marrow and make blood cells like they should. Also, autologous transplants cant produce the graft-versus-cancer effect.

This kind of transplant is mainly used to treat certain leukemias, lymphomas, and multiple myeloma. Its sometimes used for other cancers, like testicular cancer and neuroblastoma, and certain cancers in children. Doctors are looking at how autologous transplants might be used to treat other diseases, too, like systemic sclerosis, multiple sclerosis (MS), Crohn's disease, and systemic lupus erythematosis (lupus).

A possible disadvantage of an autologous transplant is that cancer cells may be collected along with the stem cells and then later put back into your body. Another disadvantage is that your immune system is the same as it was before your transplant. This means the cancer cells were able to escape attack from your immune system before, and may be able to do so again.

To help prevent this, some centers treat the stem cells before theyre given back to the patient to try to kill any remaining cancer cells. This may be called purging. It isnt clear that this really helps, as it has not yet been proven to reduce the risk of cancer coming back. A possible downside of purging is that some normal stem cells can be lost during this process. This may cause your body to take longer to start making normal blood cells, and you might have very low and unsafe levels of white blood cells or platelets for a longer time. This could increase the risk of infections or bleeding problems.

Another treatment to help kill cancer cells that might be in the returned stem cells involves giving anti-cancer drugs after transplant. The stem cells are not treated. After transplant, the patient gets anti-cancer drugs to get rid of any cancer cells that may be in the body. This is called in vivo purging. For instance, rituximab (Rituxan), a monoclonal antibody drug, may be used this way in certain lymphomas and leukemias; lenalidomide (Revlimid) may be used for multiple myeloma. The need to remove cancer cells from transplanted stem cells or transplant patients and the best way to do it is being researched.

Doing 2 autologous transplants in a row is known as a tandem transplant or a double autologous transplant. In this type of transplant, the patient gets 2 courses of high-dose chemo, each followed by a transplant of their own stem cells. All of the stem cells needed are collected before the first high-dose chemo treatment, and half of them are used for each transplant. Usually, the 2 courses of chemo are given within 6 months. The second one is given after the patient recovers from the first one.

Tandem transplants are most often used to treat multiple myeloma and advanced testicular cancer. But doctors dont always agree that these are really better than a single transplant for certain cancers. Because this involves 2 transplants, the risk of serious outcomes is higher than for a single transplant. Tandem transplants are still being studied to find out when they might be best used.

Sometimes an autologous transplant followed by an allogeneic transplant might also be called a tandem transplant. (See Mini-transplants below.)

Allogeneic stem cell transplants use cells from a donor. In the most common type of allogeneic transplant, the stem cells come from a donor whose tissue type closely matches the patients. (This is discussed later in Matching patients and donors.) The best donor is a close family member, usually a brother or sister. If you dont have a good match in your family, a donor might be found in the general public through a national registry. This is sometimes called a MUD (matched unrelated donor) transplant. Transplants with a MUD are usually riskier than those with a relative who is a good match.

Blood taken from the placenta and umbilical cord of newborns is a newer source of stem cells for allogeneic transplant. Called cord blood, this small volume of blood has a high number of stem cells that tend to multiply quickly. But there are often not enough stem cells in a unit of cord blood for large adults, so most cord blood transplants done so far have been in children and smaller adults. Researchers are now looking for ways to use cord blood for transplants in larger adults. One approach is to find ways to increase the numbers of these cells in the lab before the transplant. Another approach is the use of the cord blood from 2 infants for one adult transplant, called a dual-cord-blood transplant. A third way cord blood is being used is in a mini-transplant (see below). Other strategies to better use cord blood transplants are being actively studied.

Pros of allogeneic stem cell transplant: The donor stem cells make their own immune cells, which could help kill any cancer cells that remain after high-dose treatment. This is called the graft-versus-cancer effect. Other advantages are that the donor can often be asked to donate more stem cells or even white blood cells if needed, and stem cells from healthy donors are free of cancer cells.

Cons to allogeneic stem cell transplants: The transplant, or graft, might not take that is, the transplanted donor stem cells could die or be destroyed by the patients body before settling in the bone marrow. Another risk is that the immune cells from the donor may not just attack the cancer cells they could attack healthy cells in the patients body. This is called graft-versus-host disease. There is also a very small risk of certain infections from the donor cells, even though donors are tested before they donate. A higher risk comes from infections you had previously, and which your immune system has had under control. These infections may surface after allogeneic transplant because your immune system is held in check (suppressed) by medicines called immunosuppressive drugs. Such infections can cause serious problems and even death.

Allogeneic transplant is most often used to treat certain types of leukemia, lymphomas, multiple myeloma, myelodysplastic syndrome, and other bone marrow disorders such as aplastic anemia.

For some people, age or certain health conditions make it more risky to wipe out all of their bone marrow before a transplant. For those people, doctors can use a type of allogeneic transplant thats sometimes called a mini-transplant. Your doctor might refer to it as a non-myeloablative transplant or mention reduced-intensity conditioning (RIC). Patients getting a mini transplant get less chemo and/or radiation than if they were getting a standard transplant. The goal is to kill some of the cancer cells (which will also kill some of the bone marrow), and suppress the immune system just enough to allow donor stem cells to settle in the bone marrow.

Unlike the standard allogeneic transplant, cells from both the donor and the patient exist together in the patients body for some time after a mini-transplant. But slowly, over the course of months, the donor cells take over the bone marrow and replace the patients own bone marrow cells. These new cells can then develop an immune response to the cancer and help kill off the patients cancer cells the graft-versus-cancer effect.

One advantage of a mini-transplant is that it uses lower doses of chemo and/or radiation. And because the stem cells arent all killed, blood cell counts dont drop as low while waiting for the new stem cells to start making normal blood cells. This makes it especially useful for older patients and those with other health problems. Rarely, it may be used in patients who have already had a transplant.

Mini-transplants treat some diseases better than others. They may not work well for patients with a lot of cancer in their body or people with fast-growing cancers. Also, although side effects from chemo and radiation may be less than those from a standard allogeneic transplant, the risk of graft-versus-host disease is the same.

This procedure has only been used since the late 1990s and long-term patient outcomes are not yet clear. There are lower risks of some complications, but the cancer may be more likely to come back. Ways to improve outcomes are still being studied.

Studies have looked at using an allogeneic mini-transplant after an autologous transplant. This is another type of tandem transplant being tested in certain types of cancer, such as multiple myeloma and some types of lymphoma. The autologous transplant can help decrease the amount of cancer present so that the lower doses of chemo given before the mini-transplant can work better. And the recipient still gets the benefit of the graft-versus-cancer effect of the allogeneic transplant.

This is a special kind of allogeneic transplant that can only be used when the patient has an identical sibling (twin or triplet) someone who has the exact same tissue type. An advantage of syngeneic stem cell transplant is that graft-versus-host disease will not be a problem. Also, there are no cancer cells in the transplanted stem cells, as there might be in an autologous transplant.

A disadvantage is that because the new immune system is so much like the recipients immune system, theres no graft-versus-cancer effect. Every effort must be made to destroy all the cancer cells before the transplant is done to help keep the cancer from coming back.

Some centers are doing half-match (haploidentical) transplants for people who dont have closely matching family members. This technique is most often used in children, usually with a parent as the donor, though a child can also donate to a parent. Half of the HLA factors will match perfectly, and the other half typically dont match at all, so the procedure requires a special way to get rid of a certain white blood cells that can cause graft-versus-host disease. Its still rarely done, but its being studied in a few centers in the US. Researchers are continuing to learn new ways to make haploidentical transplants more successful.

Depending on the type of transplant thats done, there are 3 possible sources of stem cells to use for transplants:

Bone marrow is the spongy liquid tissue in the center of some bones. It has a rich supply of stem cells, and its main job is to make blood cells that circulate in your body. The bones of the pelvis (hip) have the most marrow and contain large numbers of stem cells. For this reason, cells from the pelvic bone are used most often for a bone marrow transplant. Enough marrow must be removed to collect a large number of healthy stem cells.

The bone marrow is harvested (removed) while the donor is under general anesthesia (drugs are used to put the patient into a deep sleep so they dont feel pain). A large needle is put through the skin on the lower back and into the back of the hip bone. The thick liquid marrow is pulled out through the needle. This is repeated until enough marrow has been taken out. (For more on this, see Whats It Like to Donate Stem Cells?)

The harvested marrow is filtered, stored in a special solution in bags, and then frozen. When the marrow is to be used, its thawed and then put into the patients blood through a vein, just like a blood transfusion. The stem cells travel to the bone marrow, where they engraft or take and start to make blood cells. Signs of the new blood cells usually can be measured in the patients blood tests in about 2 to 4 weeks.

Normally, not many stem cells are found in the blood. But giving shots of hormone-like substances called growth factors to stem cell donors a few days before the harvest causes their stem cells to grow faster and move from the bone marrow into the blood.

For a peripheral blood stem cell transplant, the stem cells are taken from blood. A special thin flexible tube (called a catheter) is put into a large vein in the donor and attached to tubing that carries the blood to a special machine. The machine separates the stem cells from the rest of the blood, which is returned to the donor during the same procedure. This takes several hours, and may need to be repeated for a few days to get enough stem cells. The stem cells are filtered, stored in bags, and frozen until the patient is ready for them. (For more on this, see Whats It Like to Donate Stem Cells?)

When theyre given to the patient, the stem cells are put into a vein, much like a blood transfusion. The stem cells travel to the bone marrow, engraft, and then start making new, normal blood cells. The new cells are usually found in the patients blood in about 10 to 20 days.

A large number of stem cells are normally found in the blood of newborn babies. After birth, the blood thats left behind in the placenta and umbilical cord (known as cord blood) can be taken and stored for later use in a stem cell transplant. The cord blood is frozen until needed. A cord blood transplant uses blood that normally is thrown out after a baby is born. More information on donating cord blood can be found in Whats It Like to Donate Stem Cells?

A possible drawback of cord blood is the smaller number of stem cells in it. But this is partly balanced by the fact that each cord blood stem cell can form more blood cells than a stem cell from adult bone marrow. Still, cord blood transplants can take longer to take hold and start working. Cord blood is given into the patients blood just like a blood transfusion.

It is very important that the donor and recipient are a close tissue match to avoid graft rejection. Graft rejection happens when the recipients immune system recognizes the donor cells as foreign and tries to destroy them as it would a bacteria or virus. Graft rejection can lead to graft failure, but its rare when the donor and recipient are well matched.

A more common problem is that when the donor stem cells make their own immune cells, the new cells may see the patients cells as foreign and attack their new home. This is called graft-versus-host disease. (See Stem Cell Transplant Side Effects for more on this). The new, grafted stem cells attack the body of the person who got the transplant. This is another reason its so important to find the closest match possible.

Many factors play a role in how the immune system knows the difference between self and non-self, but the most important for transplants is the human leukocyte antigen (HLA) system. Human leukocyte antigens are proteins found on the surface of most cells. They make up a persons tissue type, which is different from a persons blood type.

Each person has a number of pairs of HLA antigens. We inherit them from both of our parents and, in turn, and pass them on to our children. Doctors try to match these antigens when finding a donor for a person getting a stem cell transplant.

How well the donors and recipients HLA tissue types match plays a large part in whether the transplant will work. A match is best when all 6 of the known major HLA antigens are the same a 6 out of 6 match. People with these matches have a lower chance of graft-versus-host disease, graft rejection, having a weak immune system, and getting serious infections. For bone marrow and peripheral blood stem cell transplants, sometimes a donor with a single mismatched antigen is used a 5 out of 6 match. For cord blood transplants a perfect HLA match doesnt seem to be as important, and even a sample with a couple of mismatched antigens may be OK.

Doctors keep learning more about better ways to match donors. Today, fewer tests may be needed for siblings, since their cells vary less than an unrelated donor. But to reduce the risks of mismatched types between unrelated donors, more than the basic 6 HLA antigens may be tested. For example, sometimes doctors to try and get a 10 out of 10 match. Certain transplant centers now require high-resolution matching, which looks more deeply into tissue types and allow more specific HLA matching.

There are thousands of different combinations of possible HLA tissue types. This can make it hard to find an exact match. HLA antigens are inherited from both parents. If possible, the search for a donor usually starts with the patients brothers and sisters (siblings), who have the same parents as the patient. The chance that any one sibling would be a perfect match (that is, that you both received the same set of HLA antigens from each of your parents) is 1 out of 4.

If a sibling is not a good match, the search could then move on to relatives who are less likely to be a good match parents, half siblings, and extended family, such as aunts, uncles, or cousins. (Spouses are no more likely to be good matches than other people who are not related.) If no relatives are found to be a close match, the transplant team will widen the search to the general public.

As unlikely as it seems, its possible to find a good match with a stranger. To help with this process, the team will use transplant registries, like those listed here. Registries serve as matchmakers between patients and volunteer donors. They can search for and access millions of possible donors and hundreds of thousands of cord blood units.

Be the Match (formerly the National Marrow Donor Program)Toll-free number: 1-800-MARROW-2 (1-800-627-7692)Website: http://www.bethematch.org

Blood & Marrow Transplant Information NetworkToll-free number: 1-888-597-7674Website: http://www.bmtinfonet.org

Depending on a persons tissue typing, several other international registries also are available. Sometimes the best matches are found in people with a similar racial or ethnic background. When compared to other ethnic groups, white people have a better chance of finding a perfect match for stem cell transplant among unrelated donors. This is because ethnic groups have differing HLA types, and in the past there was less diversity in donor registries. However, the chances of finding an unrelated donor match improve each year, as more volunteers become aware of registries and sign up for them.

Finding an unrelated donor can take months, though cord blood may be a little faster. A single match can require going through millions of records. Also, now that transplant centers are more often using high-resolution tests, matching is becoming more complex. Perfect 10 out of 10 matches at that level are much harder to find. But transplant teams are also getting better at figuring out what kinds of mismatches can be tolerated in which particular situations that is, which mismatched antigens are less likely to affect transplant success and survival.

Keep in mind that there are stages to this process there may be several matches that look promising but dont work out as hoped. The team and registry will keep looking for the best possible match for you. If your team finds an adult donor through a transplant registry, the registry will contact the donor to set up the final testing and donation. If your team finds matching cord blood, the registry will have the cord blood sent to your transplant center.

View post:
Types of Stem Cell Transplants for Cancer Treatment ...

Posted in Stem Cell Therapy | Comments Off on Types of Stem Cell Transplants for Cancer Treatment …

PRP & Stem Cell Therapy | University of Utah Health

Posted: March 3, 2020 at 2:44 am

Stem cells are special cells inside your body that can develop into many different types of tissue. When injected into your body, stem cells may have the ability to grow into healthy new cells. (You may have heard of stem cells being used alongside chemotherapy during cancer treatment).

In a similar way, doctors use stem cells to treat bone and joint problems. Doctors extract (remove) stem cells from your bone marrow. Your doctor will then re-inject these stem cells into areas of your body that are in pain (for example, your knee or shoulder).

The stem cells then may grow into healthy new tissue.

Just like PRP, stem cell therapy is a new, experimental treatment. This means doctors and researchers are still studying how it works and how effective it is at treating different types of pain or dysfunction.

Stem cell therapy may not work for everyone. You may also need multiple injections of stem cells before your pain gets better.

Stem cell therapy may be a good option if other treatments (like steroid injections) haven't worked.

Follow this link:
PRP & Stem Cell Therapy | University of Utah Health

Posted in Stem Cell Therapy | Comments Off on PRP & Stem Cell Therapy | University of Utah Health

REGENERATIVE MEDICINE: Stem Cell Therapy 101 | Events Calendar – Richmond.com

Posted: March 3, 2020 at 2:44 am

BE YOUNGER & STRONGER FOR LONGER

Stem cell therapy (SCT) and regenerative medicine are growing topics of conversation in the search for longevity and preventative wellness measures, but along with this curiosity and promise, there are also questions and myths surrounding the topic. This class goal is to inform our community around stem cells, stem cell therapy, and address the common questions around this growing treatment.

So, how does stem cell therapy work and what does it do? Where do the cells come from? Are there are negative side effects or contraindications with Stem Cell Therapy?

Stem cells are our bodys natural internal repair system. In short, stem cells seek out damage in the body and work to regenerate damaged tissue.

In SCT practiced byAdvanced Integrative Medicine, they only use human umbilical cord stem cells that are collected from hospitals across the US. The mother signs a consent form, donating the umbilical cord blood to the hospital after the live birth of a healthy baby. Only cord blood cells from healthy mothers and babies are accepted.

In a very small percentage of patients, they occasionally see a minor reaction of flu-like symptoms. This does not last more than 24-28 hours maximum. This actually demonstrates the cells anti-inflammatory and immune-privilege potential.

Are you curious if you are a good candidate for stem cell therapy? If youre looking for a more natural solution towards regenerating the body, your best option is to consult with a Regenerative Medicine Expert, such asDr. Shawn Pallotti, to discuss your specific symptoms and candidacy.

Read this article:
REGENERATIVE MEDICINE: Stem Cell Therapy 101 | Events Calendar - Richmond.com

Posted in Stem Cell Therapy | Comments Off on REGENERATIVE MEDICINE: Stem Cell Therapy 101 | Events Calendar – Richmond.com

“American Journal of Sports Medicine” publishes results of an FDA-approved clinical trial for treating osteoarthritis knee pain – P&T Community

Posted: March 3, 2020 at 2:44 am

LOUISVILLE, Colo. andNEW ORLEANS andSAN ANTONIO andCHICAGO, March 2, 2020 /PRNewswire/ -- GID BIOannounced today that The American Journal of Sports Medicinepublished resultsof its FDA-approved multi-site, randomized, placebo-controlled Phase IIb clinical trial measuring the safety and efficacy of its SVF-2 device and point-of-care (POC) therapy intended to treat pain and function associated with knee osteoarthritis.

The Phase IIb clinical study was approved by the FDA under an IDE and is the first regenerative cell therapy for osteoarthritis to meet study endpoints using autologous stromal cells from adipose tissue. The cellular therapy for osteoarthritis procedure showed no serious adverse events at two years and a significant reduction in pain at one year. A Phase III pivotal study begins soon at Tulane University School of Medicinewith additional trial sites participating nationwide.

"Publishing this data signifies real science and a breakthrough in regenerative medicine. We've completed a prior safety trial, an FDA-approved Phase IIb trial, and are now beginning a Phase III pivotal trial. Physicians will be able to use the SVF-2 technology to provide a cellular therapy option for patients," said principal investigator for the Phase III trial, Jaime R. Garza, MD, DDS, FACS, Professor of Orthopedic Surgery and Center for Stem Cell Research and Regenerative Medicineat Tulane University School of Medicine. "I am very proud to collaborate with my alma mater, Tulane University, and the School of Medicine's outstanding orthopedic department led by Dr. Felix Savoie, and its worldclass Center for Stem Cell Research and Regenerative Medicine directed by expert cell scientist Dr. Bruce Bunnell," said Dr. Garza.

Dr. Garza is a former NFL player and a Tulane University Athletic Hall of Fame inductee. He is also a clinical professor of plastic surgery and otolaryngology at the University of Texas Health Science Center.

Treatments by clinics using stem cells are under scrutiny by the FDA as its discretionary enforcement period expires in November of this year. The intent is that hundreds of stem cell clinicsnationwide become compliant with FDA regulations, leading to clinical data support of safety and efficacy.

"Our randomized, controlled clinical trial is the first cellular therapy study for osteoarthritis to meet study endpoints using autologous adipose stromal cells for a point-of-care therapy.Eighty-eight percent of subjects responded greater than placebo at one year and reported a median 87% improvement in pain, stiffness and function," said William W. Cimino, Ph.D., CEO of GID BIO. "We are able to isolate and concentrate the right types and numbers of cells to create an effective therapy. We are pleased to begin Phase III trials with Dr. Garza, and to be at the forefront for a cellular therapy option for osteoarthritic knees."

About GID SVF-2 and POC TherapyGID technology has reduced a Good Manufacturing Practice (GMP) cell-processing facility to a single-use disposable device for scalable point-of-care cell processing. The technology uniquely harvests and isolates stromal cells from a patient's own adipose tissue that is then reimplanted by injection in a physician's office in less than two hours. Stromal cells play an essential role in the body's natural healing response, with a dynamic and reactive ability to participate in the healing process. The American Medical Associationgranted GID two new CPT class III codesthat became effective January 2020 as a step toward Medicare reimbursement.

About GID BIOGID BIO develops next-generation cellular therapies for degenerative musculoskeletal, dermal, and organ-specific diseases, with the goal of making cellular medicine available to as many people as possible. GID's SVF-2 device and POC therapy harnesses the innate healing power of a patient's own stromal cells. Information on GID's SVF-2 device, biologic cellular implants, POC therapy, osteoarthritis clinical program and GID's pipeline for treating degenerative disease in musculoskeletal conditions includes other indications including, dermal and organs, specifically, wound care and diabetes. Learn more: https://www.HealingIntelligently.com.

AboutTulane University School of MedicineOne of the nation's most recognized centers for medical education,Tulane University School of Medicineis a vibrant center for education, research and public service.Tulane School of Medicineis the second-oldest medical school in the Deep South and the 15th oldest medical school inthe United States.Tulane School of Medicinerecruits top faculty, researchers and students from around the world, and pushes the boundaries of medicine with groundbreaking medical research and surgical advances.Tulaneremains in the forefront of modern medical innovation and is equipping the next generation of medical professionals with the tools to succeed in the rapidly changing future of health care.

About American Journal of Sports MedicineAglobal organization with 3,000 members that generates evidence-based knowledge and promotes emerging research to educate orthopaedic surgeonsand a resource for the orthopaedic sports medicine community, American Journal of Sports Medicine is a peer-reviewed scientific journal, first published in 1972. It is the official publication ofAOSSMfeaturing 14 issues per year. The journal acts as an important forum for independent orthopaedic sports medicine research and education, allowing clinical practitioners the ability to make decisions based on sound scientific information.

Contact:Kellee Johnson, 312-751-3959 or kjohnson@ballastgroup.com

View original content to download multimedia:http://www.prnewswire.com/news-releases/american-journal-of-sports-medicine-publishes-results-of-an-fda-approved-clinical-trial-for-treating-osteoarthritis-knee-pain-301014538.html

SOURCE GID BIO

Originally posted here:
"American Journal of Sports Medicine" publishes results of an FDA-approved clinical trial for treating osteoarthritis knee pain - P&T Community

Posted in Stem Cell Therapy | Comments Off on “American Journal of Sports Medicine” publishes results of an FDA-approved clinical trial for treating osteoarthritis knee pain – P&T Community

Ozzy Osbourne banking on stem cell treatment to get him back onstage – Music News

Posted: March 3, 2020 at 2:44 am

Ozzy Osbourne is banking on a stem cell treatment and Pilates to help him manage his Parkinson's disease.

The Paranoid hitmaker has been laid up since badly injuring himself and suffering from pneumonia last year, revealing he had a type of Parkinson's in January, and scrapping his U.S. tour last month, to head to Switzerland for treatment.

In a joint interview with U.K. TV show Good Morning Britain, Ozzy and his wife and manager Sharon opened up about the rocker's recovery - revealing he is undergoing stem cell treatment to lessen the effects of Parkinson's and to boost his immune system.

"There's a professor there (in Switzerland)," Sharon said. "He hasn't got a cure for Parkinson's, no one has but what he can do is... he can get Ozzy's imune system to here (points high), so now, if Ozzy was to catch a cold it would turn into pneumonia.

"This professor has come up with a way of doing stem cells where it helps with the pain. He could hopefully get rid of Ozzy's pain and then Ozzy will be healthier to deal with the Parkinson's."

The 71-year-old is not the first person in his family to undergo stem cell treatment, as his son Jack flew to Germany to receive similar therapy to help with his multiple sclerosis.

Meanwhile, the former Black Sabbath frontman has also been working hard to get fit again - but thinks he will only truly feel himself again when he's back performing.

"I exercise as much as I can. I've got a trainer, I do Pilates, nurses 24/7, but the best medication I can get is being in front of an audience, which is breaking my heart, to be honest," he added. "I will (perform again). Absolutely. I will be up there. I have to say that. I know you're going to say what will you do if you can't do it again, that's not an option because I will do it."

See original here:
Ozzy Osbourne banking on stem cell treatment to get him back onstage - Music News

Posted in Stem Cell Therapy | Comments Off on Ozzy Osbourne banking on stem cell treatment to get him back onstage – Music News

Page 33«..1020..32333435..4050..»