Page 88«..1020..87888990..100110..»

Category Archives: Stem Cell Therapy

Opening-up the stem cell niche: Hematopoietic stem cell transplantation without irradiation

Posted: July 13, 2014 at 2:44 am

For many years scientists have been trying to unravel mechanisms that guide function and differentiation of blood stem cells, those cells that generate all blood cells including our immune system. The study of human blood stem cells is difficult because they can only be found in the bone marrow in specialized "niches" that cannot be recapitulated in a culture dish. Now a group of scientists from Dresden led by stem cell researcher Prof. Claudia Waskow (Technische Universitt Dresden) was able to generate a mouse model that supports the transplantation of human blood stem cells despite the species barrier and without the need for irradiation. They used a mutation of the Kit receptor in the mouse stem cells to facilitate the engraftment of human cells.

In the new model human blood stem cells can expand and differentiate into all cell types of the blood without any additional treatment. Even cells of the innate immune system that can normally not be found in "humanized" mice were efficiently generated in this mouse. Of significance is the fact that the stem cells can be maintained in the mouse over a longer period of time compared to previously existing mouse models. These results were now published in the journal Cell Stem Cell.

"Our goal was to develop an optimal model for the transplantation and study of human blood stem cells," says Claudia Waskow, who recently took office of the professorship for "animal models in hematopoiesis" at the medical faculty of the TU Dresden. Before, Prof. Waskow was a group leader at the DFG-Center for Regenerative Therapies Dresden where most of the study was conducted.

The trick used by Claudia Waskow's team to achieve optimal stem cell engraftment was the introduction of a naturally occurring mutation of the Kit receptor into mice that lack a functional immune system. This way they circumvented the two major obstacles of blood stem cell transplantation: the rejection by the recipient's immune system and absence of free niche space for the incoming donor stem cells in the recipient's bone marrow. Space is usually provided by irradiation therapy, called conditioning, because it damages and depletes the endogenous stem cells and thus frees space for the incoming human cells. However, irradiation is toxic to many cell types and can lead to strong side effects. The Kit mutation in the new mouse model impairs the recipient's stem cell compartment in such a way that the endogenous blood stem cells can be easily replaced by human donor stem cells with a functional Kit receptor. This replacement works so efficiently that irradiation can be completely omitted allowing the study of human blood development in a physiological setting. The model can now be used to study diseases of the human blood and immune system or to test new treatment options.

The results from Prof. Waskow's group also show that the Kit receptor is important for the function of human blood stem cells, notably in a transplantation setting. Further studies will now focus on using this knowledge about the role of the receptor to improve conditioning therapy in the setting of therapeutic hematopoietic stem cell transplantation in patients.

Story Source:

The above story is based on materials provided by Technische Universitt Dresden. Note: Materials may be edited for content and length.

Read this article:
Opening-up the stem cell niche: Hematopoietic stem cell transplantation without irradiation

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Opening-up the stem cell niche: Hematopoietic stem cell transplantation without irradiation

A new genome editing method brings the possibility of gene therapies closer to reality

Posted: July 13, 2014 at 2:44 am

PUBLIC RELEASE DATE:

11-Jul-2014

Contact: Jia Liu liujia@genomics.cn BGI Shenzhen

July 3, 2014, Shenzhen, China Researchers from Salk Institute for Biological Studies, BGI, and other institutes for the first time evaluated the safety and reliability of the existing targeted gene correction technologies, and successfully developed a new method, TALEN-HDAdV, which could significantly increased gene-correction efficiency in human induced pluripotent stem cell (hiPSC). This study published online in Cell Stell Cell provides an important theoretical foundation for stem cell-based gene therapy.

The combination of stem cells and targeted genome editing technology provides a powerful tool to model human diseases and develop potential cell replacement therapy. Although the utility of genome editing has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear.

In the study, researchers performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected hiPSC clones in three different disease models, including Hutchinson-Gilford progeria syndrome (HGPS), sickle cell disease (SCD), and Parkinson's disease (PD).

They evaluated the efficiencies of gene-targeting and gene-correction at the haemoglobin gene HBB locus with TALEN, HDAdV, CRISPR/CAS9 nuclease, and found the TALENs, HDAdVs and CRISPR/CAS9 mediated gene-correction methods have a similar efficiency at the gene HBB locus. In addition, the results of deep whole-genome sequencing indicated that TALEN and HDAdV could keep the patient's genome integrated at a maximum level, proving the safety and reliability of these methods.

Through integrating the advantages of TALEN- and HDAdV-mediated genome editing, researchers developed a new TALEN-HDAdV hybrid vector (talHDAdV), which can significantly increase the gene-correction efficiency in hiPSCs. Almost all the genetic mutations at the gene HBB locus can be detected by telHDAdV, which allows this new developed technology can be applied into the gene repair of different kinds of hemoglobin diseases such as SCD and Thalassemia.

###

About BGI

See more here:
A new genome editing method brings the possibility of gene therapies closer to reality

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on A new genome editing method brings the possibility of gene therapies closer to reality

Stem cell heart failure treatment advances

Posted: July 10, 2014 at 9:42 pm

Stem cells grown under low oxygen. These stem cells from Stemedica are licensed to CardioCell.

CardioCell, a San Diego stem cell company, has started a Phase 2a trial of its treatment for chronic heart failure.

The companys special stem cells will be injected into patients with heart failure not caused by a heart attack. Nearly 2 million Americans have that kind of heart failure.

CardioCell is also testing these stem cells on heart attack patients to help their recovery. The cells are licensed from Stemedica, CardioCell's parent company.

Taken from bone marrow, the stem cells produce chemicals intended to heal malfunctioning heart cells. They are grown under low oxygen conditions, or hypoxia. CardioCell says hypoxia reflects the conditions under which natural stem cells exist. Histogen, also of San Diego, is developing its own kind of low-oxygen stem cells.

Growing stem cells with abundant oxygen reduces their "stemness," and they become prone to differentiate, said Sergey Sikora, CardioCell's president and chief executive.

Sergey Sikora, president and CEO of CardioCell / CardioCell

More than 20 patients are being sought to take part in the study, which is taking place at three locations. These are Emory University in Atlanta, Northwestern University in Chicago, and the University of Pennsylvania in Philadelphia.

Patients will receive injections of the stem cells, and a control group will receive a saline injection. After 90 days, the groups will be reversed. Patients who had received the stem cells will get a saline injection, and the control group will get the stem cells.

The stem cells last for about a month, after which they disappear, Sikora said.

Originally posted here:
Stem cell heart failure treatment advances

Posted in Stem Cell Therapy | Comments Off on Stem cell heart failure treatment advances

Lung Institute Reveals New Stem Cell Therapy Case Study

Posted: July 10, 2014 at 1:49 pm

Tampa, FL (PRWEB) July 10, 2014

The Lung Institute works to help people who have received a diagnosis of debilitating lung disease get their quality of life back. The latest case study demonstrates how stem cell therapy can be used effectively to treat interstitial lung disease. After his recent stem cell treatment at the Lung Institute, Al Corter can now complete his daily tasks on his horse farm much faster, and finally attend the Silver Spur Riding Club Open Horse Show the weekend of July 12th in Fonda, NY.

Twelve years ago, Al was exposed to toxic fumes in the workplace and subsequently diagnosed with interstitial lung disease and bronchiectasis, a form of chronic obstructive pulmonary disorder (COPD). Living in upstate New York and running his horse farm, Als serious pulmonary conditions had a major effect on his life. Shortness of breath, coughing, reliance on supplemental oxygen and fatigue were taking a toll. Al needed a new solution.

Al decided to travel to Florida to undergo stem cell treatment at the Lung Institute facility in Tampa. He was seeking an alternative treatment to help with his symptoms. Stem cell therapy is a minimally invasive process that involves extracting stem cells, and then reintroducing them to cue the bodys natural healing processes. The stem cells are taken from the patients own body, so there is no controversy or risk of rejection.

Stem cell therapy is a viable option for many people with lung disease, said Dr. Burton Feinerman, Medical Director of the Lung Institute. Our patients are breathing easier, walking further and depending less on supplemental oxygen.

Prior to stem cell therapy, Al was needing more and more supplemental oxygen. His quality of life had taken a sharp turn downward. Following adipose stem cell treatment, Al is feeling better. He is getting back to the routine at the farm. Al used to use 5 to 6 liters of continuous oxygen to get his outdoor farm work done. Now, he is able to do these daily chores faster, and uses only 4 to 5 liters of oxygen on a pulsing regulator.

Im getting everyday tasks done quicker, said Al. Im using about half the amount of oxygen as I was before to do the same activities. My quality of life has definitely improved.

The Lung Institute has treated hundreds of patients with lung disease from around the country and the world. Regardless of the stage of the disease, patients are able to undergo stem cell therapy, which helps damaged lung tissue, and can lessen their symptoms.

About Lung Institute At the Lung Institute, we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook, follow us on Twitter or call us today at (855) 469-5864.

###

Originally posted here:
Lung Institute Reveals New Stem Cell Therapy Case Study

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Lung Institute Reveals New Stem Cell Therapy Case Study

After Stem Cell Therapy – Patient Interview – Video

Posted: July 9, 2014 at 3:52 am


After Stem Cell Therapy - Patient Interview
Patient Interview with #39;Josh #39; after stem cell treatment with Dr Mike Belich of Integrative Medical Clinics. The benefits of stem cell therapy and Regenerative Medicine.

By: Integrative Medical Clinics

Read the original:
After Stem Cell Therapy - Patient Interview - Video

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on After Stem Cell Therapy – Patient Interview – Video

Stem cell therapy caused nasal tumour on paraplegic's back

Posted: July 9, 2014 at 3:52 am

A young paraplegic woman who underwent spinal stem cell therapy developed a growth in her back made up of nasal cells eight years later.

The team from the University of Iowa Hospitals and Clinics that removed and investigated the growth has reported the anomaly in a paper published in the Journal of Neurosurgery: Spine. Although the case is a rare occurrence (the first of its kind, that we know of) the authors admit this may simply be because patients that undergo therapy are not monitored long enough, and either way it provides ample evidence attesting to our lack of understanding around programming and controlling stem cell proliferation and differentiation post-transplant.

Human trials for this type of therapy are still at the very early stages, but animal trials have had some promising results. Several different types of cells have been experimented with for implantation including schwann cells (these surround nerves and sometimes grow on the spinal cord post-injury), foetal neural cells (with successes in rat studies) andnasal olfactory ensheathing cells (these are extracted from the lining of the nose and were the ones used in this particular case study).

The patient in question was just 18 years old when she suffered an injury during a car accident. She had been paraplegic for three years when she opted to undergo surgery, implanting olfactory mucosal cells into the injury site. These cells originate in the roof of the nasal cavity and have the ability to take on the characteristics of other cells in the body because they are partially made up of progenitor cells (adult stem cells). They also contain olfactory ensheathing cells, often used in spinal cord therapy trials. This is all despite, as the authors note, the fact that: "the ability of these cell types to differentiate into organised neural tissue in humans or support new neural growth in humans in the setting of spinal cord injury is unclear."

The location of the transplantation was not divulged in the Spine paper, but the New Scientist reports that it was carried out as part of an early stage trial in the Hospital de Egas Moniz in Lisbon, Portugal. In a paper, the Lisbon team revealed that out of 20 candidates, 11 regained some sensation and one person's paralysis actually worsened.

The woman's therapy did not flag up any issues at the time of implantation, but eight years down the line she complained of worsening back pain that had already been ongoing for a year. Scans at the University of Iowa Hospitals and Clinics revealed a mass, thick like mucus and surrounded by fibrous walls, on the spinal cord, at the site of the cell implantation. The investigators explain that the mass was made up "mostly of cysts lined by respiratory epithelium, submucosal glands with goblet cells, and intervening nerve twigs". Nasal elements were growing.

The mass was pressing against the spinal cord, causing the patient discomfort and threatening her spine. When it was extracted, the team could confirm it came from the neural stem-like cells implanted eight years earlier, because the cysts contained a network of non-functioning nerves that were separate from the spine (suggesting they were new) and bone.

"The presence of these nerves within the mass indicates the capacity of olfactory mucosa to support nerve fibre regeneration or new nerve formation," write the team.

In total, the mass was made up of two major parts, measuring 1.4 x 0.8 x 0.7 cm and 1.6 x 1.3 x 0.7 cm. When they were removed, the patient's pain immediately subsided.

These kinds of trials have been ongoing for years, but the fears have been that stem cells -- which have the ability to turn into any cell in the body if programmed to -- could just as easily mutate into something that is not intended, and create tumours in the long term.

Link:
Stem cell therapy caused nasal tumour on paraplegic's back

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Stem cell therapy caused nasal tumour on paraplegic's back

Woman grows a nose on her spine after experimental stem cell treatment goes awry

Posted: July 9, 2014 at 3:52 am

A female patient in the US has grown a nose on her back following a failed experimental stem cell treatment that was intended to cure her paralysis. The nose-like growth, which was producing a thick mucus-like material, has recently been removed as it was pressing painfully on herspine. If you ever needed an example of the potential perils of stem cell therapy, and just how little we actually know about the function of stem cells, this is it. Its also notable that this stem cell therapy was carried out in a developed country, as part of an approved trial (apparently unwanted growths are more common in developing nations with less stringent medical safeguards).

Eight years ago, olfactory stem cells were taken from the patients nose and implanted in her spine. The stem cells were meant to turn into nerve cells that would help repair the womans spine, curing her of paralysis. Instead, it seems they decided to do what they were originally meant to do and attempt to build a nose. Over a number of years, the nose-like growth eventually became big enough and nosy enough to cause pain and discomfort to the patient. As reported by New Scientist, surgeons removed a 3-centimetre-long growth, which was found to be mainly nasal tissue, as well as bits of bone and tiny nerve branches that had not connected with the spinal nerves. [DOI: 10.3171/2014.5.SPINE13992 - "Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient"]

Your olfactory system. 1 is the olfactory bulb (the bit of your brain that processes smells); 6 is the olfactory receptors that bind to specific chemicals (odors). [Image credit: Wikipedia]

What went wrong, then? Basically, at the top of your nasal passages there is the olfactory mucosa. This region contains all of the machinery for picking up odors, and the neurons for sending all of that data off to your brains olfactory bulb for processing. Cells from this region can be easily and safely harvested, and with the correct processing they behave just like pluripotent embryonic stem cells that can develop into many other cell types. These olfactory stem cells could develop into cartilage, or mucus glands, or neurons. The researchers obviously wanted the latter, to cure the patients spinal nerve damage but seemingly they got it wrong, and thus she sprouted a second nose. Moving forward, newer olfactory stem cell treatments have an isolation stage to prevent this kind of thing from happening. [Read:The first 3D-printed human stem cells.]

Its important to note that medicine, despite being carried out primarily on humans, is still ultimately a scientific endeavor that requires a large amount of trial and error. In the western world, its very, very hard to get a stem cell therapy approved for human trials without lots of animal testing. Even then, the therapies are often only used on people who have nothing to lose. Obviously its hard to stomach news like this, and Im sure that stem cell critics will be quick to decry the Frankensteinian abomination created by these scientists. But when you think about the alternative no advanced medicine and significantly reduced lifespans for billions of people then really, such experimental treatments are nothing to sneeze at.

More:
Woman grows a nose on her spine after experimental stem cell treatment goes awry

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Woman grows a nose on her spine after experimental stem cell treatment goes awry

Why stem cell therapy is not available in Europe or United States of America – Video

Posted: July 8, 2014 at 7:41 am


Why stem cell therapy is not available in Europe or United States of America
In conversation with Dr Alok Sharma (MS, MCh.) Professor of Neurosurgery Head of Department, LTMG Hospital LTM Medical College, Sion, Mumbai. Explains, Why stem cell therapy is not available...

By: Neurogen Brain and Spine Institute

Read the original:
Why stem cell therapy is not available in Europe or United States of America - Video

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Why stem cell therapy is not available in Europe or United States of America – Video

Spinal cord mass arising from neural stem cell therapy

Posted: July 8, 2014 at 7:41 am

PUBLIC RELEASE DATE:

8-Jul-2014

Contact: Jo Ann Eliason jaeliason@thejns.org 434-982-1209 Journal of Neurosurgery Publishing Group

Charlottesville, VA (July 8, 2014). A spinal mass was identified in a young woman with complete spinal cord injury 8 years after she had undergone implantation of olfactory mucosal cells in the hopes of regaining sensory and motor function. The case is reported and discussed in "Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient. Case report," by Brian J. Dlouhy, MD, Olatilewa Awe, MD, Rajesh C. Rao, MD, Patricia A. Kirby, MD, and Patrick W. Hitchon, MD, published today online, ahead of print, in the Journal of Neurosurgery: Spine. The authors state that this is the first report of a spinal cord mass arising from spinal cord cell transplantation and neural stem cell therapy, and they caution that physicians should be vigilant in their follow-up of patients who undergo stem cell interventions.

In its natural state, the olfactory mucosa lines the roof of the nasal cavity, adjacent to the respiratory mucosa that lines the lower nasal cavity. In addition to smell receptor neurons, the olfactory mucosa contains progenitor cells (also known as adult stem cells) and olfactory ensheathing cellsboth of which have been shown to aid in the repair of the injured spinal cord in laboratory studies and in humans. The respiratory mucosa, on the other hand contains mucus-secreting goblet cells and mucus and serous fluidproducing cells.

The patient was 18 years old when she sustained a fracture dislocation at the 10th and 11th thoracic vertebral level in a motor vehicle accident. Despite surgery to stabilize the spine, the injury rendered the patient paraplegic. Three years later, in the hopes of regaining sensory and motor function in her lower limbs, the young woman underwent additional surgery at an institution outside the United States, during which an autograft of olfactory mucosa was placed in her spinal canal at the site of injury. Eight years after the experimental therapy, the woman sought medical care for mid- to lower-back pain at the University of Iowa Hospitals and Clinics. On neurological examination, she showed no sign of clinical improvement from the olfactory mucosal cell implantation, and imaging studies revealed a mass in her spinal canal pressing against the spinal cord. This mass was the source of the patient's pain.

Following surgery to remove the symptom-producing mass at the University of Iowa, a tissue analysis showed that the mass contained a small proportion of nonfunctional tiny nerve branches, whose appearance led the authors to suspect the nerve branches developed from transplanted neural stem-like cells. The tissue analysis also demonstrated that most of the mass consisted of multiple cysts lined with respiratory mucosa and underlying submucosal glands and goblet cells. Abundant mucus-like material was also found in the mass. Accumulation of this material over time produced the patient's symptoms.

The authors describe various ways of extracting olfactory mucosa cells for implantation. In this particular case, a portion of olfactory mucosa was transplanted; in other trials, olfactory ensheathing cells have been extracted from olfactory mucosa and purified prior to implantation. The authors suggest that the choice of bulk olfactory mucosa rather than purified olfactory ensheathing cells or stem cells as an autograft may lead to the development of a mass containing functional respiratory mucosal cells.

The authors point out that a rare case of spinal cord complication such as this should not discourage stem cell research and/or the transition of promising research to the clinical setting. However, the authors indicate the need for a better understanding of what can occur and urge clinicians to extend the monitoring period in patients treated with neural stem cell therapy for many years in case an adverse event such as this should arise. In summarizing the take-away message of the paper, Dr. Brian Dlouhy stated: "Exhaustive research on how transplanted cells divide, differentiate, and organize in animal models of disease, especially spinal cord injury, is critical to providing safe and effective treatments in humans."

###

Read the original post:
Spinal cord mass arising from neural stem cell therapy

Posted in Stem Cell Therapy | Comments Off on Spinal cord mass arising from neural stem cell therapy

Advanced Cell Technology Analyst Report; Shareholder Value Likely to Continue to Erode for the Foreseeable Future by …

Posted: July 7, 2014 at 10:48 pm

NEW YORK, July 7, 2014 /PRNewswire/ --Advanced Cell Technology, Inc. (OTCQB: ACTC) is a biotechnology company focused on developing and commercializing human pluripotent stem cell technology in the field of regenerative medicine. The company is currently conducting clinical trials for treating dry age-related macular degeneration (AMD) and Stargardt's macular degeneration (SMD), as well as several clinical and preclinical programs for other ocular therapies. Outside of ophthalmology, ACTC also has a preclinical development pipeline focused on autoimmune diseases, inflammatory diseases and wound healing. The company's intellectual property portfolio includes pluripotent human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and other cell therapy research programs.

As the worldwide population has continued to age, so too has the need for regenerative medicine. In fact, by 2050, the number of people in the world over the age of 65 is expected to rise to 1.5 billion nearly triple the amount today. Unsurprisingly, as this demographic shift occurs over the next 35 years, health care expenditures are projected to increase rapidly as well. For example, in the US, the share of GDP devoted to healthcare is estimated to reach 34% by 2040 from about 18% just a few years ago. Considering the majority of treatments for chronic and/or life-threatening diseases that are available today only treat symptoms rather than offer a cure for the underlying cause, regenerative medicine such as the stem cell therapies being developed by ACTC are aimed at addressing this unmet and growing need.

Macular degeneration (i.e. age-related macular degeneration, or AMD) is a medical condition that results in a loss of vision in the center of the visual field (the macula) because of damage to the retina. This indication is the leading cause of blindness and visual impairment in adults over fifty years of age. Currently, it is estimated that there are approximately 30 million people worldwide who suffer from AMD ranging from early-stage to late-stage (i.e. legal blindness), with an estimated market size of around $30 billion. Further, in an article in the journal, Lancet projected that the number of people globally with AMD will be 196 million in 2020, growing to 288 million by 2040.

A full in-depth analyst report on ACTC that includes risk factors, industry review, financial position, potential revenues, review of current business model, competition breakdown, analyst summary, and recommendation can be viewed by using the following link at no cost:

http://bit.ly/-ACTC-AnalystReport

Copy and paste to browser may be required.

FORWARD-LOOKING DISCLAIMER

This report may contain certain forward-looking statements and information, as defined within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, and is subject to the Safe Harbor created by those sections. This material contains statements about expected future events and/or financial results that are forward-looking in nature and subject to risks and uncertainties. Such forward- looking statements by definition involve risks, uncertainties and other factors, which may cause the actual results, performance or achievements of mentioned company to be materially different from the statements made herein.

COMPLIANCE PROCEDURE

Content is researched, written and reviewed on a best-effort basis. Research report provided for informational purposes. This document, article or report is written and authored by Michael Maggi, Chartered Financial Analyst. However, we are only human and are prone to make mistakes. If you notice any errors or omissions, please notify us below.

Read the original:
Advanced Cell Technology Analyst Report; Shareholder Value Likely to Continue to Erode for the Foreseeable Future by ...

Posted in Stem Cell Therapy | Comments Off on Advanced Cell Technology Analyst Report; Shareholder Value Likely to Continue to Erode for the Foreseeable Future by …

Page 88«..1020..87888990..100110..»