Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Stem Cell Treatments
Stem Cell Transplantation for Cancer Treatment | CTCA
Posted: August 29, 2015 at 8:45 pm
Stem cell transplantation
Our Hematology Oncology Department provides advanced medical therapies for patients with various types and stages of hematologic disease, including leukemia, multiple myeloma, non-Hodgkin lymphomaand Hodgkin lymphoma. Some hematologic cancer patients undergo a hematopoietic progenitor cell transplantation (commonly referred to as a stem cell transplant).
A stem cell transplant can be used to infuse healthy stem cells into the body to stimulate new bone marrow growth, suppress the disease, and reduce the possibility of a relapse.
Stem cells can be found in the bone marrow, circulating blood (peripheral blood stem cells), and umbilical cord blood.
Our doctors perform two main types of stem cell transplants:
Before a stem cell transplant, you'll undergo a conditioning regime, which involves intensive treatment to destroy as many cancer cells as possible. You may receive high doses of chemotherapy and, in some cases, radiation therapy. Once this preparative regime is complete, you're ready to undergo the transplant.
Much like a blood transfusion, youll receive the stem cells intravenously. The procedure takes about an hour. After entering the bloodstream, the stem cells travel to the bone marrow and start to make new blood cells in a process known as engraftment.
In the months following the transplant, your care team will monitor your blood counts. You may need transfusions of red blood cells and platelets. Sometimes, the intensive treatments you receive before the stem cell transplantation can cause side effects, like infection. In this case, your doctor may administer IV antibiotics.
If you had an allogeneic stem cell transplant, your doctor may prescribe certain drugs to reduce the risk of graft-versus-host-disease (GVHD), a condition where the donated cells attack the patient's tissues.
Recovery from a stem cell transplant can take several months. Youll need support from multiple areas to help reduce side effects, keep you strong and improve your quality of life.
Our hematology oncology team will collaborate with the rest of your care team to support you throughout the entire treatment process. The following are examples of how the other members of your care team will work together to meet your individual needs:
Throughout your treatment, your care manager will also be available to make sure your questions are answered, and ensure you and your family have the information and resources you need to make informed decisions.
Stem cells are parent cells which can develop into any of the three main types of blood cells: red blood cells, white blood cells and platelets.
A peripheral blood stem cell transplant (PBSCT) uses stem cells extracted from the peripheral (circulating) blood supply.
A bone marrow transplant (BMT) uses stem cells collected from the bone marrow.
Excerpt from:
Stem Cell Transplantation for Cancer Treatment | CTCA
Posted in Stem Cell Treatments
Comments Off on Stem Cell Transplantation for Cancer Treatment | CTCA
Stem Cell Therapy & Stem Cell Treatment – Cell Therapy …
Posted: August 20, 2015 at 9:41 am
Our Cell Therapy Center offers advanced patented methods of stem cell treatment for different diseases and conditions. The fetal stem cells we use are pluripotent non-specialized cells able to differentiate (turn) into other cell types. Fetal stem cells have the highest potential for differentiation and proliferation and are not rejected by the recipients body more...
Stem cell therapy has proven to be effective for tissue restoration, and integrated care for the incurable and obstinate diseases. We treat patients with various diseases, such as diabetes mellitus, multiple sclerosis, Parkinsons disease, Duchenne muscular dystrophy, joint and autoimmune diseases, etc. We also offer innovative anti-aging programs. Stem cell treatment allows for achieving effects that are far beyond the capacity of any other modern method more...
For over 21 years, we have performed more than 8,500 transplantations of fetal stem cells to people from many countries, such as the USA, China, Italy, Germany, Denmark, Great Britain, Saudi Arabia, UAE, Egypt, etc. Our stem cell treatments helped to prolong life and improve life quality to thousands of patients including those suffering from the incurable diseases who lost any hope for recovery.
With Cell Therapy Center EmCell located in Kiev, Ukraine, we have numerous partners in various countries devoted to provide medical advice on EmCell stem cell treatment locally.
We are always open for medical, businessandscientificcooperation.
Read more:
Stem Cell Therapy & Stem Cell Treatment - Cell Therapy ...
Posted in Stem Cell Treatments
Comments Off on Stem Cell Therapy & Stem Cell Treatment – Cell Therapy …
Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW!
Posted: August 17, 2015 at 1:40 am
Australia - New Zealand - Asia & Pacific Rim - China - Italy
The Foundation is a privately funded philanthropic (non profit) organization advising un-well people about how to gain access to Adult Stem Cell Therapy (ASCT). The Foundation is also promoting a plan to its members on how to prevent or limit the progression of degenerative diseases and other conditions. Degenerative disease is an escalating world problem that, if not controlled, could bankrupt our health systems.
A major objective of the Foundation is to highlight that people suffering from degenerative conditions now have the option of considering Adult Stem Cell Therapy. This therapy may improve quality of life for sufferers of Arthritis, MS, Parkinsons, Diabetes, Stroke, Alzheimers, Spinal Cord injuries, Cancer or Chronic Pain to name a few. A stem cell transplant, instead of a joint replacement, is fast becoming the preferred first option for orthopedic surgeons.
The Foundation intends to educate parents/carers of children suffering from a debilitating or degenerative condition like Cerebral Palsy, Muscular Dystrophy, Autism, Spinal injuries, Cystic fibrosis, ADHD etc. Stem cell treatments have progressed in leaps and bounds for these conditions. There are now state of the art clinics that specialize in treating the afore-mentioned conditions. Children can usually benefit substantially from an early intervention by stem cell therapies and other protocols because they are still growing. As an example: spending time in a mild hyperbaric chamber (HBO) can also be beneficial. Just fill out the Application Form for an experimental transplant and we will be only too happy to advise.
The ASCF has become a global Information Centre for stem cell therapy. The centre will only support clinics that have demonstrated they abide by the highest medical standards and have a proven track record of administering these types of therapies, in Australia and overseas. We can now advise locally which gives peace of mind to our members who are contemplating a procedure of this nature.
Creating awareness of the availability of stem cell therapy and that it has become viable for consideration.
To raise money from benefactors, including private and commercial sponsorships.
To provide medical and research reports on degenerative disease to doctors and health professionals.
To run awareness programs on Lifestyle Medicine promoting healthy foods that may prevent the onset of degenerative diseases. This includes stem cell stimulating natural products that are backed by science.
To provide information to schools on healthy diet and lifestyle plans. To provide scholarships and fellowships for the study of degenerative diseases and their treatment.
To support Adult Stem Cell research by leading Universities and Not For Profit organizations.
To open representative offices in other countries. Such offices are already established in Thailand, NZ, South Africa, India, UK and France
It is a free service giving doctors in full security and full control the ability to record and share patient stem cell data with other doctors. The following is an overview of the Registrys main features:
Australasian Stem Cell Registry Overview - Read more >>>
The ASCF has also introduced a new funding model for stem cell transplants - this new financing model is funded by the patients and their supporters.
The Foundation receives no government funding so we exist on the generosity of our members, the public and corporations. We hope if we can help improve your health outcomes that you may see your way clear at some future time to consider assisting with either your time or money to this worthwhile cause.
We would also like to point out that there are medical conditions today that are still beyond the scope of this new and exciting branch of medical science, which unfortunately means not everybody can be treated with stem cells at this stage. If you are in this category, it is even more important you follow the ASCF Prevention Plan (see below) and keep your health in the best possible state while science catches up. Science is moving very fast in the area of Regenerative Medicine.
See the article here:
Stem cell - ADULT STEM CELL THERAPY IS AVAILABLE NOW!
Posted in Stem Cell Treatments
Comments Off on Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW!
Stem Cell Therapy | Cellular Prolotherapy | Caring Medical
Posted: August 14, 2015 at 9:49 am
Home Stem Cell Therapy | Cellular Prolotherapy
Ross Hauser, MD
Ross Hauser, MD: the use of Stem Cell Therapy in the treatment of joint and spine degeneration.
Stem cell therapy is exploding in the medical field, and for good reason. Stem cells have the potential to regenerate into any type of body tissue. The amazing thing about stem cells is that when you inject them into the body, they know what kinds of cells your body needs for example, meniscus cells or cartilage cells. It is a very exciting time for medicine, especially in the field of regenerative medicine. In our office we often refer to this as Cellular Prolotherapy.
In Stem Cell Therapy we use a persons own healing cells from bone marrow, fat, and blood (alone or in various combinations) and inject them straight to the area which has a cellular deficiency.
The goal is the same: to stimulate the repair of injured tissues. Stem cells aid in fibroblastic proliferation where cell growth, proteosynthesis, reparation, the remodeling of tissues, and chondrocyte proliferation occurs. Our bone marrow contains stem cells,also termed mesenchymal stem cells and progenitor cells, among other names. These immature cells have the ability to become tissues like cartilage, bone, and ligaments.
Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently,cell-basedtherapyhas become a key focus of tissue engineering research to achieve functional replacement of articular cartilage.1
Not all injuries require stem cells to heal. For many patients the success rate with traditionalProlotherapyin this office is in the 90%+ range for all patients. However, for those cases of advanced arthritis, meniscus tears, labral tears, bone-on-bone, or aggressive injuries, our Prolotherapy practitioners may choose to use stem cell injections to enhance the healing, in combination with dextrose Prolotherapy to strengthen and stabilize the surrounding support structures formeniscus repair.
In our research published inThe Open Stem Cell Journal,Rationale for Using Direct Bone Marrow Aspirate as a Proliferant for Regenerative Injection Therapy(Prolotherapy). We not only showed the benefit of bone marrow derived stem cells as a Prolotherapy proliferant solution, but also that this exciting field of medicine needs doctors and scientisists working together to expand research and technique guidelines.
Typically the tissue that we are trying to stimulate to repair with Stem Cell Therapy or Cellular Prolotherapy is articular cartilage, but we can also proliferate soft tissues structures such as ligament and tendons. This is new technology so we are studying it as we use it to treat patients.
See the original post:
Stem Cell Therapy | Cellular Prolotherapy | Caring Medical
Posted in Stem Cell Treatments
Comments Off on Stem Cell Therapy | Cellular Prolotherapy | Caring Medical
The Pros and Cons of Stem Cell Therapy for COPD
Posted: August 7, 2015 at 8:40 am
Updated December 29, 2014.
Written or reviewed by a board-certified physician. See About.com's Medical Review Board.
Stem cells are cells found in bone marrow and other organs.
They can develop into any type of tissue that exists in the fully developed body, including any kind of blood cell: red blood cells, white blood cells, or platelets.
Because of their unique, regenerative properties, stem cells offer new hope for a variety of diseases, including diabetes mellitis, stroke, osteoporosis, heart disease and, more recently, COPD. Scientists are interested in using stem cells to repair damaged cells and tissues in the body because they are far less likely than to be rejected than foreign cells that originated from another source.
There are two types of stem cells that doctors work with most in both humans and animals: Embryonic stem cells are derived from a blastocyst, a type of cell found in mammalian embryos and adults stem cells which are derived from the umbilical cord, placenta or from blood, bone marrow, skin, and other tissues.
Embryonic stem cells have the capacity to develop into every type of tissue found in an adult. Embryonic stem cells used for research develop from eggs that have been fertilized in vitro (in a laboratory).
After they are extracted from the embryo, the cells are grown in cell culture, an artificial medium used for medical research. It is atop this medium where they then divide and multiply.
Adult stem cells have been found in many organs and tissues of the body, but, once removed from the body, they have a difficult time dividing, which makes generating large quantities of them quite challenging. Currently, scientists are trying to find better ways to grow adult stem cells in cell culture and to manipulate them into specific types of cells that have the ability to treat injury and disease.
There is much controversy going on in the world of stem cell therapy and COPD. Why? While autologous stem cell treatment without manipulation is legal in the United States, without manipulation, treatments are not likely to be clinically relevant. For stem cell treatments to be clinically relevant, millions of stem cells need to be implanted into a designated recipient. Because generating millions of stem cells is difficult once they are removed from the body, scientists must manipulate them somehow to produce larger quantities. The FDA says that manipulation turns them into prescription drugs, and that this practice must therefore be tightly regulated. Stem cell advocates don't agree with the FDA's stand on this, and are currently fighting to get this changed.
Follow this link:
The Pros and Cons of Stem Cell Therapy for COPD
Posted in Stem Cell Treatments
Comments Off on The Pros and Cons of Stem Cell Therapy for COPD
What Is A Stem Cell, Stem Cell Questions, How Do Stem …
Posted: July 23, 2015 at 4:42 pm
Our Technology
Phoenix Stem Cell Treatment Center uses adipose derived stem cells for deployment & clinical research. Early stem cell research has traditionally been associated with the controversial use of embryonic stem cells. The new focus is on non-embryonic adult mesenchymal stem cells which are found in a persons own blood, bone marrow, and fat. Most stem cell treatment centers in the world are currently using stem cells derived from bone marrow.
A recent technological breakthrough enables us to now use adipose (fat) derived stem cells. Autologous stem cells from a persons own fat are easy to harvest safely under local anesthesia and are abundant in quantities up to 2500 times those seen in bone marrow.
Clinical success and favorable outcomes appear to be related directly to the quantity of stem cells deployed. Once these adipose derived stem cells are administered back in to the patient, they have the potential to repair human tissue by forming new cells of mesenchymal origin, such as cartilage, bone, ligaments, tendons, nerve, fat, muscle, blood vessels, and certain internal organs. Stem cells ability to form cartilage and bone makes them potentially highly effective in the treatment of degenerative orthopedic conditions. Their ability to form new blood vessels and smooth muscle makes them potentially very useful in the treatment of peyronies disease and impotence. Stem cells are used extensively in Europe and Asia to treat these conditions.
We have anecdotal and experimental evidence that stem cell therapy is effective in healing and regeneration. Stem cells seek out damaged tissues in order to repair the body naturally. The literature and internet is full of successful testimonials but we are still awaiting definitive studies demonstrating efficacy of stem cell therapy. Such data may take five or ten years to accumulate. At the Phoenix Stem Cell Treatment Center we are committed to gathering those data by conducting sound and effective clinical research. In an effort to provide relief for patients suffering from certain degenerative diseases that have been resistant to common modalities of treatment, we are initiating pilot studies as experimental tests of treatment effectiveness with very high numbers of adipose derived stem cells obtained from fat. Adipose fat is an abundant and reliable source of stem cells.
Phoenix Stem Cell Treatment Centers cell harvesting and isolation techniques are based on technology from Korea. This new technological breakthrough allows patients to safely receive their own autologous stem cells in extremely large quantities. Our treatments and research are patient funded and we have endeavored successfully to make it affordable. All of our sterile procedures are non-invasive and done under local anesthesia. Patients who are looking for non-surgical alternatives to their degenerative disorders can participate in our trials by filling out our treatment application to determine if they are candidates. Phoenix Stem Cell Treatment Center is proud to be state of the art in the new field of Regenerative Medicine.RETURN TO TOP
We are currently in the process of setting up FDA approved protocols for stem cell banking in collaboration with a reputable cryo-technology company. This enables a person to receive autologous stem cells at any time in the future without having to undergo liposuction which may be inconvenient or contraindicated. Having your own stem cells available for medical immediate use is a valuable medical asset.
Provisions are nearly in place for this option and storage of your own stem cells obtained by liposuction at PSCTC or from fat obtained from cosmetic procedures performed elsewhere should be possible in the near future.RETURN TO TOP
Adult (NonEmbryonic) Mesenchymal Stem Cells are undifferentiated cells that have the ability to replace dying cells and regenerate damaged tissue. These special cells seek out areas of injury, disease and destruction where they are capable of regenerating healthy cells and enabling a persons natural healing processes to be accelerated. As we gain a deeper understanding of their medical function and apply this knowledge, we are realizing their enormous therapeutic potential to help the body heal itself. Adult stem cells have been used for a variety of medical treatments to repair and regenerate acute and chronicially damaged tissues in humans and animals. The use of stem cells is not FDA approved for the treatment of any specific disease in the United States at this time and their use is therefore investigational. Many reputable international centers have been using stem cell therapy to treat various chronic degenerative conditions as diverse as severe neurologic diseases, renal failure, erectile dysfunction, degenerative orthopedic problems, and even cardiac and pulmonary diseases to name a few. Adult stem cells appear to be particularly effective at repairing cartilage in degenerated joints.RETURN TO TOP
Regenerative Medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage, or congenital defects. This field holds the promise of regenerating damaged tissues and organs in the body by stimulating previously irreparable organs to heal themselves. (Wikipedia)RETURN TO TOP
More:
What Is A Stem Cell, Stem Cell Questions, How Do Stem ...
Posted in Stem Cell Treatments
Comments Off on What Is A Stem Cell, Stem Cell Questions, How Do Stem …
Regenocyte are leading stem cell doctors in the USA.
Posted: July 15, 2015 at 3:44 am
2014 Stem Cell Pioneer Awards Stem Cell Awards Ceremony recognizing those pioneers in the field of Regenerative Therapy. Highlights of a few of the patients treated from 2006 to present. Treatments for heart, lung, neurologic and other diseases.
Why do patients choose us for their treatment? Especially those seeking serious outcomes? Why does Regenocyte have the most consistent, reproducible and best outcomes in the field of Regenerative Medicine? Click here to read more >>
If you are searching the web for stem cell doctors because you or a loved one suffer from severe heart, lung, or circulatory problems, it is possible that the latest therapies using adult stem cells can restore your quality of life to an unexpected level.
Because adult stem cell therapies are safe, simple, and minimally-invasive, they particularly help those who have exhausted the possibilities of other treatments.
Click arrows above to view Movies
Click arrows above to view Movies
Click arrows above to view Movies
Click arrows above to view Movies
Click arrows above to view Movies
Read the rest here:
Regenocyte are leading stem cell doctors in the USA.
Posted in Stem Cell Treatments
Comments Off on Regenocyte are leading stem cell doctors in the USA.
Stem Cell Therapy for Neuromuscular Diseases | InTechOpen
Posted: June 14, 2015 at 8:40 pm
1. Introduction
Neuromuscular disease is a very broad term that encompasses many diseases and aliments that either directly, via intrinsic muscle pathology, or indirectly, via nerve pathology, impair the functioning of the muscles. Neuromuscular diseases affect the muscles and/or their nervous control and lead to problems with movement. Many are genetic; sometimes, an immune system disorder can cause them. As they have no cure, the aim of clinical treatment is to improve symptoms, increase mobility and lengthen life. Some of them affect the anterior horn cell, and are classified as acquired (e.g. poliomyelitis) and hereditary (e.g. spinal muscular atrophy) diseases. SMA is a genetic disease that attacks nerve cells, called motor neurons, in the spinal cord. As a consequence of the lost of the neurons, muscles weakness becomes to be evident, affecting walking, crawling, breathing, swallowing and head and neck control. Neuropathies affect the peripheral nerve and are divided into demyelinating (e.g. leucodystrophies) and axonal (e.g. porphyria) diseases. Charcot-Marie-Tooth (CMT) is the most frequent hereditary form among the neuropathies and its characterized by a wide range of symptoms so that CMT-1a is classified as demyelinating and CMT-2 as axonal (Marchesi & Pareyson, 2010). Defects in neuromuscular junctions cause infantile and non-infantile Botulism and Myasthenia Gravis (MG). MG is a antibody-mediated autoimmune disorder of the neuromuscular junction (NMJ) (Drachman, 1994; Meriggioli & Sanders, 2009). In most cases, it is caused by pathogenic autoantibodies directed towards the skeletal muscle acetylcholine receptor (AChR) (Patrick & Lindstrom, 1973) while in others, non-AChR components of the postsynaptic muscle endplate, such as the muscle-specific receptor tyrosine kinase (MUSK), might serve as targets for the autoimmune attack (Hoch et al., 2001). Although the precise origin of the autoimmune response in MG is not known, genetic predisposition and abnormalities of the thymus gland such as hyperplasia and neoplasia could have an important role in the onset of the disease (Berrih et al., 1984; Roxanis et al., 2001).
Several diseases affect muscles: they are classified as acquired (e.g. dermatomyositis and polymyositis) and hereditary (e.g. myotonic disorders and myopaties) forms. Among the myopaties, muscular dystrophies are characterized by the primary wasting of skeletal muscle, caused by mutations in the proteins that form the link between the cytoskeleton and the basal lamina (Cossu & Sampaolesi, 2007). Mutations in the dystrophin gene cause severe form of hereditary muscular diseases; the most common are Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). DMD patients suffer for complete lack of dystrophin that causes progressive degeneration, muscle wasting and death into the second/third decade of life. Beside, BMD patients show a very mild phenotype, often asymptomatic primarily due to the expression of shorter dystrophin mRNA transcripts that maintain the coding reading frame. DMD patients muscles show absence of dystrophin and presence of endomysial fibrosis, small fibers rounded and muscle fiber degeneration/regeneration. Untreated, boys with DMD become progressively weak during their childhood and stop ambulation at a mean age of 9 years, later with corticosteroid treatment (12/13 yrs). Proximal weakness affects symmetrically the lower (such as quadriceps and gluteus) before the upper extremities, with progression to the point of wheelchair dependence. Eventually distal lower and then upper limb weakness occurs. Weakness of neck flexors is often present at the beginning, and most patients with DMD have never been able to jump. Wrist and hand muscles are involved later, allowing the patients to keep their autonomy in transfers using a joystick to guide their wheelchair. Musculoskeletal contractures (ankle, knees and hips) and learning difficulties can complicate the clinical expression of the disease. Besides this weakness distribution in the same patient, a deep variability among patients does exist. They could express a mild phenotype, between Becker and Duchenne dystrophy, or a really severe form, with the loss of deambulation at 7-8 years. Confinement to a wheelchair is followed by the development of scoliosis, respiratory failure and cardiomyopathy. In 90% of people death is directly related to chronic respiratory insufficiency (Rideau et al., 1983). The identification and characterization of dystrophin gene led to the development of potential treatments for this disorder (Bertoni, 2008). Even if only corticosteroids were proven to be effective on DMD patient (Hyser and Mendell, 1988), different therapeutic approaches were attempted, as described in detail below (see section 7).
The identification and characterization of the genes whose mutations caused the most common neuromuscular diseases led to the development of potential treatments for those disorders. Gene therapy for neuromuscular disorders embraced several concepts, including replacing and repairing a defective gene or modifying or enhancing cellular performance, using gene that is not directly related to the underlying defect (Shavlakadze et al., 2004). As an example, the finding that DMD pathology was caused by mutations in the dystrophin gene allowed the rising of different therapeutic approaches including growth-modulating agents that increase muscle regeneration and delay muscle fibrosis (Tinsley et al., 1998), powerful antisense oligonucleotides with exon-skipping capacity (Mc Clorey et al., 2006), anti-inflammatory or second-messenger signal-modulating agents that affect immune responses (Biggar et al., 2006), agents designed to suppress stop codon mutations (Hamed, 2006). Viral and non-viral vectors were used to deliver the full-length - or restricted versions - of the dystrophin gene into stem cells; alternatively, specific antisense oligonucleotides were designed to mask the putative splicing sites of exons in the mutated region of the primary RNA transcript whose removal would re-establish a correct reading frame. In parallel, the biology of stem cells and their role in regeneration were the subject of intensive and extensive research in many laboratories around the world because of the promise of stem cells as therapeutic agents to regenerate tissues damaged by disease or injury (Fuchs and Segre, 2000; Weissman, 2000). This research constituted a significant part of the rapidly developing field of regenerative biology and medicine, and the combination of gene and cell therapy arose as one of the most suitable possibility to treat degenerative disorders. Several works were published in which stem cell were genetically modified by ex vivo introduction of corrective genes and then transplanted in donor dystrophic animal models.
Stem cells received much attention because of their potential use in cell-based therapies for human disease such as leukaemia (Owonikoko et al., 2007), Parkinsons disease (Singh et al., 2007), and neuromuscular disorders (Endo, 2007; Nowak and Davies, 2004). The main advantage of stem cells rather than the other cells of the body is that they can replenish their numbers for long periods through cell division and, they can produce a progeny that can differentiate into multiple cell lineages with specific functions (Bertoni, 2008). The candidate stem cell had to be easy to extract, maintaining the capacity of myogenic conversion when transplanted into the host muscle and also the survival and the subsequent migration from the site of injection to the compromise muscles of the body (Price et al., 2007). With the advent of more sensitive markers, stem cell populations suitable for clinical experiments were found to derive from multiple region of the body at various stage of development. Numerous studies showed that the regenerative capacity of stem cells resided in the environmental microniche and its regulation. This way, it could be important to better elucidate the molecular composition cytokines, growth factors, cell adhesion molecules and extracellular matrix molecules - and interactions of the different microniches that regulate stem cell development (Stocum, 2001).
Several groups published different works concerning adult stem cells such as muscle-derived stem cells (Qu-Petersen et al., 2002), mesoangioblasts (Cossu and Bianco, 2003), blood- (Gavina et al., 2006) and muscle (Benchaouir et al., 2007)-derived CD133+ stem cells. Although some of them are able to migrate through the vasculature (Benchaouir et al., 2007; Galvez et al., 2006; Gavina et al., 2006) and efforts were done to increase their migratory ability (Lafreniere et al., 2006; Torrente et al., 2003a), poor results were obtained.
Embryonic and adult stem cells differ significantly in regard to their differentiation potential and in vitro expansion capability. While adult stem cells constitute a reservoir for tissue regeneration throughout the adult life, they are tissue-specific and possess limited capacity to be expanded ex vivo. Embryonic Stem (ES) cells are derived from the inner cell mass of blastocyst embryos and, by definition, are capable of unlimited in vitro self-renewal and have the ability to differentiate into any cell type of the body (Darabi et al., 2008b). ES cells, together with recently identified iPS cells, are now broadly and extensively studied for their applications in clinical studies.
Embryonic stem cells are pluripotent cells derived from the early embryo that are characterized by the ability to proliferate over prolonged periods of culture remaining undifferentiated and maintaining a stable karyotype (Amit and Itskovitz-Eldor, 2002; Carpenter et al., 2003; Hoffman and Carpenter, 2005). They are capable of differentiating into cells present in all 3 embryonic germ layers, namely ectoderm, mesoderm, and endoderm, and are characterized by self-renewal, immortality, and pluripotency (Strulovici et al., 2007).
hESCs are derived by microsurgical removal of cells from the inner cell mass of a blastocyst stage embryo (Fig. 1). The ES cells can be also obtained from single blastomeres. This technique creates ES cells from a single blastomere directly removed from the embryo bypassing the ethical issue of embryo destruction (Klimanskaya et al., 2006). Although maintaining the viability of the embryo, it has to be determined whether embryonic stem cell lines derived from a single blastomere that does not compromise the embryo can be considered for clinical studies. Cell Nuclear Transfer (SCNT): Nuclear transfer, also referred to as nuclear cloning, denotes the introduction of a nucleus from an adult donor cell into an enucleated oocyte to generate a cloned embryo (Wilmut et al., 2002).
ESCs differentiation. Differentiation potentiality of human embryonic stem cell lines. Human embryonic stem cell pluripotency is evaluated by the ability of the cells to differentiate into different cell types.
Continue reading here:
Stem Cell Therapy for Neuromuscular Diseases | InTechOpen
Posted in Stem Cell Treatments
Comments Off on Stem Cell Therapy for Neuromuscular Diseases | InTechOpen
Stem Cell Of America | Breakthrough Stem Cell Treatment
Posted: June 3, 2015 at 7:46 pm
Treatment
The Stem Cell treatment performed at our clinics is a painless medical procedure where Stem Cells (cellular building blocks) are usually administered intravenously and subcutaneously (under the skin). The whole procedure takes approximately one hour and has no known negative side effects.
Following the treatment, the Fetal Stem Cells will travel throughout the body, detecting damaged cells and tissue and attempts to restore them. The Fetal Stem Cells can also stimulate existing normal cells and tissues to operate at a higher level of function, boosting the bodys own repair mechanisms to aid in the healing process. These highly adaptive cells then remain in the body, continually locating and repairing any damage they encounter.
As with any medical treatment, safety should be of the highest priority. The Stem Cells used in our treatment undergo extensive screening for possible infection and impurities. Utilizing tests more sophisticated than those regularly used in the United States for Stem Cell research and transplant. Our testing process ensures we use only the healthiest cells to enable the safest and most effective Fetal Stem Cell treatment possible. And, unlike other types of Stem Cells, there is no danger of the bodys rejection of Fetal Stem Cells due to the fact they have no antigenicity (cellular fingerprint). This unique quality eliminates the need for drugs used to suppress the immune system, which can leave a patient exposed to serious infections.
With over 3000 patients treated, Stem Cell Of America has achieved positive results with a wide variety of illnesses, conditions and injuries. Often, in cases where the diseases continued to worsen, our patients have reported substantial improvements following the Stem Cell treatment.
Patients have experienced favorable developments such as reduction or elimination of pain, increased strength and mobility, improved cognitive function, higher tolerance for chemotherapy, and quicker healing and recovery.
To view follow up letters from patients, please visit the patient experiences page on our website.
All statements, opinions, and advice on this page is provided for educational information only. It is not a substitute for proper medical diagnosis and care. Like all medical treatments and procedures, results may significantly vary and positive results may not always be achieved. Please contact us so we may evaluate your specific case.
Originally posted here:
Stem Cell Of America | Breakthrough Stem Cell Treatment
Posted in Stem Cell Treatments
Comments Off on Stem Cell Of America | Breakthrough Stem Cell Treatment
Nine Things to Know About Stem Cell Treatments
Posted: May 31, 2015 at 5:41 pm
Stem cells have tremendous promise to help us understand and treat a range of diseases, injuries and other health-related conditions. Their potential is evident in the use of blood stem cells to treat diseases of the blood, a therapy that has saved the lives of thousands of children with leukemia; and can be seen in the use of stem cells for tissue grafts to treat diseases or injury to the bone, skin and surface of the eye. Important clinical trials involving stem cells are underway for many other conditions and researchers continue to explore new avenues using stem cells in medicine.
There is still a lot to learn about stem cells, however, and their current applications as treatments are sometimes exaggerated by the media and other parties who do not fully understand the science and current limitations, and also by clinics looking to capitalize on the hype by selling treatments to chronically ill or seriously injured patients. The information on this page is intended to help you understand both the potential and the limitations of stem cells at this point in time, and to help you spot some of the misinformation that is widely circulated by clinics offering unproven treatments.
It is important to discuss these Nine Things to Know and any research or information you gather with your primary care physician and other trusted members of your healthcare team in deciding what is right for you.
Visit link:
Nine Things to Know About Stem Cell Treatments
Posted in Stem Cell Treatments
Comments Off on Nine Things to Know About Stem Cell Treatments