Categories
- Global News Feed
- Uncategorized
- Alabama Stem Cells
- Alaska Stem Cells
- Arkansas Stem Cells
- Arizona Stem Cells
- California Stem Cells
- Colorado Stem Cells
- Connecticut Stem Cells
- Delaware Stem Cells
- Florida Stem Cells
- Georgia Stem Cells
- Hawaii Stem Cells
- Idaho Stem Cells
- Illinois Stem Cells
- Indiana Stem Cells
- Iowa Stem Cells
- Kansas Stem Cells
- Kentucky Stem Cells
- Louisiana Stem Cells
- Maine Stem Cells
- Maryland Stem Cells
- Massachusetts Stem Cells
- Michigan Stem Cells
- Minnesota Stem Cells
- Mississippi Stem Cells
- Missouri Stem Cells
- Montana Stem Cells
- Nebraska Stem Cells
- New Hampshire Stem Cells
- New Jersey Stem Cells
- New Mexico Stem Cells
- New York Stem Cells
- Nevada Stem Cells
- North Carolina Stem Cells
- North Dakota Stem Cells
- Oklahoma Stem Cells
- Ohio Stem Cells
- Oregon Stem Cells
- Pennsylvania Stem Cells
- Rhode Island Stem Cells
- South Carolina Stem Cells
- South Dakota Stem Cells
- Tennessee Stem Cells
- Texas Stem Cells
- Utah Stem Cells
- Vermont Stem Cells
- Virginia Stem Cells
- Washington Stem Cells
- West Virginia Stem Cells
- Wisconsin Stem Cells
- Wyoming Stem Cells
- Biotechnology
- Cell Medicine
- Cell Therapy
- Diabetes
- Epigenetics
- Gene therapy
- Genetics
- Genetic Engineering
- Genetic medicine
- HCG Diet
- Hormone Replacement Therapy
- Human Genetics
- Integrative Medicine
- Molecular Genetics
- Molecular Medicine
- Nano medicine
- Preventative Medicine
- Regenerative Medicine
- Stem Cells
- Stell Cell Genetics
- Stem Cell Research
- Stem Cell Treatments
- Stem Cell Therapy
- Stem Cell Videos
- Testosterone Replacement Therapy
- Testosterone Shots
- Transhumanism
- Transhumanist
Archives
Recommended Sites
Category Archives: Stem Cell Treatments
Is it drug manufacturing or the practice of medicine? Stem cell therapy debate just getting started
Posted: August 3, 2012 at 10:13 pm
The latest round of a stem cell debate may have concluded, but as far as the lawyers representing an orthopedics company that has offered stem cell treatments are concerned, its a long way from over.
The lawyers representing Colorado-based Regenerative Science said they were filing a notice of appeal this week after a U.S. District Court judges ruling in favor of the U.S. Food and Drug Administration that its stem cell therapy is a drug. The case is being closely watched by everyone with a stake or an interest in the use of stem cells in medicine and could have significant ramifications for stem cell entrepreneurs who dont believe their procedures amount to a drug or biologic.
Regenerative Science
Colorado-based Regnerative Sciences Regenexx procedure is presented as an alternative to traditional surgery that can treat fractures that have failed to heal, joint cartilage problems, partial tears of tendons, muscles, or ligaments, among other problems. It works like this: A physician takes a small bone marrow sample from the back of the patients hip through a needle. Blood samples are taken from a vein in the patients arm. The samples are sent to the Regenerative laboratory where the mesenchymal stem cells are isolated from the bone marrow and grown to greater numbers using growth factors in the patients blood. The stem cells are injected back into the relevant area in the patient.
The FDA initially sent a warning letter to Regenerative in 2008 after seeing its website. The company turned around and sued the FDA, and two years ago the FDA sought an injunction to shut it down.
The companies that occupy the stem cell treatment landscape are as diverse a group as you could hope to find in medicine. Some offer age-defying beauty solutions, others provide life-saving technology, others have quality-of-life-improving treatments for joints and muscles. There are entrepreneurs leading startups and Big Pharma companies too.
In 2010, the stem cell therapy market was $139.6 million and it was projected to grow to $1 billion by 2015, according to data compiled by Robin Young, the publisher of Orthopedics Week and the CEO of medical data mining company PearlDiver Technologies.
This is on the very cutting edge of medicine and the FDA needs to move forward with it by making sure they have the best information on this science available to inform their decision-making,said Michelle Hart Yeary, counsel with Decherts life science practice.
Minimally manipulated
Go here to read the rest:
Is it drug manufacturing or the practice of medicine? Stem cell therapy debate just getting started
Posted in Stem Cell Treatments
Comments Off on Is it drug manufacturing or the practice of medicine? Stem cell therapy debate just getting started
Cayden's second chance: 5-year-old has stem cell injection that may help his vision
Posted: July 30, 2012 at 8:11 pm
The quest to save her grandson's eyesight began more than four years ago when Carmie Carr discovered a business on the Internet offering experimental stem cell injections in China.
At 4 months old, Cayden Baggett was diagnosed with optic nerve hypoplasia, a condition where the nerves in the eyes never fully develop. His family was told he would eventually go blind. Right now, Cayden can see light and dark, but little else.
Soon after learning about the stem cell treatments, the Carr family launched a campaign to raise $50,000 to cover the costs. The 2010 Gulf oil spill, coupled with the 2011 tornadoes in Tuscaloosa that destroyed their retail business, made collecting the funds next to impossible, they said.
Then, a friend told the family about a construction project he was working on just down the street. It was for a local radiologist who planned to offer stem cell injections to athletes with sports-related injuries.
He introduced the Carrs to Dr. Jason Williams. After talking with the family and researching the procedures, Williams agreed to help.
"There is no doubt in my mind this is the road the Lord has been leading us down," said Carmie Carr. "It connected like a perfect puzzle. We thought we were going to have to travel around the world. Instead, we drove four blocks."
A goal of Cayden's stem cell treatment is to stimulate new nerve growth that might improve his vision. Some children with similar health problems have shown marked improvement in recent years after being treated with stem cells in China, Carmie Carr said.
When the day of his procedure finally arrived, a groggy Cayden, now 5, was carried by his mother, Leanna Carr, into the Gulf Shores medical practice. During the procedure, Williams used the little boy's own fat through liposuction to harvest stem cells that were processed, then injected into his back.
Stem cells, sometimes called the body's master cells, are precursor cells that can develop into blood, bones and organs, according to the U.S. Food and Drug Administration, which regulates their use. Their promise in medicine, researchers say, is that the cells have shown potential to help regenerate other cells.
For about four months, Williams, a radiologist, has been performing stem cell injections, which are considered investigational in the U.S., at his Baldwin County practice. He has said the procedures meet FDA guidelines because the stem cells are collected from a patient's fat tissue and administered back to the same person.
More here:
Cayden's second chance: 5-year-old has stem cell injection that may help his vision
Posted in Stem Cell Treatments
Comments Off on Cayden's second chance: 5-year-old has stem cell injection that may help his vision
Skin Cells Create Stem Cells In Huntington Disease Study
Posted: June 30, 2012 at 7:12 am
June 29, 2012
Connie K. Ho for redOrbit.com Your Universe Online
In 1993, the autosomal dominant gene mutation responsible for Huntingtons Disease (HD) was discovered. However, no treatments are known to slow its progression. New research may pave the way to better understanding of the disease. Researchers at Johns Hopkins recently announced that they were able to produce stem cells from skin cells from a person who had severe, early-onset form of HD; the cells were then changed into neurons that degenerated like the cells affected by HD.
The research was recently published in the journal Cell Stem Cell. The investigators worked with an international consortium in creating HD in a dish. The group was made up of scientists from Johns Hopkins University School of Medicine, Cedars-Sinai Medical Center, the University of California at Irvine, as well as six other groups. The team looked at many other HD cell lines and control cell lines to verify that the results were consistent and reproducible in other labs. The investigators believe that the findings allow them to better understand and eliminate cells in people in with HD. They hope to study the effects of possible drug treatments on cells that would be otherwise found deep in the brain.
Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, remarked lead researcher Dr. Christopher A. Ross, a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine, in a prepared statement. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.
The team of researchers is studying small molecules for the ability to block HD iPSC degeneration to see if they can be developed into new drugs for HD. As well, the ability to produce from stem cells the same neurons found in HD may have effects for similar research in other neurodegenerative diseases like Alzheimers and Parkinsons. In the experiment, Ross took a skin biopsy from a patient with very early onset HD. The patient was seven years old at the time, with a severe form of disease and a mutation that caused it. By using cells from a patient who had quickly progressing HD, Ross team were able to mimic HD in a way that could be used by patients who had different forms of HD.
The skin cells were grown in culture and reprogrammed to induce stem cells that were pluripotent. Then, another cell line was created in the same way from someone who didnt have HD. The other HD and control iPS cells were produced as part of the NINDS funded HD iPS cell consortium. Investigators from Johns Hopkins and the other consortium labs changed the cells into typical neurons and then into medium spiny neurons. The process took a total of three months and the scientists found the medium spiny neurons from the HD cells acted how the medium spiny neurons form an HD patient would. The cells demonstrated quick degeneration when cultured in the lab with a basic culture medium that didnt include extensive supporting nutrients. On the other hand, control cell lines didnt demonstrate neuronal degeneration.
These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntingtons Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.
Source: Connie K. Ho for redOrbit.com Your Universe Online
Read more:
Skin Cells Create Stem Cells In Huntington Disease Study
Posted in Stem Cell Treatments
Comments Off on Skin Cells Create Stem Cells In Huntington Disease Study
Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases
Posted: June 30, 2012 at 7:12 am
SAN DIEGO CA--(Marketwire -06/29/12)- Medistem Inc. (MEDS) announced today notice of allowance from the United States Patent and Trademark Office (USPTO) for a patent covering the use of fat stem cells, and cells associated with fat stem cells for treatment of diseases related to a dysfunctional immune system. Such diseases include multiple sclerosis, Type 1 diabetes, rheumatoid arthritis and lupus. The allowed patent, entitled "Stem Cell Mediated Treg Activation/Expansion for Therapeutic Immune Modulation" has the earliest priority date of December 2006.
"We have previously published that giving multiple sclerosis patients cells extracted from their own fat tissue, which contains stem cells, appears to confer clinical benefit in a pilot study," said Thomas Ichim, CEO of Medistem. "The current patent that has been allowed, in the broadest interpretation of the claims, gives us exclusive rights to the use of specific types of fat stem cell therapy for autoimmune diseases such as multiple sclerosis."
Subsequent to the filing of the patent application, Medistem together with collaborators at the Lawson Health Sciences Research Institute, Canada, reported data that fat tissue contains high numbers of T regulatory cells, a type of immune cell that is capable of controlling autoimmunity.
This finding was independently confirmed by Dr. Diane Mathis' laboratory at Harvard University, who published a paper in the prestigious journal, Nature Medicine, in which detailed experimental evidence was provided supporting the initial finding that adipose tissue contains high numbers of T regulatory cells. A video describing the paper can be accessed at http://www.youtube.com/watch?v=rEJfGu29Rg8.
The current patent discloses the use of T regulatory cells from fat, combinations with stem cells, and use of fat-derived mononuclear cells. Given that there are currently several groups utilizing this technology in the USA in treating patients, Medistem believes revenue can be generated through enforcement of patent rights.
"Our corporate philosophy has been to remain highly focused on our ongoing clinical stage programs using Medistem's universal donor stem cell, the Endometrial Regenerative Cell (ERC), in the treatment of critical limb ischemia and congestive heart failure," said Dr. Vladimir Bogin, Chairman and President of Medistem. "However, due to the ease of implementation of our fat stem cell technology, combined with the major burden that autoimmune diseases have on our health care system, we are highly incentivized to explore partnering, co-development and licensing opportunities."
Autoimmune conditions occur as a result of the body's immune system "turning on itself" and attacking its own organs or cells. Current treatments for autoimmune conditions are based on "globally" suppressing the immune system by administration of immunosuppressive drugs. This is associated with an increased predisposition to infections and significant side effects. The utilization of stem cells and T regulatory cells offers the potential to selectively suppress pathological immunity while preserving the ability of the body to fight bacteria and viruses. According to the NIH there are approximately 23 million victims of autoimmune conditions.
Links to Documents:
Link to peer-reviewed publication: http://www.translational-medicine.com/content/pdf/1479-5876-7-29.pdf
View original post here:
Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases
Posted in Stem Cell Treatments
Comments Off on Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases
Huntington's Research Tool Developed Using Stem Cells
Posted: June 28, 2012 at 6:21 pm
Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 28 Jun 2012 - 9:00 PDT
Current ratings for: Huntington's Research Tool Developed Using Stem Cells
Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.
As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.
"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."
The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.
Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.
Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.
The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.
"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."
Read the original:
Huntington's Research Tool Developed Using Stem Cells
Posted in Stem Cell Treatments
Comments Off on Huntington's Research Tool Developed Using Stem Cells
Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool
Posted: June 28, 2012 at 6:21 pm
Public release date: 28-Jun-2012 [ | E-mail | Share ]
Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center
LOS ANGELES (EMBARGOED UNTIL NOON EDT ON JUNE 28, 2012) Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.
As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.
"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."
The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.
Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.
Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.
The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.
"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."
Originally posted here:
Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool
Posted in Stem Cell Treatments
Comments Off on Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool
Maine game warden finds stem cell match
Posted: June 28, 2012 at 5:23 am
AUGUSTA, Maine (NEWS CENTER) --InMay,we introduced you to Maine Game Warden Major Gregg Sanborn - when the UMaine football team held a stem cell drive in his honor. Major Sanborn was diagnosed with t-cell lymphoma last September and needed to find a match as soon as possible in order to live.
Last week, Major Sanborn found out that he did find a match - a 26 year old man. He isn't allowed to know anything else about his donor due to privacy laws.
Major Sanborn is already undergoing chemotherapy and will head to Boston on July 9th and will stay there for about six weeks - to begin more aggressive treatments, which will include rebuilding his immune system.
He feels he owes it to all the people who have helped him thus far to fight as hard as he can. "An awful lot of people have done an awful lot of work to make this possible. Their efforts haven't gone in vain, they haven't gone unnoticed," he says,"It's very impressive. I've got a lot of people rooting for me, and I'm going to give it my best so that it's a positive outcome."
Wednesday was Major Sanborn's last day of work at the Maine Department of Inland Fisheries and Wildlife. He actually had to take a few tests in order to keep his license when he comes back to work after the treatments. After the six weeks of treatment, he'll be in isolation for one year.
See more here:
Maine game warden finds stem cell match
Posted in Stem Cell Treatments
Comments Off on Maine game warden finds stem cell match
FDA Criticizes Perry’s Stem Cell Lab
Posted: June 27, 2012 at 1:14 am
HOUSTON (AP) - The U.S. Food and Drug Administration has issued a new report criticizing the Texas company that stored adult stem cells from Texas Gov. Rick Perry for use in an experimental procedure for his back pain, according to a newspaper report Monday.
An FDA report obtained by the Houston Chronicle said CellTex Therapeutics cannot guarantee the stem cells it takes from patients remain sterile and alive. The nine-page report dated April 27 says the lab, located in the Houston suburb of Sugar Land, does not have procedures to prevent contamination of products that are supposed to be sterile.
The report also says the lab didnt have written records of investigations into the failure of a batch of cells. It also says the lab has not marked some lab products properly.
The deficiencies identified reflect significant problems, serious issues, said Paul Knoepfler, an associate professor at the University of California-Davis School of Medicine, in an interview with the newspaper. If I were a patient, they would scare me off big time.
CellTex was thrust into the news last year when Perry, then running for the Republican nomination for president, revealed that he had stem cells taken from fat in his body, grown in a lab and then injected into his back during a July operation to address his back pain.
Perrys stem cells were stored and grown at CellTex, the Chronicle reported. The firm is co-owned by Dr. Stanley Jones, Perrys friend who performed the operation.
Subsequently, the Texas Medical Board approved new rules on similar experimental stem cell therapies. Perry appointed the board. The FDA has not approved any adult stem cell therapies for orthopedic use, but experimentation by doctors in the U.S. and abroad is common.
Some scientists tout possible benefits of stem cell treatments, including treatment for heart disease, diabetes and some cancers. Others argue adult stem cell experimentation actually increases the risk of cancer and can cause blood clots.
A Perry spokeswoman called Perrys surgery a success and reaffirmed his commitment to adult stem cell research. She said the FDA report was between the agency and CellTex.
CellTex CEO David Eller said the company invited the FDA inspection, which took place over nearly two weeks in April, according to the report.
View post:
FDA Criticizes Perry’s Stem Cell Lab
Posted in Stem Cell Treatments
Comments Off on FDA Criticizes Perry’s Stem Cell Lab
Cryo-Save Group N.V. awards researcher at grand opening of its new headquarters
Posted: June 22, 2012 at 5:12 am
The leading international family stem cell bank, Cryo-Save, celebrates the grand opening of its brand new headquarters office in Zutphen, the Netherlands, by honoring PhD. T.H.J. Nijhuis with the Young Investigator Award on June 22nd.
Cryo-Save`s headquarters, located in Zutphen, the Netherlands, is celebrating the grand opening of its brand new, fully-renovated headquarters. On June 22nd, Arnoud van Tulder, CEO of Cryo-Save, and attorney-at-law C. Bieze, deputy in the province of Gelderland, will officially open the company`s new global headquarters office.
To mark the occasion, the company will grant PhD. T.H.J. Nijhuis, winner of the Cryo-Save Young Investigator Award, a prize of 5,000 euros. Mr. Nijhuis has focused his most recent research on umbilical cord mesenchymal stem cells and pursues his work at the Erasmus Medical Center, part of the Erasmus University of Rotterdam, the Netherlands.
Arnoud van Tulder, CEO of Cryo-Save, says "We are proud to name Mr. T.H.J. Nijhuis, as the winner of the Cryo-Save Young Investigator Award. Research is a cornerstone of the stem cell industry, and it`s advancements like that of Mr. T.H.J. Nijhuis that makes us so optimistic for the future."
As part of Cryo-Save`s educational and community outreach efforts, the Cryo-Save Young Investigator Award is yet another example of how the company supports the advancement of stem cell use in the medical field. Cryo-Save seeks to improve and expand stem cell knowledge among the general public and professional health community, as they see in stem cell therapy a huge potential in the treatment of various diseases.
More information:
Ccile Kastler - Communications Manager
cecile.kastler@cryo-save.com - tel. +41-(0) 79 827 80 98
Cryo-Save: http://www.cryo-save.com/group
Cryo-Save, the leading international family stem cell bank, stores more than 200,000 samples from umbilical cord blood, cord tissue and adipose tissue. There are already many diseases treatable by the use of stem cells, and the number of treatments will only increase. Driven by its international business strategy, Cryo-Save is now represented in over 40 countries on 3 continents, with ultra-modern processing and storage facilities in Belgium, Germany, Dubai, India and South Africa.
See the article here:
Cryo-Save Group N.V. awards researcher at grand opening of its new headquarters
Posted in Stem Cell Treatments
Comments Off on Cryo-Save Group N.V. awards researcher at grand opening of its new headquarters
'Master Molecule' May Improve Stem Cell Treatment of Heart Attacks
Posted: June 21, 2012 at 12:18 am
Newswise Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.
Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. For reasons not completely understood, however, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a master molecule that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.
In a study published in the June 5 online edition of the journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.
In biology, finding a central regulator like this is like finding a pot of gold, said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.
The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients.
Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patients own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient.
Using the stem cells from the patients own heart prevented the rejection problems that often occur when tissue is transplanted from another person.
Levchenkos team wanted to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.
During their research, the Johns Hopkins team members wondered whether changing the surface where the harvested stem cells grew would affect the cells development. The researchers were surprised to find that growing the cells on a surface whose rigidity resembled that of heart tissue caused the stem cells to grow faster and to form blood vessels. A cell population boom occurred far less often in the stem cells grown in the glass or plastic dishes typically used in biology labs. This result also suggested why formation of cardiac scar tissue, a structure with very different rigidity, can inhibit stem cells naturally residing there from regenerating the heart.
Looking further into this stem cell differentiation, the Johns Hopkins researchers found that the increased cell growth occurred when there was a decrease in the presence of the protein p190RhoGAP.
Excerpt from:
'Master Molecule' May Improve Stem Cell Treatment of Heart Attacks
Posted in Stem Cell Treatments
Comments Off on 'Master Molecule' May Improve Stem Cell Treatment of Heart Attacks