Page 85«..1020..84858687..90100..»

Category Archives: Stem Cells

Stem Cell Arthritis Treatment | limbus stem cells – Video

Posted: October 7, 2014 at 6:53 am


Stem Cell Arthritis Treatment | limbus stem cells
http://www.arthritistreatmentcenter.com Another major coup for stem cell research next Researchers regrow corneas using adult human stem cells Loren Grush re...

By: Nathan Wei

Read the original post:
Stem Cell Arthritis Treatment | limbus stem cells - Video

Posted in Stem Cells | Comments Off on Stem Cell Arthritis Treatment | limbus stem cells – Video

Curing cancer with stem cells | Sergey Zhidovinov | TEDxEkaterinburg – Video

Posted: October 7, 2014 at 6:53 am


Curing cancer with stem cells | Sergey Zhidovinov | TEDxEkaterinburg
This talk was given at a local TEDx event, produced independently of the TED Conferences. We all know how dangerous cancer is. Whole world is looking for the magic cure that will fight this...

By: TEDx Talks

See the article here:
Curing cancer with stem cells | Sergey Zhidovinov | TEDxEkaterinburg - Video

Posted in Stem Cells | Comments Off on Curing cancer with stem cells | Sergey Zhidovinov | TEDxEkaterinburg – Video

Barcoding tool for stem cells developed

Posted: October 7, 2014 at 6:53 am

A 7-year-project to develop a barcoding and tracking system for tissue stem cells has revealed previously unrecognized features of normal blood production: New data from Harvard Stem Cell Institute scientists at Boston Children's Hospital suggests, surprisingly, that the billions of blood cells that we produce each day are made not by blood stem cells, but rather their less pluripotent descendants, called progenitor cells. The researchers hypothesize that blood comes from stable populations of different long-lived progenitor cells that are responsible for giving rise to specific blood cell types, while blood stem cells likely act as essential reserves.

The work, supported by a National Institutes of Health Director's New Innovator Award and published in Nature, suggests that progenitor cells could potentially be just as valuable as blood stem cells for blood regeneration therapies.

This new research challenges what textbooks have long read: That blood stem cells maintain the day-to-day renewal of blood, a conclusion drawn from their importance in re-establishing blood cell populations after bone marrow transplants -- a fact that still remains true. But because of a lack of tools to study how blood forms in a normal context, nobody had been able to track the origin of blood cells without doing a transplant.

Boston Children's Hospital scientist Fernando Camargo, PhD, and his postdoctoral fellow Jianlong Sun, PhD, addressed this problem with a tool that generates a unique barcode in the DNA of all blood stem cells and their progenitor cells in a mouse. When a tagged cell divides, all of its descendant cells possess the same barcode. This biological inventory system makes it possible to determine the number of stem cells/progenitors being used to make blood and how long they live, as well as answer fundamental questions about where individual blood cells come from.

"There's never been such a robust experimental method that could allow people to look at lineage relationships between mature cell types in the body without doing transplantation," Sun said. "One of the major directions we can now go is to revisit the entire blood cell hierarchy and see how the current knowledge holds true when we use this internal labeling system."

"People have tried using viruses to tag blood cells in the past, but the cells needed to be taken out of the body, infected, and re-transplanted, which raised a number of issues," said Camargo, who is a member of Children's Stem Cell Program and an associate professor in Harvard University's Department of Stem Cell and Regenerative Biology. "I wanted to figure out a way to label blood cells inside of the body, and the best idea I had was to use mobile genetic elements called transposons."

A transposon is a piece of genetic code that can jump to a random point in DNA when exposed to an enzyme called transposase. Camargo's approach works using transgenic mice that possess a single fish-derived transposon in all of their blood cells. When one of these mice is exposed to transposase, each of its blood cells' transposons changes location. The location in the DNA where a transposon moves acts as an individual cell's barcode, so that if the mouse's blood is taken a few months later, any cells with the same transposon location can be linked back to its parent cell.

The transposon barcode system took Camargo and Sun seven years to develop, and was one of Camargo's first projects when he opened his own lab at the Whitehead Institute for Biomedical Research directly out of grad school. Sun joined the project after three years of setbacks, and accomplished an experimental tour de force to reach the conclusions in the Nature paper, which includes data on how many stem cells or progenitor cells contribute to the formation of immune cells in mouse blood.

With the original question of how blood arises in a non-transplant context answered, the researchers are now planning to explore many more applications for their barcode tool.

"We are also tremendously excited to use this tool to barcode and track descendants of different stem cells or progenitor cells for a range of conditions, from aging, to the normal immune response," Sun said. "We first used this technology for blood analysis, however, this system can also help address basic questions about cell populations in solid tissue. You can imagine being able to look at tumor progression or identify the precise origins of cancer cells that have broken off from a tumor and are now circulating in the blood."

Here is the original post:
Barcoding tool for stem cells developed

Posted in Stem Cells | Comments Off on Barcoding tool for stem cells developed

New technique allows scientists to find rare stem cells within bone marrow

Posted: October 7, 2014 at 6:53 am

PUBLIC RELEASE DATE:

6-Oct-2014

Contact: Sarah McDonnell s_mcd@mit.edu 617-253-8923 Massachusetts Institute of Technology @MITnews

CAMBRIDGE, MA -- Deep within the bone marrow resides a type of cells known as mesenchymal stem cells (MSCs). These immature cells can differentiate into cells that produce bone, cartilage, fat, or muscle a trait that scientists have tried to exploit for tissue repair.

In a new study that should make it easier to develop such stem-cell-based therapies, a team of researchers from MIT and the Singapore-MIT Alliance in Research and Technology (SMART) has identified three physical characteristics of MSCs that can distinguish them from other immature cells found in the bone marrow. Based on this information, they plan to create devices that could rapidly isolate MSCs, making it easier to generate enough stem cells to treat patients.

Until now, there has been no good way to separate MSCs from bone marrow cells that have already begun to differentiate into other cell types, but share the same molecules on the cell surface. This may be one reason why research results vary among labs, and why stem-cell treatments now in clinical trials are not as effective as they could be, says Krystyn Van Vliet, an MIT associate professor of materials science and engineering and biological engineering and a senior author of the paper, which appears in the Proceedings of the National Academy of Sciences this week.

"Some of the cells that you're putting in and calling stem cells are producing a beneficial therapeutic outcome, but many of the cells that you're putting in are not," Van Vliet says. "Our approach provides a way to purify or highly enrich for the stem cells in that population. You can now find the needles in the haystack and use them for human therapy."

Lead authors of the paper are W.C. Lee, a former graduate student at the National University of Singapore and SMART, and Hui Shi, a former SMART postdoc. Other authors are Jongyoon Han, an MIT professor of electrical engineering and biological engineering, SMART researchers Zhiyong Poon, L.M. Nyan, and Tanwi Kaushik, and National University of Singapore faculty members G.V. Shivashankar, J.K.Y. Chan, and C.T. Lim.

Physical markers

MSCs make up only a small percentage of cells in the bone marrow. Other immature cells found there include osteogenic cells, which have already begun the developmental path toward becoming cartilage- or bone-producing cells. Currently, researchers try to isolate MSCs based on protein markers found on the cell surfaces. However, these markers are not specific to MSCs and can also yield other types of immature cells that are more differentiated.

Continued here:
New technique allows scientists to find rare stem cells within bone marrow

Posted in Stem Cells | Comments Off on New technique allows scientists to find rare stem cells within bone marrow

Barcoding tool for stem cells: New technology that tracks the origin of blood cells challenges scientific dogma

Posted: October 7, 2014 at 6:53 am

Oct 05, 2014 New genetic barcoding technology allows scientists to identify differences in origin between individual blood cells. Credit: Camargo Lab

A 7-year-project to develop a barcoding and tracking system for tissue stem cells has revealed previously unrecognized features of normal blood production: New data from Harvard Stem Cell Institute scientists at Boston Children's Hospital suggests, surprisingly, that the billions of blood cells that we produce each day are made not by blood stem cells, but rather their less pluripotent descendants, called progenitor cells. The researchers hypothesize that blood comes from stable populations of different long-lived progenitor cells that are responsible for giving rise to specific blood cell types, while blood stem cells likely act as essential reserves.

The work, supported by a National Institutes of Health Director's New Innovator Award and published in Nature, suggests that progenitor cells could potentially be just as valuable as blood stem cells for blood regeneration therapies.

This new research challenges what textbooks have long read: That blood stem cells maintain the day-to-day renewal of blood, a conclusion drawn from their importance in re-establishing blood cell populations after bone marrow transplantsa fact that still remains true. But because of a lack of tools to study how blood forms in a normal context, nobody had been able to track the origin of blood cells without doing a transplant.

Boston Children's Hospital scientist Fernando Camargo, PhD, and his postdoctoral fellow Jianlong Sun, PhD, addressed this problem with a tool that generates a unique barcode in the DNA of all blood stem cells and their progenitor cells in a mouse. When a tagged cell divides, all of its descendant cells possess the same barcode. This biological inventory system makes it possible to determine the number of stem cells/progenitors being used to make blood and how long they live, as well as answer fundamental questions about where individual blood cells come from.

"There's never been such a robust experimental method that could allow people to look at lineage relationships between mature cell types in the body without doing transplantation," Sun said. "One of the major directions we can now go is to revisit the entire blood cell hierarchy and see how the current knowledge holds true when we use this internal labeling system."

"People have tried using viruses to tag blood cells in the past, but the cells needed to be taken out of the body, infected, and re-transplanted, which raised a number of issues," said Camargo, who is a member of Children's Stem Cell Program and an associate professor in Harvard University's Department of Stem Cell and Regenerative Biology. "I wanted to figure out a way to label blood cells inside of the body, and the best idea I had was to use mobile genetic elements called transposons."

A transposon is a piece of genetic code that can jump to a random point in DNA when exposed to an enzyme called transposase. Camargo's approach works using transgenic mice that possess a single fish-derived transposon in all of their blood cells. When one of these mice is exposed to transposase, each of its blood cells' transposons changes location. The location in the DNA where a transposon moves acts as an individual cell's barcode, so that if the mouse's blood is taken a few months later, any cells with the same transposon location can be linked back to its parent cell.

The transposon barcode system took Camargo and Sun seven years to develop, and was one of Camargo's first projects when he opened his own lab at the Whitehead Institute for Biomedical Research directly out of grad school. Sun joined the project after three years of setbacks, and accomplished an experimental tour de force to reach the conclusions in the Nature paper, which includes data on how many stem cells or progenitor cells contribute to the formation of immune cells in mouse blood.

With the original question of how blood arises in a non-transplant context answered, the researchers are now planning to explore many more applications for their barcode tool.

Continued here:
Barcoding tool for stem cells: New technology that tracks the origin of blood cells challenges scientific dogma

Posted in Stem Cells | Comments Off on Barcoding tool for stem cells: New technology that tracks the origin of blood cells challenges scientific dogma

Stem Cells, Malaria, and the Genetics of Drug Response Highlighted at Penn's 9th Annual Translational Medicine Symposium

Posted: October 7, 2014 at 6:53 am

Contact Information

Available for logged-in reporters only

Newswise PHILADELPHIA The University of Pennsylvanias Institute for Translational Medicine and Therapeutics 9th Annual International Symposium (ITMAT), Progress in Translational Science: Emerging Therapeutic Modalities, will be held on October 13-14. The symposium will feature outstanding speakers from the United States and abroad to address topics at the core of translational science. Speakers will include experts researching advances in stem cell biology, single cell metabolomics, and infectious diseases.

Date: Monday and Tuesday, October 13 - 14, 2013, starting at 8:30 am.

Location: Smilow Center for Translational Research, Rubenstein Auditorium and Lobby, 3400 Civic Center Blvd, Philadelphia, PA 19104

Additional details:

The symposium will feature presentations in six major areas:

Challenges and Opportunities in Translational Research Stem Cell Therapeutics Movement in Malaria Focus on the Single Cell Variability in Drug Response Translational Immunology

Garret A. FitzGerald, MD, Director of ITMAT, will host the event. Speakers and talks include:

Kenneth S. Zaret, PhD, Joseph Leidy Professor of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania Discovering networks and diagnostics for pancreatic cancer progression

Read more:
Stem Cells, Malaria, and the Genetics of Drug Response Highlighted at Penn's 9th Annual Translational Medicine Symposium

Posted in Stem Cells | Comments Off on Stem Cells, Malaria, and the Genetics of Drug Response Highlighted at Penn's 9th Annual Translational Medicine Symposium

Stem Cells, Malaria, and the Genetics of Drug Response at Translational Medicine Symposium

Posted: October 7, 2014 at 6:53 am

PUBLIC RELEASE DATE:

6-Oct-2014

Contact: Karen Kreeger karen.kreeger@uphs.upenn.edu 215-349-5658 University of Pennsylvania School of Medicine @PennMedNews

PHILADELPHIA The University of Pennsylvania's Institute for Translational Medicine and Therapeutics' 9th Annual International Symposium (ITMAT), Progress in Translational Science: Emerging Therapeutic Modalities, will be held on October 13-14. The symposium will feature outstanding speakers from the United States and abroad to address topics at the core of translational science. Speakers will include experts researching advances in stem cell biology, single cell metabolomics, and infectious diseases.

Date: Monday and Tuesday, October 13 - 14, 2013, starting at 8:30 am.

Location: Smilow Center for Translational Research, Rubenstein Auditorium and Lobby, 3400 Civic Center Blvd, Philadelphia, PA 19104

Additional Details

The symposium will feature presentations in six major areas:

Garret A. FitzGerald, MD, Director of ITMAT, will host the event. Speakers and talks include:

Carl H. June, MD, Richard W. Vague Professor in Immunotherapy, Program Director of Translational Research, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Driving CARs for cancer: are we there yet?

Read more:
Stem Cells, Malaria, and the Genetics of Drug Response at Translational Medicine Symposium

Posted in Stem Cells | Comments Off on Stem Cells, Malaria, and the Genetics of Drug Response at Translational Medicine Symposium

Stemtech Review | Stem Cell Nutrition | Stem Cell Energy | Stemtech Review – Video

Posted: October 5, 2014 at 12:47 pm


Stemtech Review | Stem Cell Nutrition | Stem Cell Energy | Stemtech Review
Stemtech Review | Stem Cell Nutrition | Stem Cell Energy | Stemtech Review VISIT WEBSITE: ~~~ http://stemcellenergy.stemtech.com ~~~ The Stem Cell Nutrition Company are pioneers in stem...

By: anmdgizmo67

See the original post here:
Stemtech Review | Stem Cell Nutrition | Stem Cell Energy | Stemtech Review - Video

Posted in Stem Cells | Comments Off on Stemtech Review | Stem Cell Nutrition | Stem Cell Energy | Stemtech Review – Video

Embryonic stem cells to tackle major killer diseases

Posted: October 3, 2014 at 5:47 pm

Stem cells are getting serious. Two decades after they were discovered, human embryonic stem cells (hESCs) are being tested as a treatment for two major diseases: heart failure and type 1 diabetes.

Treatments based on hESCs have been slow coming because of controversy over their source and fears that they could turn into tumours once implanted. They have enormous potential because hESCs can be grown into any of the body's 200 tissue types, unlike the stems cells isolated from adult tissues that have mostly been used in treatments until now.

In the most rigorous test of embryonic stems cells' potential yet, six people with heart failure will be treated in France with a patch of immature heart cells made from hESCs, and 40 people with diabetes in the US will receive pouches containing immature pancreatic cells made from hESCs.

The hope is that the heart patch will help to regenerate heart muscle destroyed by heart attacks. Trials in monkeys showed that the patch could regenerate up to 20 per cent of the lost muscle within two months.

The pancreatic cells are supposed to mature into beta cells, which produce the hormone insulin. These would act as a substitute for the cells that are destroyed by the immune systems of people with type 1 diabetes.

Although treatments based on hESCs have already been given to people with a type of age-related blindness and with spinal paralysis, the latest trials are the therapy's first foray into major fatal diseases. Heart disease is the biggest killer in the world, and cases of type 1 diabetes are growing.

"Both are landmark studies, and are different from what we've had up to now," says Chris Mason, head of regenerative medicine at University College London. "The blindness already being treated is serious, but diabetes and heart failure are killers, and things we don't have solutions for, so this brings hESCs into the mainstream."

Some people with heart disease and diabetes have received experimental treatments based on stem cells isolated from adult tissue, often from bone marrow, with varying degrees of success. These mesenchymal stem cells, or MSCs, can mature into several tissues including muscle, bone, cartilage and fat but there is no guarantee that they will grow into cardiac muscle.

A recent review of 23 trials involving 1255 people with heart disease found that there is some evidence that recipients of stem cell therapy are less likely to die or be readmitted to hospital a year or more after treatment than people who received standard treatment.

The hope is that using hESCs in place of MSCs will improve these outcomes further because they can be grown from scratch into cells exactly suited to their medical purpose. "We think our cells are more committed to the heart lineage," says Philippe Menasch, head of the French trial at the Georges Pompidou European Hospital in Paris.

Link:
Embryonic stem cells to tackle major killer diseases

Posted in Stem Cells | Comments Off on Embryonic stem cells to tackle major killer diseases

Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model

Posted: October 2, 2014 at 8:47 am

Contact Information

Available for logged-in reporters only

Newswise NIBIB-funded researchers report in a recent study that they were able to use human stem cells to grow brand new nerves in a rat model of spinal cord injury. The neurons grew tens of thousands of axons that extended the entire length of the spinal cord, out from the area of injury. The procedure employs induced pluripotent stem cells or iPSCs, which are stem cells that can be driven to become a specific cell type -- in this case nerve cells-- to repair an experimentally damaged spinal cord. The iPSCs were made using the skin cells of an 86 year old male, demonstrating that even in an individual of advanced age, the ability of the cells to be turned into a different cell type (pluripotency) remained.

Lead author Paul Lu, Ph.D., and senior author Mark Tuszynski, MD, PhD, and their team at the University of California - San Diego Center for Neural Repair, performed the experiment building on earlier work using human embryonic stem cells in a similar rat spinal cord injury model.1 The current work, described in the August 20 edition of Neuron, was performed to determine whether iPSCs could be used for spinal cord repair.2

The group is interested in using iPSCs to develop a potential repair for spinal cord injury (SCI) because with iPSCs, they can use cells taken from the person with the injury, rather than use donated cells such as human embryonic stem cells, which are foreign to the patient. This is an important advantage because it avoids any immune rejection that could occur with foreign repair cells.

In the current work, the iPSC-derived human neurons were embedded in a matrix that included a cocktail of growth factors, which was grafted onto the experimentally injured spinal cord in the rat model. After three months the researchers observed extensive axonal growth projecting from the grafted neurons, reaching long distances in both directions along the spinal cord, from the brain to the tail end of the spinal cord. The axons appeared to make connections with the existing rat neurons. Importantly, the axons extended out from the site of injury, an area with a complex combination of post-injury factors and processes going on, some of which are known to hinder neuronal growth and axon extension.

In the earlier study, Tuszynski and colleagues used human embryonic stem cells in a similar grafting experiment. In that study, axons grew out from the site of spinal cord injury and the treated animals had some restoration of ability to move affected limbs. The current study was undertaken to see if the same result could be achieved using the iPSC method to create the neurons used in the graft. While the use of iPSCs in the current study resulted in dramatic growth of the grafted neurons across the central nervous system of the rats, the treated animals did not show restoration of function in their forelimbs (hands). The researchers note that the human cells were still at a fairly early stage of development when function was tested, and that more time will likely be needed to be able to detect functional improvement.

Tuszynski went on to state, There are several important considerations that future studies will address. These include whether the extensive number of human axons make correct or incorrect connections; whether the new connections contain the appropriate chemical neurotransmitters to form functional connections; whether connections, once formed, are permanent or transient; and exactly how long it takes human cells to become mature. These considerations will determine how viable a candidate these cells might be for use in humans.

Lu, Tuszynski and their colleagues hope to identify the most promising neural stem cell type for repairing spinal cord injuries. Tuszynski emphasizes their commitment to a careful, methodical approach: Ultimately, we can only translate our animal studies into reliable human treatments by testing different neural stem cell types, carefully analyzing the results, and improving the procedure. We are encouraged, but we continue to work hard to rationally to identify the optimal cell type and procedural methods that can be safely and effectively used for human clinical trials.

1. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Cell. 2012 Sep 14;150(6):1264-73

See original here:
Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model

Posted in Stem Cells | Comments Off on Grafted Stem Cells Display Vigorous Growth in Spinal Cord Injury Model

Page 85«..1020..84858687..90100..»