Some genetic variations difficult to evaluate using current stem cell modeling techniques – Phys.Org

Posted: March 13, 2017 at 8:42 pm

March 13, 2017

Some heritable but unstable genetic mutations that are passed from parent to affected offspring may not be easy to investigate using current human-induced pluripotent stem cell (hiPSC) modeling techniques, according to research conducted at The Icahn School of Medicine at Mount Sinai and published March 14, in the journal Stem Cell Reports. The study serves to caution stem cell biologists that certain rare mutations, like the ones described in the study, are difficult to recreate in laboratory-produced stem cells.

Stem cell-based disease modeling involves taking cells from patients, such as skin cells, and introducing genes that reprogram the cells into human-induced pluripotent stem cells (hiPSCs). These "master cells" are unspecialized, meaning they can be pushed to become any type of mature cell needed for research, such as skin, liver or brain. The hiPSCs are capable of renewing themselves over a long period of time, and this emerging stem cell modeling technique is helping elucidate the genetic and cellular mechanisms of many different disorders.

"Our study describes how a complex chromosomal rearrangement genetically passed by a patient with psychosis to her affected son was not well recreated in laboratory-produced stem cells," says Kristen Brennand, PhD, Associate Professor of Genetics and Genomic Sciences, Neuroscience, and Psychiatry at the Icahn School of Medicine, and the study's senior investigator. "As stem cell biologists dive into studying brain disorders, we all need to know that this type of rare mutation is very hard to model with induced stem cells."

To investigate the genetic underpinnings of psychosis, the research team used hiPSCs from a mother diagnosed with bipolar disease with psychosis, and her son, diagnosed with schizoaffective disorder. In addition to the normal 46 chromosomes (23 pairs), the cells in mother and son had a very small extra chromosome, less than 1/10th normal size. This microduplication of genes is increasingly being linked to schizophrenia and bipolar disorders, and the extra chromosomal bit, known as a marker (mar) element, falls into the category of abnormally duplicated genes.

For the first time, the Mount Sinai research team tried to make stem cells from adult cells with this type of mar defect. Through the process, they discovered that the mar element was frequently lost during the reprogramming process.

While mar elements in the general population are rare (less than .05 percent in newborn infants), more than 30 percent of individuals with these defects are clinically abnormal, and mar elements are also significantly more likely to be found in patients with developmental delays.

The study found that the mother's cells were mosaic, meaning some cells were normal while others were not, and the hiPSCs the team created accurately replicated that condition: some were normal and some had the extra mar chromosome. But the technique did not work well with the son's cells. While all of his cells should have had the mar element, as with his mother, some of the reprogrammed stem cells did not contain the extra bit of chromosome.

"We realized we kept losing the mutation in the stem cells we made, and the inability to recreate cells with mar elements may hamper some neuropsychiatric research," says Dr. Brennand. "The bottom line is that it is essential that stem cell biologists look for existing mar elements in the cells they study, in order to check that they are retained in the new stem cells."

Explore further: Researchers engineer new thyroid cells

Researchers have discovered a new efficient way to generate thyroid cells, known as thyrocytes, using genetically modified embryonic stem cells.

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Researchers at the RIKEN Brain Science Institute have used human-induced pluripotent stem cells (hiPSCs) to identify a characteristic of abnormal brain development in schizophrenia. Published in Translational Psychiatry, ...

Oxygen in the air is well known to cause damaging rust on cars through a process known as oxidation. Similarly, a research group at Lund University in Sweden, has now identified that certain cells during embryonic development ...

Induced pluripotent stem cells (iPSCs)adult cells reprogrammed back to an embryonic stem cell-like statemay better model the genetic contributions to each patient's particular disease. In a process called cellular reprogramming, ...

Successful reprogramming of muscle cells derived from biopsies of patients with Andersen's syndrome (AS) led to the formation of induced pluripotent stem (iPS) cells that can serve as a valuable model for understanding the ...

New research by Professor Beth Shapiro of the UC Santa Cruz Genomics Institute and University of Alberta Professor Duane Froese has identified North America's oldest bison fossils and helped construct a bison genealogy establishing ...

Scientists have determined the first 3D structures of intact mammalian genomes from individual cells, showing how the DNA from all the chromosomes intricately folds to fit together inside the cell nuclei.

Scientists have documented many cases in which the timing of seasonal events, such as the flowering of plants or the emergence of insects, is changing as a result of climate change. Now researchers studying a grassland ecosystem ...

Most fish live either in fresh water or salt water, but others, including tilapia, have the remarkable ability to physiologically adjust to varying salinity levelsa trait that may be critically important as climate change ...

When an individual cell needs to move somewhere, it manages just fine on its own. It extends protrusions from its leading edge and retracts the trailing edge to scoot itself along, without having to worry about what the other ...

A subset of protein complexes whose role has long been thought to consist only of chemically degrading and discarding of proteins no longer needed by cells appears to also play a role in sending messages from one nerve cell ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Continue reading here:
Some genetic variations difficult to evaluate using current stem cell modeling techniques - Phys.Org

Related Posts