Stem cells in plants and animals behave surprisingly similarly – Phys.Org

Posted: May 12, 2017 at 2:42 pm

May 12, 2017

A new study from Lund University in Sweden shows that the behaviour of stem cells in plants and animals is surprisingly similar. The researchers were able to produce mathematical equations that reveal very small differences in the behaviour of the proteins. The results can hopefully be used in stem cell research involving humans.

"The plant and animal kingdoms were separated through evolution more than 1.6 billion years ago. It is surprising that the interactions between the handful of key genes that control the fate of each stem cell are so similar in both cases", says Carsten Peterson, professor at the Faculty of Science at Lund University.

Carsten Peterson is one of the researchers behind the recent study on differences and similarities between animal and plant stem cells. With a background in theoretical physics, he and his colleagues have tackled the stem cells from a different perspective, which proved successful.

By formulating mathematical equations, the researchers have performed a detailed study of the proteins that are central to the stem cells in mammals and plants. The proteins are linked to the genes that control the stem cells. In particular, the researchers have studied how these proteins mutually affect one another through interaction as the cells evolve.

"Although the proteins in mammalian and plant stem cells are very different when studied separately, there are major similarities in the ways in which they interact, that is, how they strengthen or weaken each other", says Carsten Peterson.

Stem cells are a hot topic in medical contexts, especially when it comes to cancer and autoimmune diseases. A stem cell is capable of evolving into several different types of cells and is thus a sort of mother cell to all of the body's specialised cell types. In animals, these specialised cells can never return to a stem cell state on their own. In plants, however, they can.

"Specialised cells of plants can return to being stem cells without external manipulation. In the plant world, there is a natural reprogramming process", says Carsten Peterson.

The mathematical equations show that very small differences are sufficient to explain why plant cells are so flexible while cells of mammals require artificial reprogramming to return to a stem cell state.

"When cells are influenced externally artificially for animals or naturally for plants the minor differences in interaction play a greater role, and the differences appear to be of greater significance", says Carsten Peterson.

He believes that a lot of work remains with regard to the efficiency of reprogramming of animal cells and therefore hopes that insights from the plant world can contribute. The current study provides clues about why it is so much easier to make a cell go back to being a stem cell in plants compared to mammals.

Reprogramming is a frequently used word in stem cell contexts today, ever since the Nobel Prize in Medicine and Physiology in 2012. One of the prize winners, Shinya Yamanaka, had demonstrated how to externally manipulate cells to return to an embryonic stem cell state by increasing the concentration of certain proteins. Turning back the clock this way has enormous potential in clinical contexts. For example, on an individual basis, skin cells can be reprogrammed into embryonic stem cells, and be made into desired cell types by manipulating certain proteins. This process is known as regenerative medicine.

The study was recently published in the scientific journal PLoS ONE.

Explore further: Study shows adipose stem cells may be the cell of choice for therapeutic applications

More information: Victor Olariu et al. Different reprogramming propensities in plants and mammals: Are small variations in the core network wirings responsible?, PLOS ONE (2017). DOI: 10.1371/journal.pone.0175251

Journal reference: PLoS ONE

Provided by: Lund University

An international team of researchers, funded by Morris Animal Foundation, has shown that adipose (fat) stem cells might be the preferred stem cell type for use in canine therapeutic applications, including orthopedic diseases ...

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the ...

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

A protein that stays attached on chromosomes during cell division plays a critical role in determining the type of cell that stem cells can become. The discovery, made by EPFL scientists, has significant implications for ...

Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences ...

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

New lung "organoids"tiny 3-D structures that mimic features of a full-sized lunghave been created from human pluripotent stem cells by researchers at Columbia University Medical Center (CUMC). The team used the organoids ...

University of Dundee scientists have solved a mystery concerning one of the most fundamental processes in cell biology, in a new discovery that they hope may help to tackle cancer one day.

A recent research paper in the Journal of Heredity reveals that there are three sub-species of snow leopard. Until now, researchers had assumed this species, Panthera uncia, was monotypic.

Adult stem cells have the ability to transform into many types of cells, but tracing the path individual stem cells follow as they mature and identifying the molecules that trigger these fateful decisions are difficult in ...

Leading hospital "superbugs," known as the enterococci, arose from an ancestor that dates back 450 million yearsabout the time when animals were first crawling onto land (and well before the age of dinosaurs), according ...

In their quest to replicate themselves, viruses have gotten awfully good at tricking human cells into pumping out viral proteins. That's why scientists have been working to use viruses as forces for good: to deliver useful ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See more here:
Stem cells in plants and animals behave surprisingly similarly - Phys.Org

Related Posts