Several recent studies in high-profile journals reported to have genetically engineered neurons to become responsive to magnetic fields. In doing so, the authors could remotely control the activity of particular neurons in the brain, and even animal behaviorpromising huge advances in neuroscientific research and speculation for applications even in medicine. We envision a new age of magnetogenetics is coming, one 2015 study read.
But now, two independent teams of scientists bring those results into question. In studies recently posted as preprints to bioRxiv,the researchers couldnt replicate those earlier findings.
Both studies . . . appear quite meticulously executed from a biological standpointmultiple tests were performed across multiple biological testbeds, writes Polina Anikeeva, a materials and cognitive scientist at MIT, to The Scientist in an email. I applaud the authors for investing their valuable time and resources into trying to reproduce the results of their colleagues.
Being able to use small-scale magnetic fields to control cells or entire organisms would have enormous potential for research and medical therapies. It would be a less invasive method than optogenetics, which requires the insertion of optical fibers to transmit light pulses to specific groups of neurons, and would provide a more rapid means of inducing neural activity than chemogenetics, which sparks biochemical reactions that can take several seconds to stimulate neurons.
In a 2016 study in Nature, geneticist Jeffrey Friedman from Rockefeller University and colleagues reported to have stimulated neural activity in glucose-sensing neurons in the mouse hypothalamus. Those neurons fired when the animals were exposed to a magnetic field, causing blood glucose concentrations to rise and insulin levels to fall. Ultimately, the mice ate more.
What I find most impressive about these reports . . . is just the level of care and effort that has gone into this.
Markus Meister, Caltech
The researchers did so by genetically engineering a construct to be expressed specifically in those neurons. The introduced sequences coded for the iron-based blood cell protein ferritin coupled to the TRPV1 membrane channel, a temperature-sensitive protein that allows positively charged ions such as calcium to enter cells. Stimulation of ferritins iron through a magnetic field was thought to prompt TRPV1 to open, although the precise mechanism is unclear.
In a different 2016 study in Nature Neuroscience,neuroscientist Ali Gler of the University of Virginia and colleagues used a similar construct they named Magnetothis time coupling ferritin to the TRPV4 membrane protein, sensitive to mechanical forces as well as temperature changes. Expressing this in dopamine-receptor neurons in the mouse striatum caused the rodents to preferentially spend time in a magnetized area of their cage.
The year prior, researchers of Tsinghua University in Beijing had expressed the gene for a different iron proteinmembrane channel construct, dubbed MAR, in specific sensory neurons of the nematode worm Caenorhabditis elegans. Applying a magnetic field resulted in changes to the worms movement, they reported in Science Bulletin. All three research groups presented multiple lines of evidence to back up their claims, such as electrophysiologic techniques to monitor the activity of individual neurons in brain slices and in vitro calcium imaging assays, in addition to the behavioral studies.
The studies received a mix reception from the scientific community. Some, like Boston neuroscientist Steve Ramirez, were enthusiastic, calling the work badass on Twitter, while others were skeptical, critiquing the findings in journals and on blogs. That latter includes Markus Meister, a physicist-turned neuroscientist at Caltech, who says hes aware of several research groups that had difficulties replicating some of the findingsspurring some to conduct lengthy, systematic investigations of the function of these constructs.
The new replication studies used a range of methods to investigate whether the constructs work as described in earlier research. In one study, neurophysiologist Tansu Celikel of Radboud University in the Netherlands and his colleagues focused their research on the Magneto construct used in Glers study.
Like Glers group, they used a virus to deliver DNA encoding Magneto to neurons in the mouse cortex and waited two weeks for the cells there to express the construct. Using permanently implanted microelectrodes, they recorded cortical neural activity as they exposed the animals to a magnetic field. The stimulus didnt change the rate of action potentials in those neurons, they observed, and the same was true for in vitro experiments. We argue that the utility of Magneto to control neural activity in vivo is not warranted, the authors write in the preprint.
In the second study, neuroscientist Julius Zhu of the University of Virginia and his team conducted a systematic investigation of all three constructs that had been used in previous studies: Magneto, the TRPV1-ferritin complex developed by the Rockefeller group, and the MAR construct. (Gler, who is also at Virginia provided some materials for the experiments, but the two labs did not collaborate.)
Were anxious to understand what the basis for the differences between his results and ours are.
Jeffrey Friedman, Rockefeller University
Similar to Celikels findings, they observed that magnetic fields did not induce an electrical current in Magneto-expressing mouse hippocampal cells in culture, when the construct was delivered either with a plasmid or a virus. They did note, however, that both Magneto-expressing neurons as well as control cells that lacked the construct frequently displayed spontaneous changes in current that sometimes triggered the cells to fire an action potential. Based on this, they suggest that Glers reportedly magnetically triggered action potentials are likely to represent mismatched spontaneous firings.
The team appears to have had difficulties getting the construct expressed in cells at all. They used a plasmid encoding the Magneto construct to express it human kidney cells in culture, and made electrophysiological recordings of the cells. Neither a magnetic field nor the addition of a protein that stimulates TRPV4 elicited significant electrical currents in the cells. Interestingly, they did observe a current when they repeated these experiments with kidney cells that expressed the wildtype, unaltered version of the gene for TRPV4 expressed separately with ferritins gene. Together with other observations, this suggested that Magneto doesnt form a functional ion channel or incorporate into the plasma membrane, the authors suggest. The construct lacks a portion of the TRPV4 protein considered necessary for its placement in cellular membranes, the researchers note.
In testing the other constructs, Zhus group used viruses to express MAR in neurons from cultured rat hippocampal slices, and the TRPV1-ferritin construct in hypothalamic neurons in intact mouse brains. Again, electrophysiologic recordings did not detect a change in action potentials in any of the genetically modified cells when they were exposed to a magnetic field, although the cells did exhibit frequent spontaneous action potentials. Together, these results support the theoretical conclusion that Magneto, [MAR] and [the ferritin-TRPV1 construct] are incapable of controlling neuronal activity by producing magnetically-evoked action potentials, they write in the preprint. The senior authors of both studies both declined to comment out of concern it would interfere with the publication of their research in a peer-reviewed journal.
What I find most impressive about these reports . . . is just the level of care and effort that has gone into this, remarks Meister. Neither he nor Anikeeva are surprised by the new findings; both have previously critiqued earlier studies. By now, if it worked as advertised, you would expect a small industry of people doing this and using it for all kinds of purposes, Meister says.
Neither have a good alternative explanation for the observations reported in earlier studies. Meister suggests it may boil down to human error, while Anikeeva speculates that tethering ferritin, a relatively bulky protein, to TRPV proteins might possibly make the channels leaky and lower the threshold for action potential firing.
Gler, who developed the Magneto construct, points out several differences between his study and the two preprints that may account for the contradictory results. The groups used different viruses to introduce the constructs to cells, and for the most part, didnt allow as much time for them to be expressed in neurons as Glers group did, which may be why they didnt achieve full presentation in the cellular membranes. For some experiments, they also didnt verify that the viruses were actually expressing the constructs before they introduced them into cells, he adds. Some batches will not work, and you have to systematically make sure that your tools are up to par, he tells The Scientist.
We acknowledge that the system we have developed is a little finnicky in that it requires a lot of optimization to get it to work, he adds. I think that is where the setback is: everybody wants to have something that works immediately. Magnetogenetics techniques will take some time to refine until they are reliable, he says.
Friedman, the senior author of the Nature study, is similarly puzzled why Zhus team couldnt replicate his findings. We take the Zhu paper seriously and . . . were anxious to understand what the basis for the differences between his results and ours are, he says. Zhus team expressed the construct indiscriminately into all neurons in the hypothalamus rather than selectively in a subset of cells, as Friedman did. Some hypothalamic neurons are more easily excitable than others, he explains. Its possible that by restricting the cells we were recording from, we may have gotten a cell type that . . . seems to be more rather than less responsive.
Friedman stresses that his team did multiple experiments as part of their study to ensure that they werent mistakenly attributing spontaneous neural activity to a magnetic effect. For instance, in the same Nature study they repeated their experiments with an altered version of the TRPV1 channel that acts as a chloride channel rather than a calcium channel. Whereas calcium influx would excite a neuron, chloride flux would inhibit it, Friedman explains. We get opposite effects when we use the inhibitory version of the construct instead of the activating one, he says. We wouldnt see that if it was spontaneous activity.
Both Gler and Friedman note there are three additional studies that report having successfully used similar genetic techniques to excite neurons under magnetic fields. In 2017, a team of researchers engineered a construct made of the genes for ferritin and the heat-sensitive channelseither TRPV1 or TRPV4into neural crest cells of chick embryos, claiming to have stimulated the neurons with electromagnetic fields. In 2018, another group combined the TRPV1-ferritin construct with a protein involved in cell migration, and showed that human kidney cells expressing the introduced genes had an unusual migration pattern when under a magnetic field. And earlier this year, a third set of researchers replicated Glers findings by expressing a TRPV4-ferritin construct in a human kidney cell line to better understand its function, also observing a response to magnetic stimulation.
Its not quite clear how these constructs might work. One possibility is that magnetic fields cause the iron atoms in the ferritin to flip periodically, generating heat that causes the temperature-sensitive TRPV1 channel to open. Another option is that the stimulated ferritin would tug open the central pore of the membrane channels. The group that was able to replicate Glers results in kidney cells suggested that the magnetic sensitivity of the TRPV4 channel has more to do with thermal energy than with mechanical force.
Meister has argued that these proposed mechanisms conflict with basic laws of physics, on the grounds that ferritin doesnt have the characteristics necessary to prompt a mechanical stimulus under a magnetic field. In several back-of-the-envelope calculations outlined in his 2016 eLife paper, Meister shows that magnetic interactions between ferritin and a magnetic field would be between five and ten orders of magnitude too weak to generate the mechanical force to cause a membrane channel to open.
The core of ferritin consists not of a truly magnetic substance, but ferrihydrite, which is only weakly paramagnetic at room temperature. This means that the molecule requires a more powerful magnetic field to induce a magnetic momentthat is, to align all iron atoms with the magnetic fieldthan those used in previous studies. Even if the iron ferritin was truly magnetic, the forces would still be too small to account for the proposed mechanisms, notes Anikeeva, who made similar arguments in a separate eLife paper.
Those biophysical arguments could be overcome if physicist Mladen Barbic of the Howard Hughes Medical Institutes Janelia research campus is right. Earlier this year in eLifehe proposed several new alternative mechanisms whereby magnetic stimulation of ferritin could open an ion channel. One, for instance, is based on the Einstein-de-Haas effect, by which iron oxide particles would rotate under a magnetic field, producing energy which could perhaps cause the ion channel to open. Other groups are exploring the possibility of a chemical mechanism through the release of free iron, Friedman says. I think all these are on the table, he says.
The lure of a non-invasive method to control neural activity has kept scholars in pursuit of a reliable method of magnetogenetics, including those that arent based on ferritin. For instance, Anikeevas group has shown that its possible to open TRPV1 and stimulate neuronal activity with synthetic nanoparticles made of the iron oxide magnetite. The particles are known to dissipate heat, and that opens the channels, she explains. However, these particles cant be genetically expressed because they are synthetic. Rather, they have to be injected into the brain.
Another route is to look at organisms in nature that have already evolved systems that respond to magnetic fields. Magnetotactic bacteria, for instance, produce particles similar to the ones Annikeeva synthesized in her lab, she writes. Scientists could also examine the mechanisms that migratory organisms such as pigeons, butterflies, and fish use to sense magnetic fields to navigate, she suggests.
What may help speed these efforts along, and help untangle the controversies around magnetogenetics, is better communication between physics and neuroscience, Anikeeva notes. There should be more interaction between physical and biological sciences, especially in the context of training of both biologists and engineers in each others disciplines and vocabularies.
Katarina Zimmeris a New Yorkbased freelance journalist. Find her on Twitter@katarinazimmer.
Continued here:
Two Studies Fail to Replicate Magnetogenetics Research - The Scientist
- More Stem Cells Extracted For Later Use For My MS [Last Updated On: March 14th, 2011] [Originally Added On: March 14th, 2011]
- Macular Degeneration Improved With Stem Cells [Last Updated On: April 2nd, 2011] [Originally Added On: April 2nd, 2011]
- Macular Degeneration Improved With Stem Cells [Last Updated On: April 3rd, 2011] [Originally Added On: April 3rd, 2011]
- Cells That Heal Us From Cradle To Grave: A Quantum Leap in Medical Science [Last Updated On: April 6th, 2011] [Originally Added On: April 6th, 2011]
- Stem Cell Patient Richard H. MS Treatment [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- STEM CELLS FOR MACULAR DEGENERATION Sam Smith's story.wmv [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- STEM CELLS FOR MACULAR DEGENERATION Sam Smith's story.wmv [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Dr. Janet Rossant, Premier's Summit Award 2010 recipient [Last Updated On: May 31st, 2011] [Originally Added On: May 31st, 2011]
- Visions Episode 92: Stem Cells Discovery [Last Updated On: May 31st, 2011] [Originally Added On: May 31st, 2011]
- PROSTATE CANCER and stem cells.wmv [Last Updated On: June 9th, 2011] [Originally Added On: June 9th, 2011]
- Stem Cells Used to Grow Windpipes [Last Updated On: June 10th, 2011] [Originally Added On: June 10th, 2011]
- Visions Episode 92: Stem Cells Discovery [Last Updated On: July 12th, 2011] [Originally Added On: July 12th, 2011]
- PROSTATE CANCER and stem cells [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- Doctors Use Stem Cells to Grow New Windpipes [Last Updated On: August 29th, 2011] [Originally Added On: August 29th, 2011]
- Sims 2 Mafia Story Part 7 - Farewell, Godfather/Stem Cell Medicine [Last Updated On: August 30th, 2011] [Originally Added On: August 30th, 2011]
- Regenerative Medicine: Pathways to Cure - Version 2.0 [Last Updated On: September 8th, 2011] [Originally Added On: September 8th, 2011]
- Stem Cell Research: Huntington's Disease [Last Updated On: September 10th, 2011] [Originally Added On: September 10th, 2011]
- Adult Stem Cell Therapy for COPD: One Man's Story [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Stem Cell Update from Panama 3 Years Later [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Stem Cell Update from Panama 3 Years Later [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- Regenerative Medicine and Applications of Stem Cell Research [Last Updated On: October 10th, 2011] [Originally Added On: October 10th, 2011]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Stem_Cell_Therapy_for_ALS.wmv - Video [Last Updated On: October 17th, 2011] [Originally Added On: October 17th, 2011]
- Spinal Cord Injury: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Stem Cells: The Hope The Hype and the Science - Video [Last Updated On: October 22nd, 2011] [Originally Added On: October 22nd, 2011]
- What are stem cells? How can they be used for medical benefit? - Video [Last Updated On: October 24th, 2011] [Originally Added On: October 24th, 2011]
- What are stem cells? How can they be used for medical benefit? - Video [Last Updated On: October 25th, 2011] [Originally Added On: October 25th, 2011]
- Batten Disease: Spotlight on Stem Cell Research - Stephen Huhn - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- The CIRM Creativity Awards: Training 21st Century Stem Cell Scientists - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- What Organ Shortage? Just Make Your Own! Stem Cells and Organ Engineering - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- StemEnhance is the Biggest Scientific Medical breakthrough of our time - World Exclusive! - Video [Last Updated On: November 9th, 2011] [Originally Added On: November 9th, 2011]
- StemEnhance is the Biggest Scientific Medical breakthrough of our time - World Exclusive! - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- Alumni Profile: Dr. John Tisdale, NIH Researcher, Stem Cell Transplants and Sickle Cell - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- Intel co-founder Andrew Grove gives keynote at 2011 World Stem Cell Summit in Pasadena - Video [Last Updated On: November 16th, 2011] [Originally Added On: November 16th, 2011]
- Austin Forum - Nov 1st (Highlights) - Video [Last Updated On: November 17th, 2011] [Originally Added On: November 17th, 2011]
- Stem Cell Based Therapies for Blindness: David Hinton - CIRM Science Writer's Seminar - Video [Last Updated On: November 18th, 2011] [Originally Added On: November 18th, 2011]
- Dr. Jordan Pomeroy discusses xeno-Free Derivation and Maintenance of Pluripotent Cell Lines - Video [Last Updated On: November 19th, 2011] [Originally Added On: November 19th, 2011]
- So Many Chemicals...So Little Time: Stem Cell Research and Environmental Health - Video [Last Updated On: November 19th, 2011] [Originally Added On: November 19th, 2011]
- Austin Forum - Nov 1st (Part 4 of 4) - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- Austin Forum - Nov 1st (Part 2 of 4) - Video [Last Updated On: November 23rd, 2011] [Originally Added On: November 23rd, 2011]
- Austin Forum - Nov 1st (Part 1 of 4) - Video [Last Updated On: November 24th, 2011] [Originally Added On: November 24th, 2011]
- Alan Trounson: Are stem cells the end of disease? - Video [Last Updated On: November 29th, 2011] [Originally Added On: November 29th, 2011]
- Alan Trounson: Are stem cells the end of disease? - Video [Last Updated On: November 29th, 2011] [Originally Added On: November 29th, 2011]
- A4M Stem Cell Fellowship Module II Preview - Video [Last Updated On: December 1st, 2011] [Originally Added On: December 1st, 2011]
- Auxogyn_ASRM_FINAL.mov - Video [Last Updated On: December 2nd, 2011] [Originally Added On: December 2nd, 2011]
- Bruce Lipton,making the connections part 1 - Video [Last Updated On: December 3rd, 2011] [Originally Added On: December 3rd, 2011]
- Assessment of Embryo Viability (Auxogyn_ASRM_First Prize) - Video [Last Updated On: December 4th, 2011] [Originally Added On: December 4th, 2011]
- What is Cord Blood Banking? The Medical Potential of Newborn Stem Cells - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- NAMCP 2011: Ravi Vij, MD, Associate Professor of Medicine, Washington University School of Medicine - Video [Last Updated On: December 9th, 2011] [Originally Added On: December 9th, 2011]
- StemCellTV Talks to Michael Werner of Alliance for Regenerative Medicine at Meeting on the Mesa - Video [Last Updated On: December 9th, 2011] [Originally Added On: December 9th, 2011]
- Future360 - Alan Trounson, CEO of the California Institute of Regenerative Medicine - Video [Last Updated On: December 9th, 2011] [Originally Added On: December 9th, 2011]
- 2011 World Stem Cell Summit Open Comments [Last Updated On: December 11th, 2011] [Originally Added On: December 11th, 2011]
- 2011 Summit: Keynote Address, CIRM's Translational Roadmap to Stem Cell Cures, Alan Trounson, PhD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 2011 Summit: Government [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- Autism Stem Cell Trip - Video [Last Updated On: December 17th, 2011] [Originally Added On: December 17th, 2011]
- GeneCell International Dental Pulp Stem Cell's Banking Services - Video [Last Updated On: December 21st, 2011] [Originally Added On: December 21st, 2011]
- GeneCell International Dental Pulp Stem Cell's Banking Services - Video [Last Updated On: December 22nd, 2011] [Originally Added On: December 22nd, 2011]
- Dr Tony Talebi discusses stem cell transplantation in Myeloma with Dr Ratzan - Video [Last Updated On: January 2nd, 2012] [Originally Added On: January 2nd, 2012]
- Craig Venter: Understanding Our Genes - A Step to Personalized Medicine | CIRM Spotlight on Genomics - Video [Last Updated On: January 27th, 2012] [Originally Added On: January 27th, 2012]
- Craig Venter: Understanding Our Genes - A Step to Personalized Medicine | CIRM Spotlight on Genomics - Video [Last Updated On: January 28th, 2012] [Originally Added On: January 28th, 2012]
- Aesthetic Plastic Surgery / Anti Aging Medicine: The Next Generation Symposium Attracts a World Class Faculty to New ... [Last Updated On: January 28th, 2012] [Originally Added On: January 28th, 2012]
- Lecture by stem cell researcher tomorrow [Last Updated On: January 29th, 2012] [Originally Added On: January 29th, 2012]
- Biobanking for Medicine: Technology and Market 2012-2022 [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 'Personalized medicine' gets $67.5M research boost [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- Clinical Trial for Myelofibrosis that Targets Cancer Stem Cells | CIRM Spotlight on Genomics - Video [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- An Overview of Data Trends in Autologous Stem Cell Research and Clinical Use - James P. Watson, MD - Video [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- An Overview of Data Trends in Autologous Stem Cell Research and Clinical Use - James P. Watson, MD - Video [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- Dr. Ramaswamy on Targeting Dormant Cancer Cells - Video [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- Daniel Kraft on Singularity 1 on 1 (part 3) - Video [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- Daniel Kraft on Singularity 1 on 1 (part 1) - Video [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- Statement - Rx&D Applauds Government of Canada for Investing in Personalized Medicine [Last Updated On: February 3rd, 2012] [Originally Added On: February 3rd, 2012]
- Molecules to Medicine: Plan B: The Tradition of Politics at the FDA [Last Updated On: February 3rd, 2012] [Originally Added On: February 3rd, 2012]
- 'Personalized medicine' gets $67.5M research boost [Last Updated On: February 3rd, 2012] [Originally Added On: February 3rd, 2012]
- The Pet Corner: Behold! The future of modern medicine is here [Last Updated On: February 4th, 2012] [Originally Added On: February 4th, 2012]
- Molecules to Medicine: Plan B: The Tradition of Politics at the FDA [Last Updated On: February 4th, 2012] [Originally Added On: February 4th, 2012]
- Treating Brain Injuries With Stem Cell Transplants - Promising Results [Last Updated On: February 4th, 2012] [Originally Added On: February 4th, 2012]
- Stem Cells to Treat Acne Scarring | Los Angeles | Hollywood | Beverly Hills - Video [Last Updated On: February 6th, 2012] [Originally Added On: February 6th, 2012]
- American CryoStem Completes Cell Processing for Clinical Study [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- IntelliCell Demonstrates at the American Sports Medicine Institute Held in Conjunction with and at the Andrews Sports ... [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- Meet the Founders of Cord Blood Registry - Video [Last Updated On: February 9th, 2012] [Originally Added On: February 9th, 2012]