Discovery Points to Better Treatments for Brain Tumors – UVA Health Newsroom

Posted: July 3, 2022 at 2:03 am

UVA Children's Daniel "Trey" Lee, MD, is a pioneer in CAR T-cell immunotherapy.

New research from UVA Cancer Center and UVA Childrens Hospital could enable CAR T-cell immunotherapy to treat two forms of brain cancer that are now almost inevitably fatal. The discovery could lead to better treatments for other solid tumors as well.

The new research identifies vulnerabilities on solid tumors, including the brain tumors glioblastoma anddiffuse intrinsic pontine glioma (DIPG), that CAR T-cell immunotherapy could attack. Both of these brain tumors lack effective treatments. Only 6.8% of patients with glioblastoma survive five years after diagnosis; children with DIPG live, on average, only nine months after diagnosis despite intensive brain radiation and chemotherapy.

Researchers have struggled for decades to find new therapies to treat these cancers.Our work strongly suggests that CAR T cells could be highly active in treating glioblastoma and DIPG, said UVA researcher Daniel Trey Lee, MD, a pioneer in the field of CAR T-cell immunotherapy. This CAR T-cell therapy could be a game-changer for deadly brain tumors, much like a different CAR T-cell product shifted the paradigm for how we treat patients with relapsed leukemia and lymphoma.

Chimeric antigen receptor (CAR) T-cell therapy weaponizes our natural immune cells to make them more effective cancer killers. It extracts a small number of white blood cells called T cells from a patients blood, then genetically modifies them to kill cancer. Those cells are then infused back into the patient, where they replicate into a vast army of cancer killers. The entire process takes about two weeks, as opposed to other processes that can take months.

CAR T-cell immunotherapy has had significant success in battling blood cancers, but it has been less effective against solid tumors. Lees new finding could enhance its ability to target these tumors that now resist CAR T-cell treatment.

His new work identifies specific targets on glioblastoma and DIPG cells that the immunotherapy could exploit. When tested in mice, the approach was very effective the tumors shrank or disappeared, and the weaponized immune cells proved long-lasting. The approach also avoided side effects that have previously hampered its use in people.

Particularly notable was the approachs effectiveness againstDIPG, a cancer that threads itself through the brain, making it extremely hard to treat. Lees immunotherapy approach shrank thetumors and improved survival among lab mice. The scientists note that the cancers invasive nature likely will continue to pose a challenge, especially when the cancers tentacles extend into vital areas of the brain, but the researchers were encouraged by the promising results.

Many solid tumors share the same vulnerabilities Lees team identified in glioblastoma andDIPG. That suggests the results could have wider applications for solid tumors.

We have already begun to see if we can use this same therapy to treat other tumors, like melanoma, breast cancer and the pediatric muscle tumor rhabdomyosarcoma, in the lab, said Lee, a pediatric oncologistat UVA Childrens and UVA Cancer Center. My team in the lab is working incredibly hard to understand how we can bring new and safer CAR T-cell therapies to the citizens of Virginia and beyond. Our findings in brain tumors represent a huge leap forward in doing just that, but there is much more work to be done.

While the new discovery has shown exciting promise, significantly more research will be needed before it can be translated into better treatments forpatients. This type of cutting-edge researchis an urgent mission of UVA Cancer Center, which is one of only 52 cancer centers in the country to be designated as a Comprehensive Cancer Center by the National Cancer Institute (NCI).The designationrecognizes elite cancer centers with the most outstanding cancer research and treatment programs in the nation.

UVA Cancer Center is the only Comprehensive Cancer Center in Virginia.

Lee and his team havepublished their latest findings in the Journal of Immunotherapy for Cancer. The research team consisted ofDustin A. Cobb,Jacopo de Rossi,Lixia Liu,Erin An andLee. Lee serves as a consultant to Juno Therapeutics/BMS, Harpoon Therapeutics and Amgen, and his spouse is an employee of Karyopharm Therapeutics. In addition, he and Cobb have a patent application pending based on the approach. UVA receives clinical trial funding from Kite Pharma/Gilead.

The work was funded by the Childhood Brain Tumor Foundation, The V Foundation for Cancer Research and UVAs Strategic Investment Fund.To keep up with the latest medical research news from UVA, subscribe to theMaking of Medicineblog

More here:
Discovery Points to Better Treatments for Brain Tumors - UVA Health Newsroom

Related Posts