General Information About Non-Small Cell Lung Cancer (NSCLC)
NSCLC is any type of epithelial lung cancer other than small cell lung cancer (SCLC). The most common types of NSCLC are squamous cell carcinoma, large cell carcinoma, and adenocarcinoma, but there are several other types that occur less frequently, and all types can occur in unusual histologic variants. Although NSCLCs are associated with cigarette smoke, adenocarcinomas may be found in patients who have never smoked. As a class, NSCLCs are relatively insensitive to chemotherapy and radiation therapy compared with SCLC. Patients with resectable disease may be cured by surgery or surgery followed by chemotherapy. Local control can be achieved with radiation therapy in a large number of patients with unresectable disease, but cure is seen only in a small number of patients. Patients with locally advanced unresectable disease may achieve long-term survival with radiation therapy combined with chemotherapy. Patients with advanced metastatic disease may achieve improved survival and palliation of symptoms with chemotherapy, targeted agents, and other supportive measures.
Estimated new cases and deaths from lung cancer (NSCLC and SCLC combined) in the United States in 2016:[1]
Lung cancer is the leading cause of cancer-related mortality in the United States.[1] The 5-year relative survival rate from 1995 to 2001 for patients with lung cancer was 15.7%. The 5-year relative survival rate varies markedly depending on the stage at diagnosis, from 49% to 16% to 2% for patients with local, regional, and distant-stage disease, respectively.[2]
NSCLC arises from the epithelial cells of the lung of the central bronchi to terminal alveoli. The histological type of NSCLC correlates with site of origin, reflecting the variation in respiratory tract epithelium of the bronchi to alveoli. Squamous cell carcinoma usually starts near a central bronchus. Adenocarcinoma and bronchioloalveolar carcinoma usually originate in peripheral lung tissue.
Anatomy of the respiratory system.
Smoking-related lung carcinogenesis is a multistep process. Squamous cell carcinoma and adenocarcinoma have defined premalignant precursor lesions. Before becoming invasive, lung epithelium may undergo morphological changes that include the following:
Dysplasia and carcinoma in situ are considered the principal premalignant lesions because they are more likely to progress to invasive cancer and less likely to spontaneously regress.
In addition, after resection of a lung cancer, there is a 1% to 2% risk per patient per year that a second lung cancer will occur.[3]
NSCLC is a heterogeneous aggregate of histologies. The most common histologies include the following:
These histologies are often classified together because approaches to diagnosis, staging, prognosis, and treatment are similar.
Increasing age is the most important risk factor for most cancers. Other risk factors for lung cancer include:
The single most important risk factor for the development of lung cancer is smoking. For smokers, the risk for lung cancer is on average tenfold higher than in lifetime nonsmokers (defined as a person who has smoked <100 cigarettes in his or her lifetime). The risk increases with the quantity of cigarettes, duration of smoking, and starting age.
Smoking cessation results in a decrease in precancerous lesions and a reduction in the risk of developing lung cancer. Former smokers continue to have an elevated risk for lung cancer for years after quitting. Asbestos exposure may exert a synergistic effect of cigarette smoking on the lung cancer risk.[19]
A significant number of patients cured of their smoking-related lung cancer may develop a second malignancy. In the Lung Cancer Study Group trial of 907 patients with stage T1, N0 resected tumors, the rate was 1.8% per year for nonpulmonary second cancers and 1.6% per year for new lung cancers.[20] Other studies have reported even higher risks of second tumors in long-term survivors, including rates of 10% for second lung cancers and 20% for all second cancers.[21]
Because of the persistent risk of developing second lung cancers in former smokers, various chemoprevention strategies have been evaluated in randomized control trials. None of the phase III trials with the agents beta carotene, retinol, 13-cis-retinoic acid, [alpha]-tocopherol, N-acetylcysteine, or acetylsalicylic acid has demonstrated beneficial, reproducible results.[18,22-25][Level of evidence: 1iiA] Chemoprevention of second primary cancers of the upper aerodigestive tract is undergoing clinical evaluation in patients with early-stage lung cancer.
Refer to the PDQ summaries on Lung Cancer Prevention and Smoking in Cancer Care for more information.
In patients considered at high risk for developing lung cancer, the only screening modality for early detection that has been shown to alter mortality is low-dose helical computed tomography (CT) scanning.[26] Studies of lung cancer screening with chest radiography and sputum cytology have failed to demonstrate that screening lowers lung cancer mortality rates.
(Refer to the Screening by low-dose helical computed tomography subsection in the PDQ summary on Lung Cancer Screening for more information.)
Lung cancer may present with symptoms or be found incidentally on chest imaging. Symptoms and signs may result from the location of the primary local invasion or compression of adjacent thoracic structures, distant metastases, or paraneoplastic phenomena. The most common symptoms at presentation are worsening cough or chest pain. Other presenting symptoms include the following:
Symptoms may result from local invasion or compression of adjacent thoracic structures such as compression involving the esophagus causing dysphagia, compression involving the laryngeal nerves causing hoarseness, or compression involving the superior vena cava causing facial edema and distension of the superficial veins of the head and neck. Symptoms from distant metastases may also be present and include neurological defect or personality change from brain metastases or pain from bone metastases. Infrequently, patients may present with symptoms and signs of paraneoplastic diseases such as hypertrophic osteoarthropathy with digital clubbing or hypercalcemia from parathyroid hormone-related protein. Physical examination may identify enlarged supraclavicular lymphadenopathy, pleural effusion or lobar collapse, unresolved pneumonia, or signs of associated disease such as chronic obstructive pulmonary disease or pulmonary fibrosis.
Investigations of patients with suspected NSCLC focus on confirming the diagnosis and determining the extent of the disease. Treatment options for patients are determined by histology, stage, and general health and comorbidities of the patient.
The procedures used to determine the presence of cancer include the following:
Before a patient begins lung cancer treatment, an experienced lung cancer pathologist must review the pathologic material. This is critical because SCLC, which responds well to chemotherapy and is generally not treated surgically, can be confused on microscopic examination with NSCLC.[27] Immunohistochemistry and electron microscopy are invaluable techniques for diagnosis and subclassification, but most lung tumors can be classified by light microscopic criteria.
(Refer to the Staging Evaluation section of this summary for more information on tests and procedures used for staging.)
The identification of mutations in lung cancer has led to the development of molecularly targeted therapy to improve the survival of subsets of patients with metastatic disease.[28] In particular, subsets of adenocarcinoma now can be defined by specific mutations in genes encoding components of the epidermal growth factor receptor (EGFR) and downstream mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinases (PI3K) signaling pathways. These mutations may define mechanisms of drug sensitivity and primary or acquired resistance to kinase inhibitors.
Other genetic abnormalities of potential relevance to treatment decisions include translocations involving the anaplastic lymphoma kinase (ALK)-tyrosine kinase receptor, which are sensitive to ALK inhibitors, and amplification of MET (mesenchymal epithelial transition factor), which encodes the hepatocyte growth factor receptor. MET amplification has been associated with secondary resistance to EGFR tyrosine kinase inhibitors.
Multiple studies have attempted to identify the prognostic importance of a variety of clinicopathologic factors.[21,29-32] Factors that have correlated with adverse prognosis include the following:
For patients with inoperable disease, prognosis is adversely affected by poor performance status and weight loss of more than 10%. These patients have been excluded from clinical trials evaluating aggressive multimodality interventions.
In multiple retrospective analyses of clinical trial data, advanced age alone has not been shown to influence response or survival with therapy.[47]
Refer to the separate treatment sections for each stage of NSCLC in this summary for more information about prognosis.
Because treatment is not satisfactory for almost all patients with NSCLC, eligible patients should be considered for clinical trials. Information about ongoing clinical trials is available from the NCI website.
Other PDQ summaries containing information related to lung cancer include the following:
Malignant non-small cell epithelial tumors of the lung are classified by the World Health Organization (WHO)/International Association for the Study of Lung Cancer (IASLC). There are three main subtypes of non-small cell lung cancer (NSCLC), including the following:
There are numerous additional subtypes of decreasing frequency.[1]
Most squamous cell carcinomas of the lung are located centrally, in the larger bronchi of the lung. Squamous cell carcinomas are linked more strongly with smoking than other forms of NSCLC. The incidence of squamous cell carcinoma of the lung has been decreasing in recent years.
Adenocarcinoma is now the most common histologic subtype in many countries, and subclassification of adenocarcinoma is important. One of the biggest problems with lung adenocarcinomas is the frequent histologic heterogeneity. In fact, mixtures of adenocarcinoma histologic subtypes are more common than tumors consisting purely of a single pattern of acinar, papillary, bronchioloalveolar, and solid adenocarcinoma with mucin formation.
Criteria for the diagnosis of bronchioloalveolar carcinoma have varied widely in the past. The current WHO/IASLC definition is much more restrictive than that previously used by many pathologists because it is limited to only noninvasive tumors.
If stromal, vascular, or pleural invasion are identified in an adenocarcinoma that has an extensive bronchioloalveolar carcinoma component, the classification would be an adenocarcinoma of mixed subtype with predominant bronchioloalveolar pattern and a focal acinar, solid, or papillary pattern, depending on which pattern is seen in the invasive component. However, the future of bronchioloalveolar carcinoma as a distinct clinical entity is unclear; a multidisciplinary expert panel representing the IASLC, the American Thoracic Society, and the European Respiratory Society proposed a major revision of the classification of adenocarcinomas in 2011 that entails a reclassification of what was called bronchioloalveolar carcinoma into newly defined histologic subgroups.
The following variants of adenocarcinoma are recognized in the WHO/IASLC classification:
In addition to the general category of large cell carcinoma, several uncommon variants are recognized in the WHO/IASLC classification, including the following:
Basaloid carcinoma is also recognized as a variant of squamous cell carcinoma, and rarely, adenocarcinomas may have a basaloid pattern; however, in tumors without either of these features, they are regarded as a variant of large cell carcinoma.
LCNEC is recognized as a histologically high-grade non-small cell carcinoma. It has a very poor prognosis similar to that of small cell lung cancer (SCLC). Atypical carcinoid is recognized as an intermediate-grade neuroendocrine tumor with a prognosis that falls between typical carcinoid and high-grade SCLC and LCNEC.
Neuroendocrine differentiation can be demonstrated by immunohistochemistry or electron microscopy in 10% to 20% of common NSCLCs that do not have any neuroendocrine morphology. These tumors are not formally recognized within the WHO/IASLC classification scheme because the clinical and therapeutic significance of neuroendocrine differentiation in NSCLC is not firmly established. These tumors are referred to collectively as NSCLC with neuroendocrine differentiation.
This is a group of rare tumors. Spindle cell carcinomas and giant cell carcinomas comprise only 0.4% of all lung malignancies, and carcinosarcomas comprise only 0.1% of all lung malignancies. In addition, this group of tumors reflects a continuum in histologic heterogeneity as well as epithelial and mesenchymal differentiation. On the basis of clinical and molecular data, biphasic pulmonary blastoma is regarded as part of the spectrum of carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements.
The identification of mutations in lung cancer has led to the development of molecularly targeted therapy to improve the survival of subsets of patients with metastatic disease.[2] In particular, subsets of adenocarcinoma now can be defined by specific mutations in genes encoding components of the epidermal growth factor receptor (EGFR) and downstream mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinases (PI3K) signaling pathways. These mutations may define mechanisms of drug sensitivity and primary or acquired resistance to kinase inhibitors. Other mutations of potential relevance to treatment decisions include:
These mutations are mutually exclusive, except for those involving PI3KCA and BRAF mutations, EGFR mutations, or ALK translocations.[3,4]
EGFR and ALK mutations predominate in adenocarcinomas that develop in nonsmokers, and KRAS and BRAF mutations are more common in smokers or former smokers. EGFR mutations strongly predict the improved response rate and progression-free survival of EGFR inhibitors. In a set of 2,142 lung adenocarcinoma specimens from patients treated at Memorial Sloan Kettering Cancer Center, EGFR exon 19 deletions and L858R were found in 15% of tumors from former smokers (181 of 1,218; 95% confidence interval [CI], 1317), 6% from current smokers (20 of 344; 95% CI, 49), and 52% from never-smokers (302 of 580; 95% CI, 4856; P < .001 for ever- vs. never-smokers).[5]
Fusions of ALK with EML4 genes form translocation products that occur in ranges from 3% to 7% in unselected NSCLC and are responsive to pharmacological inhibition of ALK by agents such as crizotinib. Sensitizing fusions of ALK with other genes have also been reported. Other mutations that occur in less than 5% of NSCLC tumors include:
BRAF mutations are mutually exclusive of EGFR and KRAS mutations. Somatic mutations in MAP2K1 (also known as MEK) have been identified in 1% of NSCLC. MET oncogene encodes hepatocyte growth factor receptor. Amplification of this gene has been associated with secondary resistance to EGFR tyrosine kinase inhibitors.
In non-small cell lung cancer (NSCLC), the determination of stage is important in terms of therapeutic and prognostic implications. Careful initial diagnostic evaluation to define the location and to determine the extent of primary and metastatic tumor involvement is critical for the appropriate care of patients.
In general, symptoms, physical signs, laboratory findings, or perceived risk of distant metastasis lead to an evaluation for distant metastatic disease. Additional tests such as bone scans and computed tomography (CT)/magnetic resonance imaging (MRI) of the brain may be performed if initial assessments suggest metastases or if patients with stage III disease are under consideration for aggressive local and combined modality treatments.
Stage has a critical role in the selection of therapy. The stage of disease is based on a combination of clinical factors and pathological factors.[1] The distinction between clinical stage and pathological stage should be considered when evaluating reports of survival outcome.
Procedures used to determine staging include the following:
Procedures used to obtain tissue samples include bronchoscopy, mediastinoscopy, or anterior mediastinotomy. Pathological staging of NSCLC requires the following:
Prognostic and treatment decisions are based on some of the following factors:
At diagnosis, patients with NSCLC can be divided into the following three groups that reflect both the extent of the disease and the treatment approach:
Surgical staging of the mediastinum is considered standard if accurate evaluation of the nodal status is needed to determine therapy.
Accurate staging of the mediastinal lymph nodes provides important prognostic information.
Evidence (nodal status):
CT scanning is primarily used for determining the size of the tumor. The CT scan should extend inferiorly to include the liver and adrenal glands. MRI scans of the thorax and upper abdomen do not appear to yield advantages over CT scans.[4]
Evidence (CT scan):
The wider availability and use of FDG-PET scanning for staging has modified the approach to staging mediastinal lymph nodes and distant metastases.
Randomized trials evaluating the utility of FDG-PET scanning in potentially resectable NSCLC report conflicting results in terms of the relative reduction in the number of noncurative thoracotomies.
Although the current evidence is conflicting, FDG-PET scanning may improve results of early-stage lung cancer by identifying patients who have evidence of metastatic disease that is beyond the scope of surgical resection and that is not evident by standard preoperative staging procedures.
Evidence (FDG-PET scan):
Decision analyses demonstrate that FDG-PET scanning may reduce the overall costs of medical care by identifying patients with falsely negative CT scans in the mediastinum or otherwise undetected sites of metastases.[9-11] Studies concluded that the money saved by forgoing mediastinoscopy in FDG-PET-positive mediastinal lesions was not justified because of the unacceptably high number of false-positive results.[9-11] A randomized study found that the addition of FDG-PET scanning to conventional staging was associated with significantly fewer thoracotomies.[12] A second randomized trial evaluating the impact of FDG-PET scanning on clinical management found that FDG-PET scanning provided additional information regarding appropriate stage but did not lead to significantly fewer thoracotomies.[13]
The combination of CT imaging and FDG-PET scanning has greater sensitivity and specificity than CT imaging alone.[14]
Evidence (CT/FDG-PET scan):
For patients with clinically operable NSCLC, the recommendation is for a biopsy of mediastinal lymph nodes that were found to be larger than 1 cm in shortest transverse axis on chest CT scan or were found to be positive on FDG-PET scan. Negative FDG-PET scanning does not preclude biopsy of radiographically enlarged mediastinal lymph nodes. Mediastinoscopy is necessary for the detection of cancer in mediastinal lymph nodes when the results of the CT scan and FDG-PET scan do not corroborate each other.
Patients at risk for brain metastases may be staged with CT or MRI scans. One study randomly assigned 332 patients with potentially operable NSCLC and no neurological symptoms to brain CT or MRI imaging to detect occult brain metastasis before lung surgery. MRI showed a trend towards a higher preoperative detection rate than CT scan (P = .069), with an overall detection rate of approximately 7% from pretreatment to 12 months after surgery.[17] Patients with stage I or stage II disease had a detection rate of 4% (i.e., eight detections out of 200 patients); however, individuals with stage III disease had a detection rate of 11.4% (i.e., 15 detections out of 132 patients). The mean maximal diameter of the brain metastases was significantly smaller in the MRI group. Whether the improved detection rate of MRI translates into improved outcome remains unknown. Not all patients are able to tolerate MRI, and for these patients contrast-enhanced CT scan is a reasonable substitute.
Numerous nonrandomized, prospective, and retrospective studies have demonstrated that FDG-PET scanning seems to offer diagnostic advantages over conventional imaging in staging distant metastatic disease; however, standard FDG-PET scans have limitations. FDG-PET scans may not extend below the pelvis and may not detect bone metastases in the long bones of the lower extremities. Because the metabolic tracer used in FDG-PET scanning accumulates in the brain and urinary tract, FDG-PET scanning is not reliable for detection of metastases in these sites.[17]
The Revised International System for Staging Lung Cancer, based on information from a clinical database of more than 5,000 patients, was adopted in 2010 by the American Joint Committee on Cancer (AJCC) and the Union Internationale Contre le Cancer.[18,19] These revisions provide greater prognostic specificity for patient groups; however, the correlation between stage and prognosis predates the widespread availability of PET imaging.
Summary of Changes
This staging system is now recommended for the classification of both NSCLC and small cell lung carcinomas and for carcinoid tumors of the lung.[19]
The T (primary tumor) classifications have been redefined as follows:[19]
No changes have been made to the N (regional lymph nodes) classification. However, a new international lymph node map defining the anatomical boundaries for lymph node stations has been developed.
The M (distant metastasis) classifications have been redefined as follows:
The AJCC has designated staging by TNM classification to define NSCLC.[19]
In non-small cell lung cancer (NSCLC), results of standard treatment are poor except for the most localized cancers. All newly diagnosed patients with NSCLC are potential candidates for studies evaluating new forms of treatment.
Surgery is the most potentially curative therapeutic option for this disease. Postoperative chemotherapy may provide an additional benefit to patients with resected NSCLC. Radiation therapy combined with chemotherapy can produce a cure in a small number of patients and can provide palliation in most patients. Prophylactic cranial irradiation (PCI) may reduce the incidence of brain metastases, but there is no evidence of a survival benefit and the effect of PCI on quality of life is not known.[1,2] In patients with advanced-stage disease, chemotherapy or epidermal growth factor receptor (EGFR) kinase inhibitors offer modest improvements in median survival, though overall survival is poor.[3,4]
Chemotherapy has produced short-term improvement in disease-related symptoms in patients with advanced NSCLC. Several clinical trials have attempted to assess the impact of chemotherapy on tumor-related symptoms and quality of life. In total, these studies suggest that tumor-related symptoms may be controlled by chemotherapy without adversely affecting overall quality of life;[5,6] however, the impact of chemotherapy on quality of life requires more study. In general, medically fit elderly patients with good performance status obtain the same benefits from treatment as younger patients.
The identification of mutations in lung cancer has led to the development of molecularly targeted therapy to improve the survival of subsets of patients with metastatic disease.[7] In particular, genetic abnormalities in EGFR, MAPK, and PI3K signaling pathways in subsets of NSCLC may define mechanisms of drug sensitivity and primary or acquired resistance to kinase inhibitors. EGFR mutations strongly predict the improved response rate and progression-free survival of inhibitors of EGFR. Fusions of ALK with EML4 and other genes form translocation products that occur in ranges from 3% to 7% in unselected NSCLC and are responsive to pharmacological inhibition of ALK by agents such as crizotinib. MET oncogene encodes hepatocyte growth factor receptor. Amplification of this gene has been associated with secondary resistance to EGFR tyrosine kinase inhibitors.
The standard treatment options for each stage of NSCLC are presented in Table 11.
In addition to the standard treatment options presented in Table 11, treatment options under clinical evaluation include the following:
Several small series have reported that reduction in fluorodeoxyglucose-positron emission tomography (FDG-PET) after chemotherapy, radiation therapy, or chemoradiation therapy correlates with pathological complete response and favorable prognosis.[8-15] Studies have used different timing of assessments, FDG-PET parameters, and cutpoints to define FDG-PET response. Reduction in maximum standardized uptake value (SUV) of higher than 80% predicted for complete pathological response with a sensitivity of 90%, specificity of 100%, and accuracy of 96%.[16] Median survival after resection was greater for patients with tumor SUV values of lower than 4 (56 months vs. 19 months).[15] Patients with complete metabolic response following radiation therapy were reported to have median survivals of 31 months versus 11 months.[17]
FDG-PET may be more sensitive and specific than computed tomography (CT) scan in assessing response to induction therapy. Optimal timing of imaging remains to be defined; however, one study suggests that greater sensitivity and specificity of FDG-PET is achieved if repeat imaging is delayed until 30 days after radiation therapy.[16]
There is no clear role for routine posttreatment PET-CT scans.[18][Level of evidence: 3iiA]
Evidence (surveillance imaging after radiation therapy with or without chemotherapy):
Check the list of NCI-supported cancer clinical trials that are now accepting patients with non-small cell lung cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.
General information about clinical trials is also available from the NCI website.
In occult lung cancer, a diagnostic evaluation often includes chest x-ray and selective bronchoscopy with close follow-up (e.g., computed tomography scan), when needed, to define the site and nature of the primary tumor; tumors discovered in this fashion are generally early stage and curable by surgery.
After discovery of the primary tumor, treatment involves establishing the stage of the tumor. Therapy is identical to that recommended for other non-small cell lung cancer (NSCLC) patients with similar stage disease.
Standard treatment options for occult NSCLC include the following:
Check the list of NCI-supported cancer clinical trials that are now accepting patients with occult non-small cell lung cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.
General information about clinical trials is also available from the NCI website.
Stage 0 non-small cell lung cancer (NSCLC) frequently progresses to invasive cancer.[1-3] Patients may be offered surveillance bronchoscopies and, if lesions are detected, potentially curative therapies.
Standard treatment options for stage 0 NSCLC include the following:
Segmentectomy or wedge resection are used to preserve maximum normal pulmonary tissue since patients with stage 0 NSCLC are at a high risk for second lung cancers. Because these tumors are by definition noninvasive and incapable of metastasizing, they should be curable with surgical resection; however, such lesions, when identified, are often centrally located and may require a lobectomy.
Patients with central lesions may be candidates for curative endobronchial therapy. Endobronchial therapies that preserve lung function include photodynamic therapy, electrocautery, cryotherapy, and Nd-YAG laser therapy.[3-6]
Go here to read the rest:
Non-Small Cell Lung Cancer Treatment (PDQ)Health ...
- Stem Cell Therapy for Kidney Failure [Last Updated On: April 1st, 2011] [Originally Added On: April 1st, 2011]
- Dogged by pain -- stem cell therapy for dogs [Last Updated On: June 24th, 2013] [Originally Added On: April 3rd, 2011]
- Dogs now getting stem cell therapy [Last Updated On: April 8th, 2011] [Originally Added On: April 8th, 2011]
- Stem Cells for Spinal Cord Injury: Community Outreach San Diego 2011 - Trish Stressman [Last Updated On: April 11th, 2011] [Originally Added On: April 11th, 2011]
- Stem Cell Treatment Doing Wonders For Autistic Boy [Last Updated On: April 14th, 2011] [Originally Added On: April 14th, 2011]
- Is Stem Cell Therapy right for your pet [Last Updated On: April 14th, 2011] [Originally Added On: April 14th, 2011]
- Regenerative Medicines [Last Updated On: May 19th, 2011] [Originally Added On: May 19th, 2011]
- Stem Cell Therapy for Multiple Sclerosis [Last Updated On: June 24th, 2013] [Originally Added On: May 20th, 2011]
- Adult Stem Cell Therapy for Multiple Sclerosis [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Heart Failure Patient After Adult Stem Cell Therapy [Last Updated On: June 24th, 2013] [Originally Added On: May 30th, 2011]
- Stem Cell Therapy For Alzheimer's/Dementia [Last Updated On: June 24th, 2013] [Originally Added On: June 2nd, 2011]
- Stem Cell Therapy For Alzheimer's/Dementia [Last Updated On: June 7th, 2011] [Originally Added On: June 7th, 2011]
- Stem Cell Therapy Injections [Last Updated On: June 24th, 2013] [Originally Added On: June 8th, 2011]
- Clinical Advances in Adult Stem Cell Therapy: Dr. Jorge Paz [Last Updated On: June 24th, 2013] [Originally Added On: June 11th, 2011]
- Stem Cell Therapy MS: Sam Harrell and The Superbowl [Last Updated On: June 12th, 2011] [Originally Added On: June 12th, 2011]
- Stem Cell Therapy MS: Sam Harrell and The Superbowl [Last Updated On: June 24th, 2013] [Originally Added On: June 14th, 2011]
- Lou Gehrig's Disease (ALS): UCSD Team's Stem Cell Therapy Rationale [Last Updated On: June 14th, 2011] [Originally Added On: June 14th, 2011]
- Stem Cell Injection Treatment - Stem Cell Therapy [Last Updated On: June 18th, 2011] [Originally Added On: June 18th, 2011]
- edivet America Dog Arthritis Stem Cell Therapy Stem Cell Therapy for Equine 1 [Last Updated On: June 24th, 2013] [Originally Added On: June 23rd, 2011]
- Lou Gehrig's Disease (ALS): UCSD Team's Stem Cell Therapy Approach [Last Updated On: June 25th, 2011] [Originally Added On: June 25th, 2011]
- Adult Stem Cell Therapy Clinical Advances - Dr. Jorge Paz in San Diego, CA March 2011 [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Adult Stem Cell Therapy Clinical Advances - Dr. Jorge Paz in San Diego, CA March 2011 [Last Updated On: June 24th, 2013] [Originally Added On: July 15th, 2011]
- Duffy Gets Stem Cell Therapy [Last Updated On: June 24th, 2013] [Originally Added On: July 15th, 2011]
- WAVE3 News Adipose Stem Cell Therapy [Last Updated On: June 24th, 2013] [Originally Added On: July 16th, 2011]
- Lou Gehrig's Disease (ALS): UCSD Team's Stem Cell Therapy Approach [Last Updated On: June 24th, 2013] [Originally Added On: July 16th, 2011]
- Clinical Advances in Adult Stem Cell Therapy - Dr. Jorge Paz Rodriguez (Miami) [Last Updated On: June 24th, 2013] [Originally Added On: July 21st, 2011]
- Stem Cell Therapy for Cerebral Palsy - Holly Catalano [Last Updated On: June 24th, 2013] [Originally Added On: August 2nd, 2011]
- Bone Marrow Aspiration - Stem Cell Therapy [Last Updated On: August 5th, 2011] [Originally Added On: August 5th, 2011]
- Dr. Chein discusses Autologous Stem Cell Therapy - Palm Springs [Last Updated On: June 24th, 2013] [Originally Added On: August 12th, 2011]
- Stroke Victim Improved With Stem Cell Therapy. More at http://www.stemcellfusion.com [Last Updated On: June 24th, 2013] [Originally Added On: August 14th, 2011]
- Dr. Craig Saunders Adult Stem Cell Therapy [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Embryonic stem cell therapy in China (www.esctherapy.com) [Last Updated On: June 24th, 2013] [Originally Added On: August 16th, 2011]
- Ying Liu discusses IPS cell therapy for ALS [Last Updated On: June 24th, 2013] [Originally Added On: August 16th, 2011]
- Stem Cell Therapy: Healing Force of the future [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- Benefits of STEM CELL THERAPY - Adipose Tissue [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- Stem Cell Therapy Skin Repair and Anti-Wrinkle Cream [Last Updated On: June 24th, 2013] [Originally Added On: September 24th, 2011]
- Cardiac Stem Cell Therapy [Last Updated On: June 24th, 2013] [Originally Added On: September 24th, 2011]
- Holly Huber on Recovery: Stem Cell Therapy for Multiple Sclerosis Community Outreach Dallas, TX 2011 [Last Updated On: June 24th, 2013] [Originally Added On: September 24th, 2011]
- Stroke Victim Improved With Stem Cell Therapy. More at http://www.stemcellfusion.com [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- A Touch of Love® - Stem Cell Therapy for Pets-Dr. Danny DeRose-Part 3 [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- Adult Stem Cell Therapy for Multiple Sclerosis [Last Updated On: June 24th, 2013] [Originally Added On: September 28th, 2011]
- Multiple Sclerosis Stem Cell Therapy News Coverage [Last Updated On: June 24th, 2013] [Originally Added On: October 1st, 2011]
- The Spinal Cord Journey - Stem cell therapy stories from three spinal cord injury patients [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Peyton Manning Stem Cell Therapy: Some Doctors Cry Foul Over European Treatment - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Stem-Cell-Therapy-in-China.wmv - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Randolph veterinarian uses new stem cell therapy on ailing pets - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 13th, 2011]
- Stem Cell Therapy for Rheumatoid Arthritis - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 14th, 2011]
- Holly Huber on Recovery: Stem Cell Therapy for Multiple Sclerosis Community Outreach Dallas, TX 2011 - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Affordable Stem Cell Therapy in Guatemala (2hrs from Miami) - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 15th, 2011]
- Stem Cell Research: Macular Degeneration - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Duffy Gets Stem Cell Therapy - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- VetCell's StemRegen - the original and best stem cell therapy for equine tendon injuries - Video [Last Updated On: October 20th, 2011] [Originally Added On: October 20th, 2011]
- Macular degeneration - Stem Cell therapy (English subtitles) - Video [Last Updated On: October 20th, 2011] [Originally Added On: October 20th, 2011]
- Stem Cell Therapy for Rheumatoid Arthritis - Community Outreach Dallas - Darnell Morris - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 21st, 2011]
- Adult Stem Cell Therapy for Congestive Heart Failure [Last Updated On: June 24th, 2013] [Originally Added On: October 21st, 2011]
- Stem Cell Therapy for Critical Limb Ischemia: First Choice or Last Ditch? - Video [Last Updated On: October 22nd, 2011] [Originally Added On: October 22nd, 2011]
- WAVE3News Adipose Stem Cell Therapy - Video [Last Updated On: October 22nd, 2011] [Originally Added On: October 22nd, 2011]
- Stem Cell Therapy in Cardiac Disease - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 24th, 2011]
- Stem Cell Treatment for Autism: Community Outreach Miami, Florida - May 2011 - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 24th, 2011]
- Pre Post n 6 Months Post Stem Cell Therapy of Dystonic Cerebral Palsy - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 24th, 2011]
- Stem Cell Treatment for Rheumatoid Arthritis - "I am basically pain free." - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- UMBILICAL CORD STEM CELL THERAPY - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 26th, 2011]
- Stem Cell Therapy for Peripheral Artery Disease - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 26th, 2011]
- Multiple Sclerosis Adult Stem Cell Therapy - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 26th, 2011]
- Stem Cell Therapy for Multiple Sclerosis Stimulates IDO - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 26th, 2011]
- HIV/AIDS: Spotlight on Stem Cell Research - John Zaia - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- Stem cell treatment by Adiva Health Care India after Spinal Cord Injury - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- Stem Cell Treatment for Spinal Cord Injury - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Lou Gehrig's Disease: Stem Cell Therapy Pre-Clinical Studies - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Stem Cell Treatment for Spinal Cord Injury - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 28th, 2011]
- Holly Huber on Recovery: Stem Cell Therapy for Multiple Sclerosis Community Outreach San Diego CA - Video [Last Updated On: June 24th, 2013] [Originally Added On: October 28th, 2011]
- Stem Cell Treatment for Rheumatoid Arthritis - "I got my life back" - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Adult Stem Cell Therapy Following Heart Attack and Stroke - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Stem Cells - Treatment for Autism - Video [Last Updated On: November 2nd, 2011] [Originally Added On: November 2nd, 2011]
- Stem Cell Treatment Diabetes - Video [Last Updated On: November 7th, 2011] [Originally Added On: November 7th, 2011]
- Stem Cell Therapy: Psoriatic Arthritis Treatment - Video [Last Updated On: June 24th, 2013] [Originally Added On: November 8th, 2011]
- Stem Cell Therapy Cure Hair Loss. More at http://www.stemcellfusion.com - Video [Last Updated On: June 24th, 2013] [Originally Added On: November 10th, 2011]
- BioLogic Stem Cell Therapy - Video [Last Updated On: November 16th, 2011] [Originally Added On: November 16th, 2011]
- BioLogic Stem Cell Therapy - Video [Last Updated On: June 24th, 2013] [Originally Added On: November 16th, 2011]
- AVS Stem Cell Therapy - Video [Last Updated On: June 24th, 2013] [Originally Added On: November 17th, 2011]