Stem Cell-Derived Beta Cells Under Skin Replace Insulin

Posted: March 25, 2014 at 10:48 pm

Contact Information

Available for logged-in reporters only

Newswise Scientists at University of California, San Diego School of Medicine and Sanford-Burnham Medical Research Institute have shown that by encapsulating immature pancreatic cells derived from human embryonic stem cells (hESC), and implanting them under the skin of diabetic mouse models, sufficient insulin is produced to maintain glucose levels without unwanted potential trade-offs of the technology.

The research, published online in Stem Cell Research, suggests that encapsulated hESC-derived insulin-producing cells may be an effective and safe cell replacement therapy for insulin dependent-diabetes.

Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin dependent-diabetes, said Pamela Itkin-Ansari, PhD, assistant project scientist in the UC San Diego Department of Pediatrics and adjunct assistant professor in Development, Aging and Regenerative program at Sanford-Burnham.

We have shown that encapsulated hESC-derived insulin-producing cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule, said Itkin-Ansari. These results are important because it means that the encapsulated cells are both fully functional and retrievable.

Previous attempts to replace insulin producing cells, called beta cells, have met with significant challenges. For example, researchers have tried treating diabetics with mature beta cells, but because these cells are fragile and scarce, the method is fraught with problems. Moreover, since the cells come from organ donors, they may be recognized as foreign by the recipients immune system requiring patients to take immunosuppressive drugs to prevent their immune system from attacking the donors cells, ultimately leaving patients vulnerable to infections, tumors and other adverse events.

Encapsulation technology was developed to protect donor cells from exposure to the immune system and has proven extremely successful in preclinical studies.

Itkin-Ansari and her research team previously made an important contribution to the encapsulation approach by showing that pancreatic islet progenitor cells are an optimal cell type for encapsulation. They found that progenitor cells were more robust than mature beta cells to encapsulate, and while encapsulated, they matured into insulin-producing cells that secreted insulin only when needed.

In the study, Itkin-Ansari and her team used bioluminescent imaging to determine if encapsulated cells stay in the capsule after implantation.

See the original post:
Stem Cell-Derived Beta Cells Under Skin Replace Insulin

Related Posts