Stem cells seem speedier in space – Phys.Org

Posted: March 20, 2017 at 5:41 pm

March 20, 2017 by Melissa Gaskill Cultured stem cells. Credit: BioServe Inc., University of Colorado

Growing significant numbers of human stem cells in a short time could lead to new treatments for stroke and other diseases. Scientists are sending stem cells to the International Space Station to test whether these cells proliferate faster in microgravity without suffering any side effects.

Therapeutic uses require hundreds of millions of stem cells and currently no efficient way exists to produce such quantities. Previous research suggests that microgravity could help, and the space station is home to the nation's only national lab in microgravity.

Some types of stem cells grow faster in simulated microgravity, according to Abba Zubair, a researcher at the Mayo Clinic in Jacksonville, Florida. Zubair is principal investigator for the Microgravity Expanded Stem Cells investigation, which is cultivating human stem cells aboard the space station for use in clinical trials back on Earth. He holds a doctor of medicine degree in transfusion medicine and cell therapy and a doctorate of philosophy in tumor immunology.

Human stem cells are cells that have not yet specialized in function and can divide into a spectrum of cell types, rejuvenating and repairing tissue throughout a person's lifetime. Stem cells in every organ of the body, including skin and bones, maintain those organs and repair tissue by dividing and differentiating into specialized cells.

Harvesting a person's stem cells and growing enough of them for use in therapies has proven difficult, though. Researchers have successfully grown mesenchymal stem cells, found in bone marrow, but growing sufficient quantities takes weeks. That could be too late for treatment of some conditions.

"Stem cells are inherently designed to remain at a constant number," Zubair explains. "We need to grow them faster, but without changing their characteristics."

The first phase of the investigation, he adds, is answering the question: "Do stem cells grow faster in space and can we grow them in such a manner that they are safe to use in patients?"

Investigators will examine the space-grown cells in an effort to understand the mechanism behind microgravity's effects on them. The long-term goal is to learn how to mimic those effects and develop a safe and reliable way to produce stem cells in the quantities needed.

The second phase will involve testing clinical application of the cells in patients. Zubair has been studying treatment of stroke patients with lab-grown stem cells and plans to compare those results with use of the space-grown stem cells.

"What is unique about this investigation is that we are not only looking at the biology of the cells and how they grow, but focusing on application, how we can use them to treat patients," he says.

The investigation expands existing knowledge of how microgravity affects stem cell growth and differentiation as well as advances future studies on how to produce large numbers of stem cells for treating stroke and other conditions.

The faster that happens, the better for those who could benefit from stem cell therapies.

Explore further: Study shows adipose stem cells may be the cell of choice for therapeutic applications

An international team of researchers, funded by Morris Animal Foundation, has shown that adipose (fat) stem cells might be the preferred stem cell type for use in canine therapeutic applications, including orthopedic diseases ...

Abba Zubair, M.D., Ph.D, believes that cells grown in the International Space Station (ISS) could help patients recover from a stroke, and that it may even be possible to generate human tissues and organs in space. He just ...

Consider it one physician's giant leap for mankind. Today, the latest rocket launch from NASA's Kennedy Space Center in Cape Canaveral, Florida, included a payload of several samples of donated adult stem cells from a research ...

NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in ...

A study performed on the NASA Space Shuttle Discovery showed that exposure of mouse embryonic stem cells (mESCs) to microgravity inhibited their ability to differentiate and generate most cell lineages, needed for the development ...

Stem cells hold great promise for transforming medical care related to a diverse range of conditions, but the cells often lose some of their therapeutic potential when scientists try to grow and expand them in the laboratory. ...

As children, we learned about our solar system's planets by certain characteristicsJupiter is the largest, Saturn has rings, Mercury is closest to the sun. Mars is red, but it's possible that one of our closest neighbors ...

(Phys.org)Astronomers have inspected a mysterious isolated star cluster complex designated SH2 in the galaxy NGC 1316 (also known as Fornax A). The results of their study, which were published Mar. 1 in a paper on arXiv.org, ...

Growing significant numbers of human stem cells in a short time could lead to new treatments for stroke and other diseases. Scientists are sending stem cells to the International Space Station to test whether these cells ...

Astronomers studying Mars first noted the presence of yellow clouds on its surface in the 1870's. Today these windblown dust storms on Mars are well known, and can span local, regional or even global in scale. Storms can ...

A SpaceX reusable cargo ship splashed down in the Pacific Ocean safely on Sunday, ending a mission to supply astronauts on the International Space Station, the company said.

Johns Hopkins University scientist Kirby Runyon wants to make one thing clear: Regardless of what one prestigious scientific organization says to the contrary, Pluto is a planet. So is Europa, commonly known as a moon of ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Link:
Stem cells seem speedier in space - Phys.Org

Related Posts