Mitochondrial metabolic reprogramming in diabetic kidney disease | Cell Death & Disease – Nature.com

Posted: June 24, 2024 at 2:39 am

International Diabetes Federation. IDF Diabetes Atlas Reports. 2023. https://diabetesatlas.org/atlas/diabetes-and-kidney-disease/.

Oshima M, Shimizu M, Yamanouchi M, Toyama T, Hara A, Furuichi K, et al. Trajectories of kidney function in diabetes: a clinicopathological update. Nat Rev Nephrol. 2021;17:74050.

Article PubMed Google Scholar

Carvalho-Santos Z, Cardoso-Figueiredo R, Elias AP, Tastekin I, Baltazar C, Ribeiro C. Cellular metabolic reprogramming controls sugar appetite in Drosophila. Nat Metab. 2020;2:95873.

Article PubMed Google Scholar

Hou Y, Tan E, Shi H, Ren X, Wan X, Wu W, et al. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci. 2024;81:23.

Article CAS PubMed PubMed Central Google Scholar

Linnan B, Yanzhe W, Ling Z, Yuyuan L, Sijia C, Xinmiao X, et al. In situ metabolomics of metabolic reprogramming involved in a mouse model of type 2 diabetic kidney disease. Front Physiol. 2021;12:779683.

Article PubMed PubMed Central Google Scholar

Song C, Wang S, Fu Z, Chi K, Geng X, Liu C, et al. IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis. 2022;13:340.

Article CAS PubMed PubMed Central Google Scholar

Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, et al. Sodium-glucose cotransporter 2 inhibition suppresses HIF-1-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis. 2020;11:390.

Article CAS PubMed PubMed Central Google Scholar

Zhu H, Bai M, Xie X, Wang J, Weng C, Dai H, et al. Impaired amino acid metabolism and its correlation with diabetic kidney disease progression in type 2 diabetes mellitus. Nutrients. 2022;14:3345.

Article CAS PubMed PubMed Central Google Scholar

Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394:1318.

Article CAS PubMed Google Scholar

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295306.

Article CAS PubMed Google Scholar

Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20:74554.

Article CAS PubMed PubMed Central Google Scholar

Martnez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102.

Article PubMed PubMed Central Google Scholar

Song Y, Liu J, Zhao K, Gao L, Zhao J. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases. Cell Metab. 2021;33:191125.

Article CAS PubMed Google Scholar

Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid -oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:2344.

Article CAS PubMed Google Scholar

Forbes JM. Prolyl hydroxylase inhibitors: a breath of fresh air for diabetic kidney disease? Kidney Int. 2020;97:8557.

Article CAS PubMed Google Scholar

Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:11223.

Article CAS PubMed PubMed Central Google Scholar

Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010;92:136977.

Article CAS PubMed PubMed Central Google Scholar

Sas KM, Kayampilly P, Byun J, Nair V, Hinder LM, Hur J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1:e86976.

Article PubMed PubMed Central Google Scholar

Kanasaki K. The aberrant glycolysis in kidney proximal tubule: potential therapeutic target for DKD. Kidney Int. 2023;104:10569.

Article CAS PubMed Google Scholar

Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes. 2021;12:52440.

Article PubMed PubMed Central Google Scholar

Prez-Mart A, Ramakrishnan S, Li J, Dugourd A, Molenaar MR, De La Motte LR, et al. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. Elife. 2022;11:e74391.

Article PubMed PubMed Central Google Scholar

Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55:56172.

Article CAS PubMed PubMed Central Google Scholar

Lewis S, Chen L, Raghuram V, Khundmiri SJ, Chou CL, Yang CR, et al. SLC-omics of the kidney: solute transporters along the nephron. Am J Physiol Cell Physiol. 2021;321:C50718.

Article CAS PubMed PubMed Central Google Scholar

Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969;281:8116.

Article CAS PubMed Google Scholar

Xu J, Kitada M, Koya D. NAD(+) homeostasis in diabetic kidney disease. Front Med. 2021;8:703076.

Article Google Scholar

Kwiatkowska I, Hermanowicz JM, Mysliwiec M, Pawlak D. Oxidative storm induced by tryptophan metabolites: missing link between atherosclerosis and chronic kidney disease. Oxid Med Cell Longev. 2020;2020:6656033.

Article PubMed PubMed Central Google Scholar

Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359:137683.

Article CAS PubMed Google Scholar

Descamps HC, Herrmann B, Wiredu D, Thaiss CA. The path toward using microbial metabolites as therapies. EBioMedicine. 2019;44:74754.

Article CAS PubMed PubMed Central Google Scholar

Cha Y, Kim T, Jeon J, Jang Y, Kim PB, Lopes C, et al. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep. 2021;37:110155.

Article CAS PubMed PubMed Central Google Scholar

Morita M, Prudent J, Basu K, Goyon V, Katsumura S, Hulea L, et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol Cell. 2017;67:92235.e5.

Article CAS PubMed Google Scholar

Hu Q, Zhang H, Gutirrez Corts N, Wu D, Wang P, Zhang J, et al. Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res. 2020;126:45670.

Article CAS PubMed PubMed Central Google Scholar

Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27:10517.

Article CAS PubMed Google Scholar

Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, et al. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget. 2012;3:798810.

Article PubMed PubMed Central Google Scholar

Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics. 2019;9:1698713.

Article CAS PubMed PubMed Central Google Scholar

Cleveland KH, Brosius FC 3rd, Schnellmann RG. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the (2)-adrenergic receptor agonist formoterol. Am J Physiol Ren Physiol. 2020;319:F7739.

Article CAS Google Scholar

Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, et al. Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol. 2020;11:536213.

Article Google Scholar

Huang D, Li T, Li X, Zhang L, Sun L, He X, et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 2014;8:193042.

Article CAS PubMed Google Scholar

Narravula S, Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol. 2001;166:75438.

Article CAS PubMed Google Scholar

Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21:3746.

Article CAS PubMed Google Scholar

Chen L, Sha ML, Chen FT, Jiang CY, Li D, Xu CL, et al. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPAR-mediated fatty acid oxidation. Free Radic Biol Med. 2023;195:13244.

Article CAS PubMed Google Scholar

Chung KW, Ha S, Kim SM, Kim DH, An HJ, Lee EK, et al. PPAR/ activation alleviates age-associated renal fibrosis in Sprague Dawley rats. J Gerontol A Biol Sci Med Sci. 2020;75:4528.

CAS PubMed Google Scholar

Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes. 2006;55:25029.

Article CAS PubMed Google Scholar

Yang W, Luo Y, Yang S, Zeng M, Zhang S, Liu J, et al. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clin Sci. 2018;132:240722.

Article CAS Google Scholar

Lin S, Wang L, Jia Y, Sun Y, Qiao P, Quan Y, et al. Lipin-1 deficiency deteriorates defect of fatty acid -oxidation and lipid-related kidney damage in diabetic kidney disease. Transl Res. 2024;266:115.

Article CAS PubMed Google Scholar

Feng L, Gu C, Li Y, Huang J. High glucose promotes CD36 expression by upregulating peroxisome proliferator-activated receptor levels to exacerbate lipid deposition in renal tubular cells. Biomed Res Int. 2017;2017:1414070.

Article PubMed PubMed Central Google Scholar

Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. Cell Death Dis. 2021;12:523.

Article CAS PubMed PubMed Central Google Scholar

Hou Y, Wu M, Wei J, Ren Y, Du C, Wu H, et al. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun. 2015;468:2816.

Article CAS PubMed Google Scholar

Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, et al. Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/-catenin pathway in diabetic nephropathy. Antioxid Redox Signal. 2019;31:52138.

Article CAS PubMed Google Scholar

Khan S, Gaivin R, Abramovich C, Boylan M, Calles J, Schelling JR. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight. 2020;5:e136845.

Article PubMed PubMed Central Google Scholar

Chen J, Wu K, Lei Y, Huang M, Cheng L, Guan H, et al. Inhibition of fatty acid -oxidation by fatty acid binding protein 4 induces ferroptosis in HK2 cells under high glucose conditions. Endocrinol Metab. 2023;38:22644.

Article CAS Google Scholar

Shen S, Ji C, Wei K. Cellular senescence and regulated cell death of tubular epithelial cells in diabetic kidney disease. Front Endocrinol. 2022;13:924299.

See more here:
Mitochondrial metabolic reprogramming in diabetic kidney disease | Cell Death & Disease - Nature.com

Related Posts