Researchers develop method to study brain connectivity, functionality – Florida Hospital News and Healthcare Report – South Florida Hospital News

Posted: October 13, 2022 at 2:16 am

Research method integrates human cortical organoids into developing rat brains, allowing for study of brain processes associated with disease.

This work provides a significant advance in the ability of scientists to study the cellular and circuit underpinnings of complex human brain disorders. It allows organoids to get wired in a more biologically relevant context and function in ways they cant do in a petri dish, said David Panchision, Ph.D., chief of the Developmental and Genomic Neuroscience Research Branch in the Division of Neuroscience and Basic Behavioral Science at NIMH.

ResearcherSergiu Pasca, M.D.(link is external), and colleagues at Stanford University, Stanford, California, demonstrated that a cortical organoid cultured from human stem cells can be transplanted ontoand integrated intothe developing rat brain to study certain developmental and functional processes. The findings suggest that transplanted organoids may offer a powerful tool for investigating the processes associated with disease development.

Researchers sometimes use cortical organoidsthree-dimensional cultures of human stem cells that can mirror some of the developmental processes seen in typical brainsas a model for investigating how some aspects of the human brain develops and functions. However, cortical organoids lack the connectivity seen in typical human brains, limiting their usefulness for understanding complex brain processes. Researchers have been trying to overcome some of these limitations by transplanting individual human neurons into adult rodent brains. While these transplanted neurons connect with rodent brain cells, they do not become fully integrated due to the developmental limitations of the adult rat brain.

In this study, the team of researchers advanced the use of brain organoids for research by transplanting an intact human cortical organoid into a developing rat brain. This technique creates a unit of human tissue that can be examined and manipulated. The researchers used methods previously pioneered in the Pasca lab to create cortical organoids using human-induced pluripotent stem cellscells derived from adult skin cells that have been reprogrammed into an immature stem-cell-like state. They then implanted these organoids onto the rat primary somatosensory cortex, a part of the brain involved in processing sensation.

The researchers did not detect any motor or memory abnormalities or abnormalities in brain activity in the rats that received the transplanted organoid. Blood vessels from the rat brain successfully supported the implanted tissue, which grew over time.

To understand the extent to which the organoids could integrate into the rat somatosensory cortex, the researchers infected a cortical organoid with a viral tracer that spreads through brain cells as an indicator of functional connections. After transplanting the marked organoid onto the rats primary somatosensory cortex, researchers detected the viral tracer in multiple brain areas, such as the ventrobasal nucleus and the somatosensory cortex. In addition, the researchers observed new connections between the thalamus and the transplanted area. These connections were activated using electrical stimulation and stimulation of the rats whiskers, indicating that they were receiving meaningful sensory input. Moreover, the researchers were able to activate human neurons in the transplanted organoid to modulate the rats reward-seeking behavior. The findings suggest functional integration of the transplanted organoid into specific brain pathways.

Structurally and functionally, after seven to eight months of growth, the transplanted brain organoid resembled neurons from human brain tissue more than human organoids maintained in cell culture. The fact that the transplanted organoids mirrored the structural and functional features of human cortical neurons led the researchers to wonder if they could use transplanted organoids to examine aspects of human disease processes.

The promise of this platform is not only in identifying what molecular processes underlie the advanced maturation of human neurons in living circuits and leveraging it to improve conventionalin vitromodels, but also in providing behavioral readouts for human neurons, said Dr. Pasca.

To examine this, the researchers generated cortical organoids with cells from three participants with a rare genetic disorder associated with autism and epilepsy calledTimothy syndromeand three participants without any known diseases and implanted them onto the rat brain. Both types of organoids integrated into the rat somatosensory cortex, but organoids derived from Timothy Syndrome patients displayed structural differences. These structural differences did not appear in organoids that were created from the cells of patients with Timothy Syndrome and maintained in cell culture.

These experiments suggest that this novel approach can capture processes that go beyond what we can detect with currentin vitromodels, said Dr. Pasca. This is important because many of the changes that cause psychiatric disease are likely subtle differences at the circuit level.

Grant:MH115012,DA050662,RR026917,OD030452

About the National Institute of Mental Health (NIMH):The mission of theNIMHis to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. For more information, visit theNIMH website.

About the National Institutes of Health (NIH):NIH, the nations medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visitwww.nih.gov.

References

Revah, O., Gore, F., Kelley, K. W., Andersen, J., Sakai, N., Chen, X., Li, M., Birey, F., Yang, X., Saw, N. L., Baker, S. W., Amin, N. D., Kulkarni, S., Mudipalli, R., Cui, B., Nishino, S., Grant, G. A., Knowles, J. K., Shamloo, M. Paca S. P. (2022).Maturation and circuit integration of transplanted human cortical organoids(link is external).Nature

Post Views:28

Read more from the original source:
Researchers develop method to study brain connectivity, functionality - Florida Hospital News and Healthcare Report - South Florida Hospital News

Related Posts