As early as the 1960s, scientists speculated that DNA sequences could be introduced into patients cells to cure genetic disorders. In the early 1980s, David Williams, MD, and David Nathan, MD, at Boston Childrens Hospital published the first paper showing one could use a virus to insert genes into blood-forming stem cells. In 2003, the Human Genome Project wrapped up, giving us a complete blueprint of our DNA. In the past decade, gene therapy has become a reality for multiple diseases, especially those caused by mutations in a single gene.
Gene therapy falls into two main categories. Ex vivo gene therapy removes cells from the patient, introduces new genetic material, packaged in a delivery vehicle called a vector, then returns the cells to the patient. Boston Childrens is using this method for such disorders as sickle cell disease, adrenoleukodystrophy, chronic granulomatous disease and others. In vivo gene therapy involves direct IV infusion of the vector into the bloodstream or injection into a target organ like the eye. Boston Childrens uses in vivo gene therapy for several disorders, including hemophilia and ornithine transcarbamylase deficiency.
After a rocky start, gene therapy is on fire, drawing keen interest from the biopharmaceutical industry. And its still evolving and improving.
In 1990, 4-year-old Ashanthi de Silva became the first gene therapy success story. She was born with a severe combined immunodeficiency (SCID) due to lack of the enzyme adenosine deaminase (ADA). Without ADA, her T cells died off, leaving her unable to fight infections. Injections of a synthetic ADA enzyme helped, but only temporarily.
Doctors decided to deliver a healthy ADA gene into her blood cells, using a disabled virus that cannot spread in the body. Their success spurred more trials in the 1990s for the same form of SCID. Now in her 30s, de Silva is active in the rare disease community.
European researchers in the 1990s focused on SCID-X1, another form of SCID linked to the X chromosome. They reported the first cures in 2000, but within several years, five of the 20 treated children developed cancer.The viral vector that delivered the gene to their T cells had also activated an oncogene, triggering leukemia.
The U.S. saw another early setback: the 1999 death of 18-year-old Jesse Gelsinger, after receiving gene therapy for a rare metabolic disorder. In his case, the viral vector caused a fatal immune response.
Gene therapy came to a halt.
In the early 2010s, gene therapy experienced a renaissance. Scientists developed better viral vectors to deliver genetic therapies. They added regulatory elements called promoters and enhancers to direct the genes activity. These elements specified where and when the gene should turn on, and at what level. Investigators at Boston Childrens, in a global collaborative effort, led work that addressed the problem of leukemia, allowing gene therapy to resume for SCID-X1.
A REBIRTH IN BOSTON: GENE THERAPY TURNS 10
Born in 2010 with X-linkedsevere combined immunodeficiency(SCID-X1), Agustn spent the first few months of his life in isolation. He became the first patient to receive gene therapy at Boston Childrens and today is an active fifth-grade soccer and tennis player.
The new, modified vectors can more precisely target expression of genes in specific cell types, dont go astray in the body, and dont trigger the immune system. Some deliver genes meant to work for a short while and then inactivate themselves. Others carry genes that remain active long-term and pass to daughter cells as the cells divide. Popular viruses for gene therapy include adenoviruses, adeno-associated virus, and lentiviruses.
An example of an improved vector is the lentivirus vector used for sickle cell gene therapy at Boston Childrens. The vector silences a gene calledBCL11A, leading to production of fetal hemoglobin that is not affected by the sickle cell mutation. It was precision engineered to silence the gene only in precursors of red blood cells, a tweak that enabled the treated blood stem cells to live long-term in patients bone marrow. Williams led the vectors development, based on seminal research by Vijay Sankaran, MD, PhD, and Stuart Orkin, MD, in the Hematology/Oncology Program at Boston Childrens.
Traditional gene therapyuses viruses to carry healthy genes into cells, compensating for a faulty or missing gene. But the past decade has seen an explosion of other methods for delivering or fixing genes.
Gene editing uses various molecular tools that precisely target problematic genes and create a cut or break in their DNA. It can knock out a faulty gene, insert a new DNA sequence, or both in a cut and paste operation. The best-known gene editing systems are CRISPR/Cas 9, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs). The next generation of gene therapy for sickle cell disease is utilizing CRISPR to edit the BCL11A gene, based on work by Dan Bauer, MD, PhD, at Boston Childrens, then in Orkins laboratory.
Base editingis even more fine-tuned. It leverages the targeting ability of CRISPR, but relies on enzymes to chemically change one letter of a genes code at a time changing, say, C to T or A to G. These small changes can correct a spelling error mutation, silence a disease-causing gene, or help activate a specific gene. Unlike gene editing, base editing hasnt yet been tested in clinical trials, but it offers the promise of more precision, efficiency, and safety.Boston Childrens has several base editing projects on deck.
Other new approaches blur the line between gene therapy and drug treatment. For example, antisense oligonucleotides (ASOs) are drugs made up of short, synthetic pieces of DNA or RNA that target the messenger RNA made by the faulty gene. They prevent the gene from being translated into a bad protein or, in some cases, trick the cells machinery into making a good protein. Researchers can even customize ASOs to single patients. Tim Yu, MD, PhD, in the Division of Genetics and Genomics at Boston Childrens, has developed this approach to treat several very rare genetic conditions.
Another approach, RNA interference, uses small RNAs to silence a targeted gene by neutralizing the genes mRNA. (The lentivirus described above uses RNA interference to silence the BCL11A gene.)
Even the messenger RNAs used for some COVID-19 vaccines represent a form of gene therapy. The mRNAs introduce genetic code that cells then use to make the coronavirus spike protein, encouraging people to develop antibodies to the virus.
Today, ClinicalTrials.gov lists nearly 400 active gene therapy studies all over the world, and more than a dozen gene therapy drugs are on the market. At Boston Childrens, the Gene Therapy Program has more than 20 human trials completed or underway, with more in the pipeline. While gene therapies are currently expensive, its expected that prices will come down over time. And as a one-time treatment, gene therapy promises to save money in the long run by preventing a lifetime of illness a true revolution in medicine.
Learn more about the Gene Therapy Program at Boston Childrens Hospital
See the original post:
A short history of gene therapy - Boston Children's Answers
- Faulty Circuits (preview) [Last Updated On: April 7th, 2010] [Originally Added On: April 7th, 2010]
- Faulty Circuits (preview) [Last Updated On: April 7th, 2010] [Originally Added On: April 7th, 2010]
- Rare flowers and common herbal supplements get unmasked with plant DNA barcoding [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- Rare flowers and common herbal supplements get unmasked with plant DNA barcoding [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- Biomarker Studies Could Realize Goal of More Effective and Personalized Cancer Medicine [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Biomarker Studies Could Realize Goal of More Effective and Personalized Cancer Medicine [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Schizophrenia shares genetic links with autism, genome study shows [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- Schizophrenia shares genetic links with autism, genome study shows [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- Alzheimer's: Forestalling the Darkness with New Approaches (preview) [Last Updated On: May 28th, 2010] [Originally Added On: May 28th, 2010]
- Alzheimer's: Forestalling the Darkness with New Approaches (preview) [Last Updated On: May 28th, 2010] [Originally Added On: May 28th, 2010]
- Large-Scale Autism Study Reveals Disorder's Genetic Complexity [Last Updated On: June 12th, 2010] [Originally Added On: June 12th, 2010]
- Large-Scale Autism Study Reveals Disorder's Genetic Complexity [Last Updated On: June 12th, 2010] [Originally Added On: June 12th, 2010]
- Cancer Therapy Goes Viral: Progress Is Made Tackling Tumors with Viruses [Last Updated On: June 24th, 2010] [Originally Added On: June 24th, 2010]
- Cancer Therapy Goes Viral: Progress Is Made Tackling Tumors with Viruses [Last Updated On: June 24th, 2010] [Originally Added On: June 24th, 2010]
- Vaccines Derived from Patients' Tumor Cells Are Individualizing Cancer Treatment [Last Updated On: June 26th, 2010] [Originally Added On: June 26th, 2010]
- Vaccines Derived from Patients' Tumor Cells Are Individualizing Cancer Treatment [Last Updated On: June 26th, 2010] [Originally Added On: June 26th, 2010]
- A genome story: 10th anniversary commentary by Francis Collins [Last Updated On: June 29th, 2010] [Originally Added On: June 29th, 2010]
- A genome story: 10th anniversary commentary by Francis Collins [Last Updated On: June 29th, 2010] [Originally Added On: June 29th, 2010]
- Hair Trigger: How a Cell's Primary Cilium Functions as a Molecular Antenna [Last Updated On: June 30th, 2010] [Originally Added On: June 30th, 2010]
- Hair Trigger: How a Cell's Primary Cilium Functions as a Molecular Antenna [Last Updated On: June 30th, 2010] [Originally Added On: June 30th, 2010]
- DNA Drugs Come of Age (preview) [Last Updated On: July 16th, 2010] [Originally Added On: July 16th, 2010]
- DNA Drugs Come of Age (preview) [Last Updated On: July 16th, 2010] [Originally Added On: July 16th, 2010]
- 2 Genes Linked to Embryonic Brain Impairment in Down's Syndrome [Last Updated On: July 22nd, 2010] [Originally Added On: July 22nd, 2010]
- 2 Genes Linked to Embryonic Brain Impairment in Down's Syndrome [Last Updated On: July 22nd, 2010] [Originally Added On: July 22nd, 2010]
- Stem Cells from Reprogrammed Adult Cells Found to Bring Along Genetic Defects of Their Donors [Last Updated On: October 11th, 2010] [Originally Added On: October 11th, 2010]
- Was Darwin a Punk? A Q&A with Punker-Paleontologist Greg Graffin [Last Updated On: October 11th, 2010] [Originally Added On: October 11th, 2010]
- Parkinsonian Power Failure: Neuron Degeneration May Be Caused by a Cellular Energy System Breakdown [Last Updated On: October 11th, 2010] [Originally Added On: October 11th, 2010]
- Was Darwin a Punk? A Q&A with Punker-Paleontologist Greg Graffin [Last Updated On: October 11th, 2010] [Originally Added On: October 11th, 2010]
- Desperation Drives Parents to Dubious Autism Treatments (preview) [Last Updated On: October 13th, 2010] [Originally Added On: October 13th, 2010]
- Revolution Postponed: Why the Human Genome Project Has Been Disappointing (preview) [Last Updated On: October 26th, 2010] [Originally Added On: October 26th, 2010]
- Controlling the Brain with Light (preview) [Last Updated On: October 26th, 2010] [Originally Added On: October 26th, 2010]
- Optogenetics: Controlling the Brain with Light [Extended Version] [Last Updated On: October 26th, 2010] [Originally Added On: October 26th, 2010]
- Clear New Insights into the Genetics of Depression [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- TEDMED 2010: Technology and the people [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- Bacteria, the anti-cancer soldier [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- Clear New Insights into the Genetics of Depression [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- TEDMED 2010: Technology and the people [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- Bacteria, the anti-cancer soldier [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- Scientific regress: When science goes backward [Last Updated On: November 29th, 2010] [Originally Added On: November 29th, 2010]
- Can You Live Forever? Maybe Not--But You Can Have Fun Trying [Last Updated On: December 26th, 2010] [Originally Added On: December 26th, 2010]
- How to Fix the Obesity Crisis (preview) [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- Personalizing cancer medicine [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- New Salmonella strain delivers gene-based therapy to fight virus in mice [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- How to Fix the Obesity Crisis (preview) [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- Personalizing cancer medicine [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- New Salmonella strain delivers gene-based therapy to fight virus in mice [Last Updated On: February 14th, 2011] [Originally Added On: February 14th, 2011]
- Steps toward a Bionic Eye [Last Updated On: February 20th, 2011] [Originally Added On: February 20th, 2011]
- Steps toward a Bionic Eye [Last Updated On: February 20th, 2011] [Originally Added On: February 20th, 2011]
- Giving HIV a Poor Reception: New AIDS Treatment Tinkers with Immune Cell Genes [Last Updated On: March 6th, 2011] [Originally Added On: March 6th, 2011]
- Giving HIV a Poor Reception: New AIDS Treatment Tinkers with Immune Cell Genes [Last Updated On: March 6th, 2011] [Originally Added On: March 6th, 2011]
- Smaller, cheaper, faster: Does Moore's law apply to solar cells? [Last Updated On: March 27th, 2011] [Originally Added On: March 27th, 2011]
- Smaller, cheaper, faster: Does Moore's law apply to solar cells? [Last Updated On: March 27th, 2011] [Originally Added On: March 27th, 2011]
- New Drugs for Hepatitis C on the Horizon [Last Updated On: April 10th, 2011] [Originally Added On: April 10th, 2011]
- Can we capture all of the world's carbon emissions? [Last Updated On: April 10th, 2011] [Originally Added On: April 10th, 2011]
- New Drugs for Hepatitis C on the Horizon [Last Updated On: April 10th, 2011] [Originally Added On: April 10th, 2011]
- Can we capture all of the world's carbon emissions? [Last Updated On: April 10th, 2011] [Originally Added On: April 10th, 2011]
- Drug-resistant genes found in cholera and dysentery strains in New Delhi water supply [Last Updated On: May 1st, 2011] [Originally Added On: May 1st, 2011]
- Fast Track to Vaccines: How Systems Biology Speeds Drug Development (preview) [Last Updated On: May 1st, 2011] [Originally Added On: May 1st, 2011]
- Drug-resistant genes found in cholera and dysentery strains in New Delhi water supply [Last Updated On: May 1st, 2011] [Originally Added On: May 1st, 2011]
- Fast Track to Vaccines: How Systems Biology Speeds Drug Development (preview) [Last Updated On: May 1st, 2011] [Originally Added On: May 1st, 2011]
- Autism's Tangled Genetics Full of Rare and Varied Mutations [Last Updated On: June 19th, 2011] [Originally Added On: June 19th, 2011]
- A New Look at Obsessive-Compulsive Disorder (preview) [Last Updated On: June 19th, 2011] [Originally Added On: June 19th, 2011]
- Autism's Tangled Genetics Full of Rare and Varied Mutations [Last Updated On: June 19th, 2011] [Originally Added On: June 19th, 2011]
- A New Look at Obsessive-Compulsive Disorder (preview) [Last Updated On: June 19th, 2011] [Originally Added On: June 19th, 2011]
- Close Encounters of Science and Medicine [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- Close Encounters of Science and Medicine [Last Updated On: July 3rd, 2011] [Originally Added On: July 3rd, 2011]
- New Report Details Uphill Battle to Solve the U.S.'s Pain Problem [Last Updated On: July 24th, 2011] [Originally Added On: July 24th, 2011]
- New Report Details Uphill Battle to Solve the U.S.'s Pain Problem [Last Updated On: July 24th, 2011] [Originally Added On: July 24th, 2011]
- A Breath of Fresh Air: New Hope for Cystic Fibrosis Treatment (preview) [Last Updated On: August 7th, 2011] [Originally Added On: August 7th, 2011]
- A Breath of Fresh Air: New Hope for Cystic Fibrosis Treatment (preview) [Last Updated On: August 7th, 2011] [Originally Added On: August 7th, 2011]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn [Last Updated On: August 18th, 2011] [Originally Added On: August 18th, 2011]
- Sickle Cell Anemia: Stem Cell Gene Therapy - A Patient's Perspective [Last Updated On: October 8th, 2011] [Originally Added On: October 8th, 2011]
- Gene therapy improves stem cell transplantation - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- THE NEW MORGELLONS HAIR - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Studying Mental Illness in a Dish [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- The Puzzle of Pancreatic Cancer: How Steve Jobs Did Not Beat the Oddsbut Nobel Winner Ralph Steinman Did [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Did Alternative Medicine Extend or Abbreviate Steve Jobs's Life? [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Calendar: MIND Events in November and December [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Studying Mental Illness in a Dish [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- The Puzzle of Pancreatic Cancer: How Steve Jobs Did Not Beat the Odds?but Nobel Winner Ralph Steinman Did [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]