The pristine X-ray crystallography data gathered by Rosalind Franklin played a crucial role in the discovery of DNAs structure. Yet when the discovery was recognized by the Nobel Committee in 1962, the winners of the Nobel Prize did not include Franklin, who had died in 1958. Only recently has Franklin received some of the recognition that she deserves for her essential contribution to one of the biggest discoveries of the past century.
We still have a lot of work to do, unfortunately, notes Akiko Iwasaki, PhD, an immunologist at Yale School of Medicine and a fierce advocate for women in science. Things have definitely gotten better since [Franklins] days she tells GEN. But we still have a huge disparity in women representationespecially at the senior level. Iwasaki adds that we have to address what she thinks is the root cause of the problemthe academic culture and the unconscious (or conscious) bias against women and people of color that prevents these brilliant people from moving up the academic ladder.
To mark the centenary of Franklins birth, GEN sought to highlight scientists at the forefront of COVID-19 researchsome of the most influential research currently being conductedwho are women. In this article, GEN speaks with researchers who are leading efforts to track SARS-CoV-2 genomes, to uncover host factors influencing COVID-19 progression, to develop saliva-based COVID-19 tests, and more.
Working as a pediatrician in China, Qian Zhang, MD, wanted to understand why some children are more susceptible to infections than others. Children are exposed to hundreds of pathogens every day, Zhang tells GEN, but only a very small proportion get really severe infections. Zhang has been researching differences in susceptibility for the past decade. Notably, she performed postdoctoral work at the National Institute of Allergy and Infectious Diseases (NIAID) with Helen Su, MD, PhD. Afterward, Zhang became a postdoctoral fellow at the Rockefeller University, in the laboratory of Jean-Laurent Casanova, MD, PhD.
Working with patient samples, researchers in the Casanova laboratory look for rare, deleterious mutations that might govern susceptibility to infection. In particular, they look for monogenic variants, where a single defect makes an individual far more susceptible to infection. Zhangs hypothesis for COVID-19 is that patients who are susceptible to less virulent respiratory pathogens will also be susceptible to COVID-19. By taking an unbiased approach, Zhang and colleagues may find genetic factors that have never been identified before.
Normally, Zhang analyzes children because it is in childhood that people usually experience infection for the first time. But COVID-19 is different, she notes, because this infection is the first time for everyone.
Zhang previously led the influenza team in the Casanova laboratory. So, taking on COVID-19 is a natural shift. She adds that many commonalities between the two lung infections have been established, and that many tools developed for flu research can be used in COVID-19 work. Besides, there simply arent any more flu patients coming in.
Zhang asserts that her group, like others, has adapted its work to the pandemic. Investigators normally work on well-defined infections. COVID-19, however, isnt so well defined. Too little about it is known. For example, without key pieces of data such as a fatality rate, investigators who look for genetic lesions may be unaware of the lesions prevalence. We have to change our analysis while the data are coming in, Zhang explains.
How much hesitation did Akiko Iwasaki, PhD, have in moving into COVID-19 research? None, she says. I knew the importance of speed and urgency. She notes that she had learned the value of these attributes from her experience jumping into Zika.
Iwasaki, a professor of immunobiology and molecular, cellular, and developmental biology at the Yale School of Medicine and an investigator at the Howard Hughes Medical Institute, has spent the past few months trying to understand the immune response of COVID-19 patients. Iwasakis laboratory is working to develop real-time analyses of immune markers and cytokines that could sharpen patient assessments and even inform treatmentdecisions.
The biggest surprise, so far, has been the role of interferon (IFN) in this disease, asserts Iwasaki. For other viruses, such as influenza and rhinovirus, type 1 IFN has a protective role for the host. But SARS-CoV-2 seems different. Studies in a mouse model have shown that IFN contributes to the inflammatory response without shutting down viral replication. According to Iwasaki, this is unusual. In other viral infections, IFN can shut down the virus. But Iwasaki thinks that the IFN here is being induced a little bit too late or in too small of an amount.
Iwasakis main goal is to understand what type of immune response confers protective immunity versus the types that lead to disease. Because patients have diverse responses to SARS-CoV-2, the researchers are working to build disease trajectories that reflect patient-specific aspects of the immune responsecytokine or antibody production, T-cell response, viral load, etc. By conducting longitudinal sampling and following patients trajectories, the researchers hope to predict how patients will fare when they are admitted to the hospital. Ideally, she envisions a panel that could be ordered by a physician that would allow patients to be treated with a more personalized medicine approach, based on their immune profiles.
This analysis has never been done so extensively for an infectious disease, Iwasaki asserts, because we never had the urgency to do this for other viral pathogens. In 2020, thankfully, the technology exists to do this type of analysis in real time.
Another area Iwasaki has recently explored is sex differences in SARS-CoV-2 infection. By studying male and female immune responses, her group found one clue as to why males are reportedly more susceptible to COVID-19. In a preprint posted in medRxiv, Iwasaki and colleagues described how they investigated sex differences in viral loads, antibody titers, and cytokines in COVID-19 patients, and how they found that T-cell activation was significantly more robust in women than in men. Men who dont develop a good T-cell response have worse disease outcomes.
Emma B. Hodcroft, PhD, a postdoctoral researcher at the University of Basel, recalls agreeing to keep her supervisors project going while he traveled. She was to take charge in early February. Continuity was important because they had just started uploading sequences of SARS-CoV-2 into the online genomics engine Nextstraina collaboration started in 2014 to track flu virus diversity and help predict the next flu strain.
Because Nextstrain has hubs in Europe and the United States, the absence of data uploads at the University of Basel would hamper runs during the European daytime. She has, in her own words, never looked back.
The pipeline analysis that Nextstrain runs makes phylogeny from viral genome mutations. Phylogenetics is a field full of limitations, Hodcroft notes. She adds that the field is particularly troublesome because its beautifully dangerousthe picture that is drawn is always less certain than it looks. While it is tempting to start telling stories about these sequences, she says, one must be cautious. The roughly 40,000 cases currently in the system is a drop in the bucket compared to the number of COVID-19 cases. There is much more likelihood that we havent sampled someone than we have, she admits.
As borders reopen and travel resumes, continued genomic analysis, Hodcroft tells GEN, could uncover details about virus transmission, including transmission routes. She will be keeping a close watch while cautiously communicating new findings. These data are of interest to a large and growing audience, and members of this audience may misinterpret (intentionally or not) what they hear. Deciphering the uncertainty that surrounds the field of phylogenetics requires expertisesomething not all scientists who have ventured into the world of COVID-19 phylogenetics possess.
Hodcroft gets upset when misinterpreted data spark a storyline that needs to be debunked. I dont think that telling these false stories that panic the public helps anybody, she declares. There is plenty to be worried about with this virus.
COVID-19 is the second SARS epidemic Rachel Graham, PhD, has worked on since she started her graduate work in a coronavirus lab in 2002. Currently working in a large coronavirus laboratory at University of North Carolina (UNC) led by Ralph S. Baric, PhD, she says that Barics group has scaled up from what was a busy program to an extremely busy program.
Graham uses large sequence sets to study how the virus transcriptional program contributes to replication and virulence. As the virus mutates, its subgenomic RNAs are produced in different ways, indicating that the transcription itself may be a virulence factor. She says that as the population acquires more herd immunity, researchers may see a lot of transcriptional differences in the virus, and these differences could result in changes in virulence. SARS-CoV-2 will be the first virus where this relatively new idea in virology will be examined in detail.
Lisa Gralinski, PhD, assistant professor of epidemiology at UNC, has been studying coronaviruses for 12 years. Her current work centers around virus host interactions, specifically in animal models such as the humanized ACE2 transgenic mouse. The mouse was developed at UNC in the mid-2000s after the first SARS outbreak. Researchers had even started the paperwork to cryopreserve the mouse just before COVID-19 struck. Quickly adjusting to COVID-19, they changed course and started as many breeding pairs as possible.
Graham and Gralinski may be new to the UNC faculty, but they are veterans in a rapidly growing field. Gralinski notes that six months ago, few people worked in coronavirus. Unlike SARS, SARS-CoV-2 is not currently a select agentwhich means that more people are free to work on it. Both Graham and Gralinski welcome more hands on deck, but theyve been alarmed by some of the ways that people are working with SARS-CoV-2 in their Biological Safety Level 3 (BSL3) labs. SARS-CoV-2 requires special precautions and security due to the high titers used in experiments.
In early March, Anne L. Wyllie, PhD, an associate research scientist in epidemiology at Yale, was chatting with her colleague, Nathan D. Grubaugh, PhD, an assistant professor of epidemiology. He was lamenting the level of SARS-CoV-2 RNA detection in patient samples. Wyllie drew his attention to a method she had been using to detect Streptococcus pneumoniae from saliva samples of asymptomatic carriers.
Her method, which used Thermo Fishers MagMAX Kit for Nucleic Acid Extraction, had worked so well for Wyllie that she suggested that Grubaugh use it to test for SARS-CoV-2. Wyllie recalls that when Grubaugh and colleagues compared the methods, Wyllies method blew the other one out of the water. Ultimately, the MagMAX Kit and the King Fisher platform (which happens to be named Frankie in the lab, in honor of Rosalind Franklin) became the Grubaugh laboratorys method of choice. Wyllie is now co-lead on the COVID-19 project with Grubaugh.
Wyllie was the lead author on a preprint uploaded to medRxiv showing that saliva samples offer a more sensitive and consistent alternative to nasopharyngeal swabs for COVID-19 testing. Saliva samples, the paper argued, should be considered a viable alternative to nasopharyngeal swabs to alleviate COVID-19 testing demands. This could be key to meeting public testing demands.
We knew a pandemic would come and we knew we would have to be ready, says Viviana Simon, MD, PhD, professor of microbiology at Mount Sinai School of Medicine. A decade after starting her virology laboratory in 2006, Simon and her colleagues built the Virology Initiative in 2017, which allowed real-time access to samples from patients with viral infections. The goal, she explains, was to study emerging viruses in New York Cityviruses such as Zika, chikungunya, and dengue. Having the initiative established allowed the laboratory to spring into action when the pandemic hit. Simon notes that a virology infrastructure capable of such responsiveness would not be easy to build in the middle of a pandemic.
Simon remarks that there was never any doubt that there would be a pandemic: We thought that it would be a respiratory virus and figured that it would be an avian influenza strain. Any pandemic would almost certainly come through New York City, which serves as a gateway not just for people, but for viruses from all over, she says.
Simon tells GEN that her team heard rumors about a new virus in December and began preparing. The moment the first sequences were released in mid-January, she recalls, We ordered primers. And then? Simon and colleagues waited and waited, she says, for the first case to show up. The first COVID-19 case was diagnosed at Mount Sinai on February 29. Only then could the Simon team grow the virus and sequence it.
Simons team has analyzed the genetic diversity of SARS-CoV-2 circulation in New York City and how the virus was introduced. The team is also interested in assessing the durability of antibodies and determining the degree to which antibodies are protective.
The size of Simons laboratory has doubled, primarily due to a temporary influx of postdoctoral researchers and technicians, volunteers that come from laboratories shut down by COVID-19. This COVID task force jumped in to support the COVID-19 research being done at Mount Sinai. Simon remarks that when temporary personnel start returning to their own laboratories, she will be busy hiring more people.
The dedicated researchers highlighted in this article have been working almost nonstop for months, motivated by a shared passion to beat back a virus that has taken over the world. These researchers represent different scientific backgrounds, and they are tackling different facets of the virus. But they would no doubt recognize common elements in their professional development. For example, the challenges that come with being women in male-dominated fields. Hopefully, it will not take decades to recognize and celebrate the contributions of some of these outstanding scientists.
See the rest here:
COVID-19 Research: Women Are Changing the Face of the Pandemic - Genetic Engineering & Biotechnology News
- Genetic Engineering (excerpt) - Video [Last Updated On: January 9th, 2012] [Originally Added On: January 9th, 2012]
- Promising early results with therapeutic cancer vaccines [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- Genetic Risk and Stressful Early Infancy Join to Increase Risk for Schizophrenia [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- Innovative cell printing technologies hold promise for tissue engineering R&D [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- SAGE® Labs Creates The First Tissue-Specific Gene Deletion In Rats [Last Updated On: April 21st, 2012] [Originally Added On: April 21st, 2012]
- Devangshu Datta: Towards an HIV cure [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- Now *This* Is a Cell Phone: Using Radio Waves to Control Specific Genes in Mice | 80beats [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Genetic packing: Successful stem cell differentiation requires DNA compaction, study finds [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Premier issue of BioResearch Open Access launched by Mary Ann Liebert Inc. publishers [Last Updated On: May 17th, 2012] [Originally Added On: May 17th, 2012]
- GEN reports on growth of tissue engineering revenues [Last Updated On: July 11th, 2012] [Originally Added On: July 11th, 2012]
- New therapeutic target for prostate cancer identified [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- Novel pig model may be useful for human cancer studies [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- New gene therapy strategy boosts levels of deficient protein in Friedreich's ataxia [Last Updated On: July 25th, 2012] [Originally Added On: July 25th, 2012]
- Should high-dose interleukin-2 continue to be the treatment of choice for metastatic melanoma? [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- New marker for identifying precursors to insulin-producing cells in pancreas [Last Updated On: August 22nd, 2012] [Originally Added On: August 22nd, 2012]
- 3D Biomatrix’s Perfecta3D® Hanging Drop Plates Featured in Prominent Life Science Journals [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Progress in Cell-SELEX compound screening technology reviewed in BioResearch Open Access [Last Updated On: October 18th, 2012] [Originally Added On: October 18th, 2012]
- Can the addition of radiolabeled treatments improve outcomes in advanced metastatic disease? [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Is the detection of early markers of Epstein Barr virus of diagnostic value? [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Genetic Engineering Of Mesenchymal Stem Cells - Video [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Ramble: Simelweis Taboo - Video [Last Updated On: December 12th, 2012] [Originally Added On: December 12th, 2012]
- The Super Protein That Can Cut DNA and Revolutionize Genetic Engineering [Last Updated On: March 22nd, 2013] [Originally Added On: March 22nd, 2013]
- Cellular Dynamics International Expands MyCell Products Line with Disease Models, Genetic Engineering Patents [Last Updated On: June 5th, 2013] [Originally Added On: June 5th, 2013]
- World Stem Cell Summit to be presented by Genetics Policy Institute, Mary Ann Liebert, Inc., and Genetic Engineering ... [Last Updated On: June 11th, 2013] [Originally Added On: June 11th, 2013]
- Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Genetic Engineering: What is Genetic Engineering? [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Critical factor (BRG1) identified for maintaining stem cell pluripotency [Last Updated On: February 7th, 2014] [Originally Added On: February 7th, 2014]
- Genome Surgery [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Engineering The Human Genome One Letter At A Time [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- CRISPR is the technology that could allow researchers to perform microsurgery on genes [Last Updated On: February 15th, 2014] [Originally Added On: February 15th, 2014]
- Joseph Glorioso, Ph.D., receives Pioneer Award [Last Updated On: February 19th, 2014] [Originally Added On: February 19th, 2014]
- Commentary: field of tissue engineering is progressing at remarkable pace [Last Updated On: March 5th, 2014] [Originally Added On: March 5th, 2014]
- Pioneer Award recipients Marina Cavazzana and Adrian Thrasher recognized for advancing gene therapy to the clinic for ... [Last Updated On: March 24th, 2014] [Originally Added On: March 24th, 2014]
- New method yields potent, renewable human stem cells with promising therapeutic properties [Last Updated On: March 25th, 2014] [Originally Added On: March 25th, 2014]
- First evidence that very small embryonic-like stem cells [Last Updated On: April 2nd, 2014] [Originally Added On: April 2nd, 2014]
- Scarless wound healing -- applying lessons learned from fetal stem cells [Last Updated On: April 11th, 2014] [Originally Added On: April 11th, 2014]
- Novel marker discovered for stem cells derived from human umbilical cord blood [Last Updated On: April 18th, 2014] [Originally Added On: April 18th, 2014]
- GENs Top 10 Session Picks for the 2014 BIO International Convention [Last Updated On: May 2nd, 2014] [Originally Added On: May 2nd, 2014]
- A Vaccine for Heart Disease Could Mean No Pills, Lettuce or a Gym [Last Updated On: June 14th, 2014] [Originally Added On: June 14th, 2014]
- Gene editing tool can write HIV out of the picture [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Inner ear stem cells hold promise for restoring hearing [Last Updated On: June 24th, 2014] [Originally Added On: June 24th, 2014]
- New method to grow zebrafish embryonic stem cells can regenerate whole fish [Last Updated On: June 30th, 2014] [Originally Added On: June 30th, 2014]
- Novel methods may help stem cells survive transplantation into damaged tissues [Last Updated On: July 22nd, 2014] [Originally Added On: July 22nd, 2014]
- New method for reducing tumorigenicity in induced pluripotent stem-cell based therapies [Last Updated On: July 24th, 2014] [Originally Added On: July 24th, 2014]
- Malcolm K. Brenner receives Pioneer Award for advances in gene-modified T cells targeting cancer [Last Updated On: July 26th, 2014] [Originally Added On: July 26th, 2014]
- Conclusive evidence on role of circulating mesenchymal stem cells in organ injury [Last Updated On: August 22nd, 2014] [Originally Added On: August 22nd, 2014]
- New genomic editing methods produce better disease models from patient-derived iPSCs [Last Updated On: September 8th, 2014] [Originally Added On: September 8th, 2014]
- Tory Williams combats controversy surrounding stem cell therapy with new book [Last Updated On: September 11th, 2014] [Originally Added On: September 11th, 2014]
- NYIT Expert Predicts Growth in Demand for 3D Kidneys, Livers and Hearts [Last Updated On: December 9th, 2014] [Originally Added On: December 9th, 2014]
- The 'Berlin patient,' first and only person cured of HIV, speaks out [Last Updated On: January 6th, 2015] [Originally Added On: January 6th, 2015]
- Integrins are essential in stem cell binding to defective cartilage for joint regeneration [Last Updated On: January 27th, 2015] [Originally Added On: January 27th, 2015]
- Scientists urge caution in using new CRISPR technology to treat human genetic disease [Last Updated On: March 20th, 2015] [Originally Added On: March 20th, 2015]
- Scientists call for caution in using DNA-editing technology [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- 'Ban DNA Editing Of Sperm And Eggs' [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- Mount Sinai Researchers Discover Genetic Origins of Myelodysplastic Syndrome Using Stem Cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Researchers discover genetic origins of myelodysplastic syndrome using stem cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Pulling the strings of our genetic puppetmasters [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Going deep on life extension investments and human genetic engineering (Morning Read) [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Genetic engineering: a guide for kids by Tiki the Penguin [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- genetic engineering | Britannica.com [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Interactives . DNA . Genetic Engineering [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Genetic engineering - Memory Alpha, the Star Trek Wiki [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering Careers in India : How to become a ... [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering (song) - Wikipedia, the free encyclopedia [Last Updated On: August 8th, 2016] [Originally Added On: August 8th, 2016]
- Genetic Engineering - BiologyMad [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- UNL's AgBiosafety for Educators [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Recent Articles | Genetic Engineering | The Scientist ... [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- Human Genetic Engineering - Popular Issues [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Explore More: Genetic Engineering - iptv.org [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Genetic Engineering and GM Crops - Pocket K | ISAAA.org [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Pros and Cons of Genetic Engineering | HRFnd [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering - The New York Times [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering | MSPCA-Angell [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- What is genetic engineering? - Definition from WhatIs.com [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering in Agriculture | Union of Concerned ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- Free genetic engineering Essays and Papers - 123helpme [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Gene therapy - Wikipedia [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Writing the human genome - The Biological SCENE [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- America's First Free-Roaming Genetically Engineered Insects Are ... - Gizmodo [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]