At around 7 p.m. on Dec. 19, 2020, three young adults and their teacher gathered for dinner at the restaurant of the swank 1880 club in Singapore. They ordered chicken and waffles and, on the side, chicken baos. History Made, proclaimed the menus, because those diners had eaten the worldsfirst portions of chicken meat manufactured from cells, rather than slain birds.
The location was unlikely, but no accident. After a California-based start-up, Eat Just, succeeded in cultivating chicken meat from cells, it chose Esco Aster, a Singapore-based synthetic biology (syn-bio) contract manufacturing company, to manufacture cultivated chicken nuggets andbreasts as well as shredded chicken. Then the Singapore Food Authority (SFA) gave Eat Justpermissiontoproduce small batches of cultured cells in Esco Asters food-safe bioreactors, and to sell the products locally once they had met its stringent food safety criteria. Thus, the SFAbecame theworlds first regulatory authorityto approve the sale of cultured chicken meat.
Unlikeother nations, Singapore is wooing syn-bio start-ups across the world to make the city their home base.In addition to cell-basedmeats, the government is catalyzing the manufacture of proteins from plants, algae, and fungi. Ithas set up aFuture Ready Food Safety Hubto help companies navigate its approvals process, and to speed up the launch of bio-engineered products.
Over two dozen syn-bio food companiessuch as Shiok Meats, which recently launchedthe worlds first lab-grown crab and shrimp meatshave set up shop in Singapore. Thus, the city-state, which has hardly any farmland or livestock, plans to scale new technologies tomeet its goal of producing30% of its food locally by 2030, and boost economic growth by turning intoone of the worlds firstand biggestcultivated meat exporters.
Singapore may be showing the way, but most countries, unaware of the potential of syn-bio, havent put the emergent industry at the top of their policy agendas. As a result, the syn-bio industrys growth may be getting stymied. For instance, several forecasts in 2020 suggested that cultivated meat was likely to grow into a$150 billion segmentby the end of this decade, and account for around 10% of the global meat market. Two years later, that seems unlikely, not because the technologys development has slowed but because governments have been slow to legislate, regulate, and foster the industry.
Its shocking because syn-bio products have several advantages over conventional ones. Theyre sustainable, using little, or no, water, land, or carbon-emitting materialsand much less that most traditional livestock. They promise to make humanhealth better, with new syn-bio therapies likely to vanquish many diseases. And novel products, such as soil-nourishing bacteria, will help boost agriculturalproduction manifold. In fact, the technology offers governments the ability todecouple economiesfrom global supply chains, andreduce their dependence on raw material imports.
Syn-bio is clearly the next growthfrontier, sodeveloping suitable policies will be critical to unlock its benefits. According to aBCG study,syn-bio technologiescould reshape industries that will account for nearly a third of global GDP by 2030 if governments develop the appropriate regulations and rules. Moreover, as Singapore has shown, creating the conditions in which syn-bio start-ups will flourish isnt solely the prerogative of large, industrialized countries.
Although eachnations starting point will differ, every government must tackle challenges on three fronts to benefit from syn-bio.
Governments must, first and foremost, invest in advancing nations and companies knowledge of synthetic biology, much of which is still uncharted territory. As theU.S. recently did, countries can orchestrate syn-bio research by announcing formal policies, creating budgets, and setting up national agencies to spearhead the process.
Policymakers should focus on gathering and synthesizing scientific and technical knowledge by funding basic research programs; creating R&D facilities; and catalyzing the creation of graduate and post-graduate education programs in universities and colleges. One key objective should be to create talent for applied areassuch as bioreactor builders and fermentation specialistsso that they develop efficient microorganisms that use second-generation feedstock, such as organic waste, rather than processed sugars. Another priority should be to create computing resources, in terms of people and processing power, because the amount of biological data available is fast outpacing countries processing capabilities.
Apart from creating national repositories of scientific knowledge that any individual or institution can access, governments must push for the development of open standards and protocols to facilitate knowledge dissemination. They must create trusted data-sharing platforms and partner with institutions such asiGEMandBioBricks, which have developed the Get & Give philosophy and established standards for syn-bio parts to ensure their interoperability. For instance, Googles DeepMind and its A.I.,Alpha Fold, in tandem with a European intergovernmental organization, recently made public the structures of nearly all the proteins known to science.
Nations that are starting out on syn-bio quests must harness international forums and open platforms to move up the learning curve. Syn-bio research is becoming global; in 2022, iGEMs well-known syn-bio competition saw46 countries participating, 50% of which were developing countriestwice as many as a decade ago.
Second, policymakers must support business scaling of syn-bio applications,stipulating design-to-cost milestones to ensure that the efforts develop applications that will make an impact. A recentBCG study, for instance, projected when different industries are likely to be affected by syn-bio technologies. Governments must monitor the maturity of these emerging technologies by tracking cost and scale tipping points, and develop funding roadmaps that will help grow them to commercial scale.
Co-ordination can maintain the design-to-cost focus from the get-go, and help overcome the hurdles in the way of the commercialization of syn-bio technologies. Dont forget, only a few microbes such asE. coliand common yeast have been produced at scale. Others, such as mammalian cells, havent reached that stageyet.
Because syn-bio technologies dont scale linearly, engineering and development will be crucial to make it possible. Governments must use multilateral forums to forge connections between local and global stakeholders, and use technical collaborations to reduce knowledge gaps.
Countries trying to catch up should nurture the capabilities to develop applications that have commercial precedents, such as bio-catalysts and bio-chemicals. They best ways of doing that are to both orchestrate cross-border joint ventures and technology transfers, and intensify research efforts at home. Governments would be wise to attract global investments in late-stage startups, so the latter can scale and wont need to be acquired by multinational giants.
In most countries, incubators and accelerators that have seed funds and innovative financing models will help translate research into commercial ventures, and plant the financial foundations of healthy syn-bio ecosystems. For instance, in 2014,Singapore piloted intellectual property valuations, which raised awareness about IPs use as collateral and helped create an effective syn-bio ecosystem in the city.
Finally, governments must balance the need to create a friendly regulatory environment for syn-bio ventures with the need to win a social license.People have deep suspicions about syn-bio applications, just as they have about organismswhose genetic makeup has been modified in a laboratory using genetic engineering or transgenic technology (GMOs).Policy-makersmust keep educating society about syn-bio technologys potential and risks, and gauge perceptions and acceptance of its applications, so they can make course corrections.
Stakeholders must be involved at every stage of the value chain, from lab to market, to ensure that consumers buy syn-bio products. Its smart to proactively discuss the intent of the new technology. For instance, DARPA quietly launchedInsect Allies, a $45 million project to test the ability of engineered virus-carrying insects to protect crops from pestilence, in 2016. After manyU.S. scientists criticizedthe projects intent, DARPA was forced todefend itselfby highlighting its benefits and describing the safeguards it had deployed.
Syn-bio ventures must ensure the equitable use of shared resources, such as water, if they are to retain the social license from stakeholders such as farmers and indigenous populations. When Amyris set up afermentation facility in Brazilrecently, for example, it sourced feedstock from local sugarcane farms that didnt contribute to deforestation; required minimal irrigation; and didnt suck up drinking water. Local regulators must ensure syn-bio firms adhere to rules and laws even as they engage with local communities to identify all their concerns.
Finally, governments must keep in mind that the same syn-bio products can be created in different ways, and so, the regulatory regimes will need to vary. For instance, startups such as Impossible Foods, Mosa Meat, and Meati all compete in the cultured meats market, but, because they use microbes, cells, and fungi, respectively, to develop products, they must be subject to different legal frameworks. That could create entry barriers if policy-makers dont streamline the regulatory landscape.
Just as the 1990s belonged to the Internet, the 2020s mark syn-bios coming of age. As the worlds knowledge and use of syn-bio technologies grow, governments have no choice but to develop policies that will allow the industry to flourish. Because the technology creates novel and sustainable offerings, policy-makers must come to grips with syn-bio if they wish to boost economic growth even as they safeguard the environment. Only policy-makers that seize this dual opportunity by enacting supportive policies will be able to build their nations competitive advantage for the Bio Age.
ReadotherFortunecolumns by Franois Candelon.
Franois Candelonisa managing director and senior partner at BCG and global director of the BCG Henderson Institute.
Maxime Courtauxis a project leader at BCG and ambassador at the BCG Henderson Institute.
Vinit Patelis a project leader at BCG and ambassador at the BCG Henderson Institute.
Some companies featured in this column are past or current clients of BCG.
See more here:
Cultured meat could help solve the climate crisis. Heres what it will take to move it from the lab to the dinner table - Fortune
- Genetic Engineering (excerpt) - Video [Last Updated On: January 9th, 2012] [Originally Added On: January 9th, 2012]
- Promising early results with therapeutic cancer vaccines [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- Genetic Risk and Stressful Early Infancy Join to Increase Risk for Schizophrenia [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- Innovative cell printing technologies hold promise for tissue engineering R&D [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- SAGE® Labs Creates The First Tissue-Specific Gene Deletion In Rats [Last Updated On: April 21st, 2012] [Originally Added On: April 21st, 2012]
- Devangshu Datta: Towards an HIV cure [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- Now *This* Is a Cell Phone: Using Radio Waves to Control Specific Genes in Mice | 80beats [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Genetic packing: Successful stem cell differentiation requires DNA compaction, study finds [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Premier issue of BioResearch Open Access launched by Mary Ann Liebert Inc. publishers [Last Updated On: May 17th, 2012] [Originally Added On: May 17th, 2012]
- GEN reports on growth of tissue engineering revenues [Last Updated On: July 11th, 2012] [Originally Added On: July 11th, 2012]
- New therapeutic target for prostate cancer identified [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- Novel pig model may be useful for human cancer studies [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- New gene therapy strategy boosts levels of deficient protein in Friedreich's ataxia [Last Updated On: July 25th, 2012] [Originally Added On: July 25th, 2012]
- Should high-dose interleukin-2 continue to be the treatment of choice for metastatic melanoma? [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- New marker for identifying precursors to insulin-producing cells in pancreas [Last Updated On: August 22nd, 2012] [Originally Added On: August 22nd, 2012]
- 3D Biomatrix’s Perfecta3D® Hanging Drop Plates Featured in Prominent Life Science Journals [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Progress in Cell-SELEX compound screening technology reviewed in BioResearch Open Access [Last Updated On: October 18th, 2012] [Originally Added On: October 18th, 2012]
- Can the addition of radiolabeled treatments improve outcomes in advanced metastatic disease? [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Is the detection of early markers of Epstein Barr virus of diagnostic value? [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Genetic Engineering Of Mesenchymal Stem Cells - Video [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Ramble: Simelweis Taboo - Video [Last Updated On: December 12th, 2012] [Originally Added On: December 12th, 2012]
- The Super Protein That Can Cut DNA and Revolutionize Genetic Engineering [Last Updated On: March 22nd, 2013] [Originally Added On: March 22nd, 2013]
- Cellular Dynamics International Expands MyCell Products Line with Disease Models, Genetic Engineering Patents [Last Updated On: June 5th, 2013] [Originally Added On: June 5th, 2013]
- World Stem Cell Summit to be presented by Genetics Policy Institute, Mary Ann Liebert, Inc., and Genetic Engineering ... [Last Updated On: June 11th, 2013] [Originally Added On: June 11th, 2013]
- Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Genetic Engineering: What is Genetic Engineering? [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Critical factor (BRG1) identified for maintaining stem cell pluripotency [Last Updated On: February 7th, 2014] [Originally Added On: February 7th, 2014]
- Genome Surgery [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Engineering The Human Genome One Letter At A Time [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- CRISPR is the technology that could allow researchers to perform microsurgery on genes [Last Updated On: February 15th, 2014] [Originally Added On: February 15th, 2014]
- Joseph Glorioso, Ph.D., receives Pioneer Award [Last Updated On: February 19th, 2014] [Originally Added On: February 19th, 2014]
- Commentary: field of tissue engineering is progressing at remarkable pace [Last Updated On: March 5th, 2014] [Originally Added On: March 5th, 2014]
- Pioneer Award recipients Marina Cavazzana and Adrian Thrasher recognized for advancing gene therapy to the clinic for ... [Last Updated On: March 24th, 2014] [Originally Added On: March 24th, 2014]
- New method yields potent, renewable human stem cells with promising therapeutic properties [Last Updated On: March 25th, 2014] [Originally Added On: March 25th, 2014]
- First evidence that very small embryonic-like stem cells [Last Updated On: April 2nd, 2014] [Originally Added On: April 2nd, 2014]
- Scarless wound healing -- applying lessons learned from fetal stem cells [Last Updated On: April 11th, 2014] [Originally Added On: April 11th, 2014]
- Novel marker discovered for stem cells derived from human umbilical cord blood [Last Updated On: April 18th, 2014] [Originally Added On: April 18th, 2014]
- GENs Top 10 Session Picks for the 2014 BIO International Convention [Last Updated On: May 2nd, 2014] [Originally Added On: May 2nd, 2014]
- A Vaccine for Heart Disease Could Mean No Pills, Lettuce or a Gym [Last Updated On: June 14th, 2014] [Originally Added On: June 14th, 2014]
- Gene editing tool can write HIV out of the picture [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Inner ear stem cells hold promise for restoring hearing [Last Updated On: June 24th, 2014] [Originally Added On: June 24th, 2014]
- New method to grow zebrafish embryonic stem cells can regenerate whole fish [Last Updated On: June 30th, 2014] [Originally Added On: June 30th, 2014]
- Novel methods may help stem cells survive transplantation into damaged tissues [Last Updated On: July 22nd, 2014] [Originally Added On: July 22nd, 2014]
- New method for reducing tumorigenicity in induced pluripotent stem-cell based therapies [Last Updated On: July 24th, 2014] [Originally Added On: July 24th, 2014]
- Malcolm K. Brenner receives Pioneer Award for advances in gene-modified T cells targeting cancer [Last Updated On: July 26th, 2014] [Originally Added On: July 26th, 2014]
- Conclusive evidence on role of circulating mesenchymal stem cells in organ injury [Last Updated On: August 22nd, 2014] [Originally Added On: August 22nd, 2014]
- New genomic editing methods produce better disease models from patient-derived iPSCs [Last Updated On: September 8th, 2014] [Originally Added On: September 8th, 2014]
- Tory Williams combats controversy surrounding stem cell therapy with new book [Last Updated On: September 11th, 2014] [Originally Added On: September 11th, 2014]
- NYIT Expert Predicts Growth in Demand for 3D Kidneys, Livers and Hearts [Last Updated On: December 9th, 2014] [Originally Added On: December 9th, 2014]
- The 'Berlin patient,' first and only person cured of HIV, speaks out [Last Updated On: January 6th, 2015] [Originally Added On: January 6th, 2015]
- Integrins are essential in stem cell binding to defective cartilage for joint regeneration [Last Updated On: January 27th, 2015] [Originally Added On: January 27th, 2015]
- Scientists urge caution in using new CRISPR technology to treat human genetic disease [Last Updated On: March 20th, 2015] [Originally Added On: March 20th, 2015]
- Scientists call for caution in using DNA-editing technology [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- 'Ban DNA Editing Of Sperm And Eggs' [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- Mount Sinai Researchers Discover Genetic Origins of Myelodysplastic Syndrome Using Stem Cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Researchers discover genetic origins of myelodysplastic syndrome using stem cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Pulling the strings of our genetic puppetmasters [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Going deep on life extension investments and human genetic engineering (Morning Read) [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Genetic engineering: a guide for kids by Tiki the Penguin [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- genetic engineering | Britannica.com [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Interactives . DNA . Genetic Engineering [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Genetic engineering - Memory Alpha, the Star Trek Wiki [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering Careers in India : How to become a ... [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering (song) - Wikipedia, the free encyclopedia [Last Updated On: August 8th, 2016] [Originally Added On: August 8th, 2016]
- Genetic Engineering - BiologyMad [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- UNL's AgBiosafety for Educators [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Recent Articles | Genetic Engineering | The Scientist ... [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- Human Genetic Engineering - Popular Issues [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Explore More: Genetic Engineering - iptv.org [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Genetic Engineering and GM Crops - Pocket K | ISAAA.org [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Pros and Cons of Genetic Engineering | HRFnd [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering - The New York Times [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering | MSPCA-Angell [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- What is genetic engineering? - Definition from WhatIs.com [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering in Agriculture | Union of Concerned ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- Free genetic engineering Essays and Papers - 123helpme [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Gene therapy - Wikipedia [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Writing the human genome - The Biological SCENE [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- America's First Free-Roaming Genetically Engineered Insects Are ... - Gizmodo [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]