October 31stwill mark the 37th anniversary of one of biotechnologys most significant milestones -- the approval by the FDA of human insulin synthesized in genetically engineered bacteria.It launched a revolutionary new era in pharmaceutical development, and as the FDA medical reviewer of the product and the head of the evaluation team, I had a front-row seat.
The saga is remarkable in several ways, not least of which is that although both the drugmakers and regulators were exploring unknown territory, the development of the drug and its regulatory review progressed smoothly and rapidly.
Insulin in crude form was first produced in 1922 by Canadian researchers Frederick Banting and Charles Best, which lifted the death sentence that had previously been imposed on diabetics. By the end of that year drug company, Eli Lilly and Company had devised a method for much higher purification. Over the next half-century or so, the purified insulins obtained from pig or cow pancreases, which differ slightly in chemical composition from human insulin, were constantly improved in purity and formulated in ways that refined their performance.
During the early 1970s, as the supply of animal pancreases declined and the prevalence of insulin-requiring diabetes grew, there were widespread fears of possible future shortages of insulin.Fortuitously, around the same time, a new and powerful tool recombinant DNA technology, also known as genetic modification, genetic engineering, or gene-splicing became available and offered the promise of unlimited amounts of insulin that was identical to the molecule produced by humans.
The seminal molecular genetic engineering experiment wasreported in a 1973 research articleby academic scientists Stanley Cohen, Herbert Boyer and their collaborators. They isolated a ringlet of DNA called a plasmid from a bacterium, used certain enzymes to splice a gene from another bacterium into that plasmid, and then introduced the resulting recombinant, or chimeric, DNA intoE. colibacteria.
When these now recombinant bacteria reproduced, the plasmids containing the foreign DNA were likewise propagated and produced amplified amounts of the functional recombinant DNA. And because DNA contains the genetic code that directs the synthesis of proteins, this new methodology promised the ability to induce genetically modified bacteria (or other cells) to synthesize desired proteins in large amounts.
The scientists at Lilly immediately saw the promise of this technology for the production of unlimited quantities of human insulin in bacteria. After obtaining from startup Genentech, Inc., the recombinantE. colibacteria that contained the genetic blueprint for and that synthesized human insulin, they developed processes for the large-scale cultivation of the organism (in huge fermenters similar to those that make wine or beer) and for the purification and formulation of the insulin.
Insulins had long been Lillys flagship products, and the companys expertise was evident in the purification, laboratory testing and clinical trials of human insulin. The companys scientists painstakingly verified that their product was extremely pure and identical to pancreatic human insulin (which differs slightly in chemical composition from beef and pork insulin).
Lilly began clinical trials of its human insulin in July 1980. The product performed superbly. There were no systematic problems with treating naive patients (who had never before received injections of insulin) or those switched from animal to human insulin. A small number of patients who had had adverse reactions of some kind to the animal insulins tolerated the human insulin well.
The dossier that provided evidence of safety and efficacy was submitted in May 1982 to the FDA, where I was the medical reviewer and head of the evaluation team. Over many years the FDA had had prodigious experience with insulins and also with drugs derived from various microorganisms, so it was decided that no fundamentally new regulatory paradigms were necessary to evaluate the recombinant human insulin.
In other words, recombinant DNA techniques were viewed as an extension, or refinement, of long-used and familiar methods for making drugs. That proved to be a historic, precedent-setting decision.
Based on my teams exhaustive review of Lillys data, which were obtained from pre-clinical testing in animals and clinical trials in thousands of diabetics, FDA granted marketing approval for human insulin in October 1982. The review and approval took only five months when the agencys average approval time for new drugs was 30.5 months.
In retrospect, that rapid approval was particularly remarkable for a drug that was produced with a revolutionary new technology, and that after approval would be available in pharmacies nationwide to millions of American diabetics.
The back story, however, is revealing. My team and I were ready to recommend approvalafterfour months review. But when I took the packet to my supervisor, he said, Four months? No way! If anything goes wrong with this product down the road, people will say we rushed it, and well be toast. Thats the bureaucratic mind-set. I dont know how long he would have delayed it, but when he went on vacation a month later, I took the packet to his boss, the division director, and he signed off.
That anecdote illustrates Milton Friedmans observation that to understand the motivation of an individual or organization, you need to follow the self-interest. A large part of regulators self-interest lies in staying out of trouble. One way to do that, my supervisor understood, is not to approve in record time products that might experience unanticipated problems, even if it is the right thing to do.
The Humulin approval had significant effects. A New York Timesarticlementioned my prediction that the speedy approval was a major step forward in the scientific and commercial viability of recombinant DNA technology. We have now come of age, I said, and potential investors and entrepreneurs agreed. Seeing that biopharmaceuticals would compete with other medicines on a level playing field, the biotechnology industry was on the fast track.
Scores of genetically engineered drugs have been approved over the years, but the rapidity of the human insulin approval proved to be an anomaly. Even with a toolbox of improved technologies available to both the FDA and industry, bringing a new drug to market on average now takes 10-12 years and costs, on average, over$2.5 billion.Regulators are highly risk-averse, few new drugs are approved without convening extramural advisory committees, and decisions are sometimes hijacked by political forces exerted on the FDA.
Other FDA-regulated biotech sectors have fared worse.Incomprehensibly, the FDAdeclined to grant Generally Recognized As Safe (GRAS) statusto two proteins that would be life-saving as additives to oral rehydration solution administered to children with diarrhea.
In addition, FDA officials have made a horrendousmessof the regulation of genetically engineered animals, which FDA chose to regulate as new animal drugs, including a grotesquely prolonged, 20-plus year review of a faster-growing Atlantic salmon, and genetically engineered mosquitoes to control mosquitoes that carry viral diseases.(It took FDA more than five years to realize that the latter were actually pesticides which are outside the Agencys purview -- and that jurisdiction should, therefore, be turfed to EPA.)As a result, the entire biotech sector of genetically engineered animals is moribund.
Its too bad that government regulation hasnt aged as gracefully as genetic engineering technology itself.
See more here:
Record-Time FDA Approval of Human Insulin In 1982: When Genetic Engineering Came of Age - American Council on Science and Health
- Genetic Engineering (excerpt) - Video [Last Updated On: January 9th, 2012] [Originally Added On: January 9th, 2012]
- Promising early results with therapeutic cancer vaccines [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- Genetic Risk and Stressful Early Infancy Join to Increase Risk for Schizophrenia [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- Innovative cell printing technologies hold promise for tissue engineering R&D [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- SAGE® Labs Creates The First Tissue-Specific Gene Deletion In Rats [Last Updated On: April 21st, 2012] [Originally Added On: April 21st, 2012]
- Devangshu Datta: Towards an HIV cure [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- Now *This* Is a Cell Phone: Using Radio Waves to Control Specific Genes in Mice | 80beats [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Genetic packing: Successful stem cell differentiation requires DNA compaction, study finds [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Premier issue of BioResearch Open Access launched by Mary Ann Liebert Inc. publishers [Last Updated On: May 17th, 2012] [Originally Added On: May 17th, 2012]
- GEN reports on growth of tissue engineering revenues [Last Updated On: July 11th, 2012] [Originally Added On: July 11th, 2012]
- New therapeutic target for prostate cancer identified [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- Novel pig model may be useful for human cancer studies [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- New gene therapy strategy boosts levels of deficient protein in Friedreich's ataxia [Last Updated On: July 25th, 2012] [Originally Added On: July 25th, 2012]
- Should high-dose interleukin-2 continue to be the treatment of choice for metastatic melanoma? [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- New marker for identifying precursors to insulin-producing cells in pancreas [Last Updated On: August 22nd, 2012] [Originally Added On: August 22nd, 2012]
- 3D Biomatrix’s Perfecta3D® Hanging Drop Plates Featured in Prominent Life Science Journals [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Progress in Cell-SELEX compound screening technology reviewed in BioResearch Open Access [Last Updated On: October 18th, 2012] [Originally Added On: October 18th, 2012]
- Can the addition of radiolabeled treatments improve outcomes in advanced metastatic disease? [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Is the detection of early markers of Epstein Barr virus of diagnostic value? [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Genetic Engineering Of Mesenchymal Stem Cells - Video [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Ramble: Simelweis Taboo - Video [Last Updated On: December 12th, 2012] [Originally Added On: December 12th, 2012]
- The Super Protein That Can Cut DNA and Revolutionize Genetic Engineering [Last Updated On: March 22nd, 2013] [Originally Added On: March 22nd, 2013]
- Cellular Dynamics International Expands MyCell Products Line with Disease Models, Genetic Engineering Patents [Last Updated On: June 5th, 2013] [Originally Added On: June 5th, 2013]
- World Stem Cell Summit to be presented by Genetics Policy Institute, Mary Ann Liebert, Inc., and Genetic Engineering ... [Last Updated On: June 11th, 2013] [Originally Added On: June 11th, 2013]
- Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Genetic Engineering: What is Genetic Engineering? [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Critical factor (BRG1) identified for maintaining stem cell pluripotency [Last Updated On: February 7th, 2014] [Originally Added On: February 7th, 2014]
- Genome Surgery [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Engineering The Human Genome One Letter At A Time [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- CRISPR is the technology that could allow researchers to perform microsurgery on genes [Last Updated On: February 15th, 2014] [Originally Added On: February 15th, 2014]
- Joseph Glorioso, Ph.D., receives Pioneer Award [Last Updated On: February 19th, 2014] [Originally Added On: February 19th, 2014]
- Commentary: field of tissue engineering is progressing at remarkable pace [Last Updated On: March 5th, 2014] [Originally Added On: March 5th, 2014]
- Pioneer Award recipients Marina Cavazzana and Adrian Thrasher recognized for advancing gene therapy to the clinic for ... [Last Updated On: March 24th, 2014] [Originally Added On: March 24th, 2014]
- New method yields potent, renewable human stem cells with promising therapeutic properties [Last Updated On: March 25th, 2014] [Originally Added On: March 25th, 2014]
- First evidence that very small embryonic-like stem cells [Last Updated On: April 2nd, 2014] [Originally Added On: April 2nd, 2014]
- Scarless wound healing -- applying lessons learned from fetal stem cells [Last Updated On: April 11th, 2014] [Originally Added On: April 11th, 2014]
- Novel marker discovered for stem cells derived from human umbilical cord blood [Last Updated On: April 18th, 2014] [Originally Added On: April 18th, 2014]
- GENs Top 10 Session Picks for the 2014 BIO International Convention [Last Updated On: May 2nd, 2014] [Originally Added On: May 2nd, 2014]
- A Vaccine for Heart Disease Could Mean No Pills, Lettuce or a Gym [Last Updated On: June 14th, 2014] [Originally Added On: June 14th, 2014]
- Gene editing tool can write HIV out of the picture [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Inner ear stem cells hold promise for restoring hearing [Last Updated On: June 24th, 2014] [Originally Added On: June 24th, 2014]
- New method to grow zebrafish embryonic stem cells can regenerate whole fish [Last Updated On: June 30th, 2014] [Originally Added On: June 30th, 2014]
- Novel methods may help stem cells survive transplantation into damaged tissues [Last Updated On: July 22nd, 2014] [Originally Added On: July 22nd, 2014]
- New method for reducing tumorigenicity in induced pluripotent stem-cell based therapies [Last Updated On: July 24th, 2014] [Originally Added On: July 24th, 2014]
- Malcolm K. Brenner receives Pioneer Award for advances in gene-modified T cells targeting cancer [Last Updated On: July 26th, 2014] [Originally Added On: July 26th, 2014]
- Conclusive evidence on role of circulating mesenchymal stem cells in organ injury [Last Updated On: August 22nd, 2014] [Originally Added On: August 22nd, 2014]
- New genomic editing methods produce better disease models from patient-derived iPSCs [Last Updated On: September 8th, 2014] [Originally Added On: September 8th, 2014]
- Tory Williams combats controversy surrounding stem cell therapy with new book [Last Updated On: September 11th, 2014] [Originally Added On: September 11th, 2014]
- NYIT Expert Predicts Growth in Demand for 3D Kidneys, Livers and Hearts [Last Updated On: December 9th, 2014] [Originally Added On: December 9th, 2014]
- The 'Berlin patient,' first and only person cured of HIV, speaks out [Last Updated On: January 6th, 2015] [Originally Added On: January 6th, 2015]
- Integrins are essential in stem cell binding to defective cartilage for joint regeneration [Last Updated On: January 27th, 2015] [Originally Added On: January 27th, 2015]
- Scientists urge caution in using new CRISPR technology to treat human genetic disease [Last Updated On: March 20th, 2015] [Originally Added On: March 20th, 2015]
- Scientists call for caution in using DNA-editing technology [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- 'Ban DNA Editing Of Sperm And Eggs' [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- Mount Sinai Researchers Discover Genetic Origins of Myelodysplastic Syndrome Using Stem Cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Researchers discover genetic origins of myelodysplastic syndrome using stem cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Pulling the strings of our genetic puppetmasters [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Going deep on life extension investments and human genetic engineering (Morning Read) [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Genetic engineering: a guide for kids by Tiki the Penguin [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- genetic engineering | Britannica.com [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Interactives . DNA . Genetic Engineering [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Genetic engineering - Memory Alpha, the Star Trek Wiki [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering Careers in India : How to become a ... [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering (song) - Wikipedia, the free encyclopedia [Last Updated On: August 8th, 2016] [Originally Added On: August 8th, 2016]
- Genetic Engineering - BiologyMad [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- UNL's AgBiosafety for Educators [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Recent Articles | Genetic Engineering | The Scientist ... [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- Human Genetic Engineering - Popular Issues [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Explore More: Genetic Engineering - iptv.org [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Genetic Engineering and GM Crops - Pocket K | ISAAA.org [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Pros and Cons of Genetic Engineering | HRFnd [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering - The New York Times [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering | MSPCA-Angell [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- What is genetic engineering? - Definition from WhatIs.com [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering in Agriculture | Union of Concerned ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- Free genetic engineering Essays and Papers - 123helpme [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Gene therapy - Wikipedia [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Writing the human genome - The Biological SCENE [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- America's First Free-Roaming Genetically Engineered Insects Are ... - Gizmodo [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]