Each night, around 7 o'clock, I drift off into a little daydream. This has been the case for weeks now. My beloved Mets are jogging onto the grass at Citi Field, taking their positions; their ace, Jacob deGrom, making a beeline to the mound. I am up out of my seat, applauding, gazing out onto the field. I look up to the sky, and that's it, really. The scene tends to slip away from there. I look down to see the gates of my apartment's window guard and the emptied streets of Manhattan beyond them. I really am clapping, but it's got nothing to do with baseball. It's in support of local nurses and doctors at work or changing shifts. Across New York City, this ritual plays out night after night (the clapping for health care workersnot the Mets fantasies, I don't think).
There's a crossing of wires at play, like my precious sports memories are mingling with the signatures of my life during the COVID-19 eraclapping, quarantining, boredom. Will it stay this way? For a while, at least, I think it will.
As MLB, the NBA and other leagues near their returns, I find myself fascinated by questions pertaining to the virus and the ways it will ripple through our leagues. How many players will contract it? How will leagues' models evolve as they move forward? Even for mea lifelong overcommitted fan who sends excessive, neurotic text threads (unresponded to) during regular-season gamesI think most of the drama in sports will come not from daily games but from daily tests results. This is the virus overpowering the once-invincible sports machine.
Already, so much of the mystique of sports has been lost. I miss the steady, circular rhythm of leagues in-season, the way they appeared day after day, overlapping only a few sacred times a year as if choreographed by the moon instead of computers and marketing teams. I miss the shameless self-importance of teams playing no matter what. (Spring training continued for 10 days after the first cases of COVID-19 appeared in Florida.) It was simply more fun back when we could view athletes as impervious superheroes rather than as bored video-gamersor, worse, as medical patients. There is something uncomfortable about having seen a dominant, intimidating player like Rudy Gobert briefly exposed as reckless and unhygienic. Games will return soon enough, but what about the underlying myths that lend them relevance and depth?
The NBA's bubble-based return, set for July 30, cuts against team fandomso driven by proximityby moving everyone to Disney World. It admits that the game could go on without us, the fans, rowdy old faithful, by playing in near silence. Game rules are changing, too, yielding to the virus' demands. There are smaller coaching staffs to protect older people from exposure, and expanded rosters for when the inevitable happens. Every league is making compromises: MLB might ban its most endearing prop, the sunflower seed, and tweak its most fundamental, unique feature, the nine-inning game.
These leagues are right to weigh these measures and to take them. They are preventing tragedies, not creating them. But the bending of tradition makes me wonder about the future of sports, about how things just changed overnight, and how they might change again in 10 years or 50. Maybe that will be the enduring impact of COVID-19 when it comes to sportsthat it opened the gates to change.
Naturally, this is where things get strange. Stick it out anyway. Consider the ways that fans and leagues are already adapting to this odd time, this time of no sports, and then imagine what comes next, and what after that. One small bit of innovation leads to an unpredictable new one, and on it goes. Very quickly, this evolution brings us into the realm of science fiction.
We might be there already. While games were on hold, the public embraced something that in the past seemed both silly and dystopian: game simulations. Las Vegas offered sim-game betting lines; we hosted virtual Madden watch parties right here at B/R. They were and are an obvious placeholder for real sports. Still, their popularity made me curious about their power down the road, if animated graphics improve enough to match real sports. Technologically speaking, could that day be coming? I asked an expert.
Nicholas Bostrom is a professor at Oxford and a pioneer of the simulation theory, which posits that we may be living in a knockoff version of Earth created by a more advanced (real-life) society. (Assuming that computers will someday be able to produce unlimited realistic simulations of life, we might be wise, he suggests, to already "think that we are likely among the simulated minds rather than among the original biological ones.") Bostrom published Are You Living in a Computer Simulation? way back in 2003. Today, few are better equipped to tell us about the future of sims. So, Professor, how good can they get?
"Eventually we will have completely realistic virtual reality simulations that would be indistinguishable from physical reality," he says. "I don't see why in theory you couldn't have a purely artificial creature that was competing against another in a way that would create a sports event."
You might be wondering what the point of this would be once sports return. Well, consider the NBA's most exhausting debate topic: load (or injury) management. Back when there were regularly scheduled games, we wasted much time meditating on the notion of, say, Kawhi Leonard taking a night off, letting his teammates dominate the lowly Cavaliers or Knicks in front of a crowd that paid to see him play. It's obvious that if there were fewer games, the need to skip some of them would decrease. Fewer games would also soothe another of the league's concerns: players' lack of sleep amid a busy travel schedule.
Simulations could merge these issues and resolve them at once. Why not simulate lopsided games like Clippers-Cavs, providing rest for Leonard and everybody else involved? Each year, each team could sim 10 or 12 games, allowing a 70- or 72-game schedule for playersalready a desired ballparkand a full 82-game slate for the league's partners, like TV networks and casinos, who would package the simulated visuals and box scores.
Maybe this idea seems a little far out, but the NBA rarely minds. It is already welcoming the ideas of the future, from the four-point shot to aerospace revolution.
Indeed, Commissioner Adam Silver has long seen supersonic flight as the key to a truly global league. With it, Portland could face Sydney and return four hours later, in time for bed. We already have an Atlantic Division with teams from America's Northeast; how about adding a Transatlantic Division featuring Brazil, Spain and Nigeria? For now, the problem is a logistical one. "Under existing airline technology, the planes aren't fast enough to at least play in the current framework of our regular season," Silver told USA Today in 2017. Fortunately, with help from Elon Musk, Richard Branson and more, supersonic jets are on their way. Just one of many game-changers to come.
Robots have perfected three-point shooting and will someday make flawless floor-spacers. Salaries paid in cryptocurrency will provide a cap loophole and threaten the league's financial structure. Augmented reality on-screen willsomehowincrease complaints about players' shot selection. Advanced tracking through biometric data will grow into a major concern regarding personal privacy. How much should bidding teams know about a free agent's body? Who gets to dictate the right body fat percentage for somebody else or whether a balky ankle is strong enough to play on? And, as the Wall Street Journal once asked: If a fan gains access to a player's medical status and uses it to wager on a game, is that insider trading? (If the answers to these questions seem like a privacy violation, then consider how quickly athletes' COVID-19 test results became expected public information, even though they're irrelevant so long as sports are on hold. If there is already a demand to know whether Ezekiel Elliott, a running back, is experiencing an inability to smell, then there's no doubting the future demand for intimate insight about his legs.)
Yes, the future can seem vast and spookythough not to Thomas Frey. Frey is an author and member of the Association of Professional Futurists. His job is to burst with ideas, and he's bursting all right, riffing on the future of medicine, tech, sports, you name it. He envisions not only the events of the future but also the issues that will counter those eventsthe future's future. "Drone racing is kind of a hot area right now," he says, "but my sense is that the drone racing eventually gets so fast that you can't even see it, and so I'm not sure that sport sticks around." Dang. What else? Frey wants to elevate existing sportsthe ones played on the groundthrough the control and reduction of gravity. (Think NFL meets Quidditch or Slamball with no need for trampolines.) He wonders about anti-aging, tooin this case, what 3,000-year lifespans might mean for athletic primes.
Other revolutions are impossible to imagine playing out (unless you happen to be a member of the APF). "We're close to reviving extinct species like woolly mammoths," Frey notes, before pondering the cruelty of secluding them from other, natural-born animals. An idea strikes him. "Creating a sport with woolly mammoth riders going around the trackthat would seem bizarre today," he says. "But I would definitely pay to go see that."
Of course, there is not only the matter of tweaking (or inventing) sports, but also that of tweaking the players themselves. One of Frey's favorite topics is genetic engineeringthe process of tinkering with human genes before birth. "We're reinventing people. We're making people more durable. We're giving rights to CRISPR [the bio-tech giant], who will give us superbabies who grow up to be superhumans," he says. OK then. Frey thinks it's inevitable that, someday, we'll be able to genetically manufacture superior athletes: bigger, faster, smarterto an uncanny degree. He wonders about "downloading the human brain" and uploading it into the mind of another person. In time, if this all gets easy and silly enough, a supertoddler could have the basketball IQ of LeBron James. (Just imagine the recruiting violations that would follow.)
Bostrom has explored genetic engineering as well. "The enhancement options being discussed," he wrote in 2003, "include radical extension of human health-span, eradication of disease, elimination of unnecessary suffering" and more. A superhuman ability to ward off illnesssay, a coronaviruswould certainly come in handy. So too would advancements that eliminate athletic limitations. Imagine how a perfect set of knees would have changed the careers of Greg Oden, Brandon Roy and others; imagine Shaquille O'Neal with a sprinter's endurance; imagine Jimmer Fredette at 7'3".
Sounds pretty greator actually it sounds like it would look pretty great, visually. But would this be good for sports? Is it ethical? Or the right spirit? And how would this impact the lives of the athletes we love?
Every tech innovation takes something away from the humans it replaces or (ostensibly) aids. Flawless three-and-D bots entering the NBA would not only change the game but also eliminate dozens or hundreds of lucrative jobs. Supersonic travel, alluring as it may be, could have untold effects on passengersespecially international-league athletes, flying overseas day after day. Genetic engineering could draw a devastating, permanent line between the haves and the have-nots.
When it arrives in full force, Frey says, crafting a given attribute"20/10 vision, a perfect heart"may well cost tens of thousands of dollars. There's no telling what else will be at the disposal of fortunate young athletes then (though Frey, of course, has some ideas, including advanced VR headsets).
Already, financial inequality pervades all of sports. Young basketball players need to be able to cover the costs of trainers and AAU travel teams to earn recognition; it's probably not a coincidence that the children of well-off former players are entering the league at a higher rate than ever. Young baseball players need not only training but also equipment, toomitts, balls, bats, helmets, cleats. (Cleveland pitcher Mike Clevinger recently blamed these costs for the sport's declining popularity among young athletes.) Golf, football, hockeyevery major sport operates behind a financial barrier to entry. In 2018, The Atlantic noted that "just 34 percent of children from families earning less than $25,000 played a team sport at least once a day in 2017, versus 69 percent from homes earning more than $100,000." (Those numbers came from a study by the Aspen Institute, which found that the gap was rapidly growing.)
Imagine a world in which the NBA MVP is an 8'6" trust-fund kid. It seems awfully shallow. Could a souped-up superhuman celebrate the award with the same tenderness as Kevin Durant did in 2014? Even if they did, would we bother to cry along with them? There is no great story in sports without long odds and a dash of relatability.Genetic engineering would destroy the enduring notion of the underdog. It would dull the sweetness of our games, the unpredictability, the misery, the reward. What, then, would be left?
"I'm not particularly excited about sports enhancements," Bostrom says, speaking broadly. "We shouldn't make the mistake of thinking everything that makes the sport easier or makes performance better makes the sport more enjoyable. I think we should think of these things more as, You're designing a game. Think creatively about what would make the most fun game. It's not always the easiest thing."
So far, leagues have mostly welcomed new tech as it arrives, a concerning trend. Consider the modern obsession with instant replay.
Think back to the men's NCAA title game last April. With the season on the line, the ball was knocked out of a Texas Tech dribbler's hands and flew out of bounds. For anybody who has ever picked up a basketball and played a game on any level, it was instantly recognizable as Tech's ball. But after several minutes of replaywhich included referee consultant Gene Steratore saying, "At times, guys, I will tell you, when you start running replay really, really slow, you get a little bit of distortion in there as well, so you've gotta be cognizant to that," suggesting that looking more closely may bring us further from the truththe ball was given to Virginia, the underlying logic being that the most important thing is to get the call right. Is it? What about the flow of the game, the sanity of the viewer, the unspoken understandingsI knocked it out; it's your ballthat run between players and fans, deepening the sport?
This, I will always believe, is the good stuff. Even Bostromwho is so technical that he at one point connects sports fandom to ancient Greek war and says, "You can speculate that, from an evolutionary point of view, being able to detect small differences in fitness would be valuable"agrees these intangibles are worth protecting. Even at the cost of, say, letting simulations run wild.
"You can't predict how an actual game will play out just by sort of measuring the circumference of the biceps and the speed on the treadmill of the athletes," Bostrom says. "And I think if you could predict it, in some sense it could reduce interest. It's not the same as seeing the struggle, the human spirit, the grit, the audience cheering them on."
The question, then, is not so much whether replay or sims or any other technical advance are helpful or efficient but whether we have the ability to recognize when they are aiding sports versus when they are harming them, and when the time is right to rein them in.
"Rather than just allowing everything that makes the performance better," Bostrom says, "we should think more about changes that make the game more fun and rewarding for both the players and the audience."
Are we doing this now? It's hard to say. The COVID-19 pandemic is accelerating change and the acceptance of change. It is clouding the rule-changing thought process. Already, long-standing traditions and powerful illusions have been altered across sports. After years of debate within baseball about the designated hitter, it will be implemented leaguewide as part of MLB's plan for a safe return. It is but a footnote to a much more complex story, which is fine. But also, how does the DH protect anybody from the coronavirus?
The NBA's bubble league will introduce its own oddities, though not everyone will be there to experience them firsthand. Several players have already tapped out of the NBA reboot, some fearing the virus, some having tested positive for it, some unwilling to separate from their loved ones. Others are sitting out so they can focus on social justice reform after expressing concerns that basketball could detract from those efforts. For those traveling to Disney World, it will be a lonely undertaking. Players themselves "are not permitted to enter each other's hotel rooms." Card games, if they do occur, will be monitored closely, and decks will be swapped out frequently.
Every league is drawing its own unprecedented game plan. The NFL is planning to cover the seats closest to the sidelines to keep fans away from players (though the league of course will advertise on the tarp). The NHL will reportedly route its action through two hub cities, Toronto and Edmonton. The measures that college sports will need to takeassuming anybody is on campus come Septemberfigure to be the most drastic of all.
Tech innovation will accompany each return: temperature screenings, artificial crowd noise, broadcasting from home. As quarantine warps our collective sense of time, it feels as though we've known these quirks forever. But not long ago they would have seemed quite strange, impossible, unwelcome, like somebody somewhere out there was toying with our settings.
Leo Sepkowitz joined B/R Mag in 2018. Previously, he was a Senior Writer at SLAM Magazine. You can follow him on Twitter: @LeoSepkowitz.
Original post:
The Future of Sports - Bleacher Report
- Genetic Engineering (excerpt) - Video [Last Updated On: January 9th, 2012] [Originally Added On: January 9th, 2012]
- Promising early results with therapeutic cancer vaccines [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- Genetic Risk and Stressful Early Infancy Join to Increase Risk for Schizophrenia [Last Updated On: March 27th, 2012] [Originally Added On: March 27th, 2012]
- Innovative cell printing technologies hold promise for tissue engineering R&D [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- SAGE® Labs Creates The First Tissue-Specific Gene Deletion In Rats [Last Updated On: April 21st, 2012] [Originally Added On: April 21st, 2012]
- Devangshu Datta: Towards an HIV cure [Last Updated On: May 5th, 2012] [Originally Added On: May 5th, 2012]
- Now *This* Is a Cell Phone: Using Radio Waves to Control Specific Genes in Mice | 80beats [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Genetic packing: Successful stem cell differentiation requires DNA compaction, study finds [Last Updated On: May 11th, 2012] [Originally Added On: May 11th, 2012]
- Premier issue of BioResearch Open Access launched by Mary Ann Liebert Inc. publishers [Last Updated On: May 17th, 2012] [Originally Added On: May 17th, 2012]
- GEN reports on growth of tissue engineering revenues [Last Updated On: July 11th, 2012] [Originally Added On: July 11th, 2012]
- New therapeutic target for prostate cancer identified [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- Novel pig model may be useful for human cancer studies [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- New gene therapy strategy boosts levels of deficient protein in Friedreich's ataxia [Last Updated On: July 25th, 2012] [Originally Added On: July 25th, 2012]
- Should high-dose interleukin-2 continue to be the treatment of choice for metastatic melanoma? [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- New marker for identifying precursors to insulin-producing cells in pancreas [Last Updated On: August 22nd, 2012] [Originally Added On: August 22nd, 2012]
- 3D Biomatrix’s Perfecta3D® Hanging Drop Plates Featured in Prominent Life Science Journals [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Progress in Cell-SELEX compound screening technology reviewed in BioResearch Open Access [Last Updated On: October 18th, 2012] [Originally Added On: October 18th, 2012]
- Can the addition of radiolabeled treatments improve outcomes in advanced metastatic disease? [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Is the detection of early markers of Epstein Barr virus of diagnostic value? [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Genetic Engineering Of Mesenchymal Stem Cells - Video [Last Updated On: November 18th, 2012] [Originally Added On: November 18th, 2012]
- Ramble: Simelweis Taboo - Video [Last Updated On: December 12th, 2012] [Originally Added On: December 12th, 2012]
- The Super Protein That Can Cut DNA and Revolutionize Genetic Engineering [Last Updated On: March 22nd, 2013] [Originally Added On: March 22nd, 2013]
- Cellular Dynamics International Expands MyCell Products Line with Disease Models, Genetic Engineering Patents [Last Updated On: June 5th, 2013] [Originally Added On: June 5th, 2013]
- World Stem Cell Summit to be presented by Genetics Policy Institute, Mary Ann Liebert, Inc., and Genetic Engineering ... [Last Updated On: June 11th, 2013] [Originally Added On: June 11th, 2013]
- Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Genetic Engineering: What is Genetic Engineering? [Last Updated On: November 1st, 2013] [Originally Added On: November 1st, 2013]
- Critical factor (BRG1) identified for maintaining stem cell pluripotency [Last Updated On: February 7th, 2014] [Originally Added On: February 7th, 2014]
- Genome Surgery [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Engineering The Human Genome One Letter At A Time [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- CRISPR is the technology that could allow researchers to perform microsurgery on genes [Last Updated On: February 15th, 2014] [Originally Added On: February 15th, 2014]
- Joseph Glorioso, Ph.D., receives Pioneer Award [Last Updated On: February 19th, 2014] [Originally Added On: February 19th, 2014]
- Commentary: field of tissue engineering is progressing at remarkable pace [Last Updated On: March 5th, 2014] [Originally Added On: March 5th, 2014]
- Pioneer Award recipients Marina Cavazzana and Adrian Thrasher recognized for advancing gene therapy to the clinic for ... [Last Updated On: March 24th, 2014] [Originally Added On: March 24th, 2014]
- New method yields potent, renewable human stem cells with promising therapeutic properties [Last Updated On: March 25th, 2014] [Originally Added On: March 25th, 2014]
- First evidence that very small embryonic-like stem cells [Last Updated On: April 2nd, 2014] [Originally Added On: April 2nd, 2014]
- Scarless wound healing -- applying lessons learned from fetal stem cells [Last Updated On: April 11th, 2014] [Originally Added On: April 11th, 2014]
- Novel marker discovered for stem cells derived from human umbilical cord blood [Last Updated On: April 18th, 2014] [Originally Added On: April 18th, 2014]
- GENs Top 10 Session Picks for the 2014 BIO International Convention [Last Updated On: May 2nd, 2014] [Originally Added On: May 2nd, 2014]
- A Vaccine for Heart Disease Could Mean No Pills, Lettuce or a Gym [Last Updated On: June 14th, 2014] [Originally Added On: June 14th, 2014]
- Gene editing tool can write HIV out of the picture [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Inner ear stem cells hold promise for restoring hearing [Last Updated On: June 24th, 2014] [Originally Added On: June 24th, 2014]
- New method to grow zebrafish embryonic stem cells can regenerate whole fish [Last Updated On: June 30th, 2014] [Originally Added On: June 30th, 2014]
- Novel methods may help stem cells survive transplantation into damaged tissues [Last Updated On: July 22nd, 2014] [Originally Added On: July 22nd, 2014]
- New method for reducing tumorigenicity in induced pluripotent stem-cell based therapies [Last Updated On: July 24th, 2014] [Originally Added On: July 24th, 2014]
- Malcolm K. Brenner receives Pioneer Award for advances in gene-modified T cells targeting cancer [Last Updated On: July 26th, 2014] [Originally Added On: July 26th, 2014]
- Conclusive evidence on role of circulating mesenchymal stem cells in organ injury [Last Updated On: August 22nd, 2014] [Originally Added On: August 22nd, 2014]
- New genomic editing methods produce better disease models from patient-derived iPSCs [Last Updated On: September 8th, 2014] [Originally Added On: September 8th, 2014]
- Tory Williams combats controversy surrounding stem cell therapy with new book [Last Updated On: September 11th, 2014] [Originally Added On: September 11th, 2014]
- NYIT Expert Predicts Growth in Demand for 3D Kidneys, Livers and Hearts [Last Updated On: December 9th, 2014] [Originally Added On: December 9th, 2014]
- The 'Berlin patient,' first and only person cured of HIV, speaks out [Last Updated On: January 6th, 2015] [Originally Added On: January 6th, 2015]
- Integrins are essential in stem cell binding to defective cartilage for joint regeneration [Last Updated On: January 27th, 2015] [Originally Added On: January 27th, 2015]
- Scientists urge caution in using new CRISPR technology to treat human genetic disease [Last Updated On: March 20th, 2015] [Originally Added On: March 20th, 2015]
- Scientists call for caution in using DNA-editing technology [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- 'Ban DNA Editing Of Sperm And Eggs' [Last Updated On: March 23rd, 2015] [Originally Added On: March 23rd, 2015]
- Mount Sinai Researchers Discover Genetic Origins of Myelodysplastic Syndrome Using Stem Cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Researchers discover genetic origins of myelodysplastic syndrome using stem cells [Last Updated On: March 26th, 2015] [Originally Added On: March 26th, 2015]
- Pulling the strings of our genetic puppetmasters [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Going deep on life extension investments and human genetic engineering (Morning Read) [Last Updated On: April 6th, 2015] [Originally Added On: April 6th, 2015]
- Genetic engineering: a guide for kids by Tiki the Penguin [Last Updated On: July 8th, 2015] [Originally Added On: July 8th, 2015]
- genetic engineering | Britannica.com [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Interactives . DNA . Genetic Engineering [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Genetic engineering - Memory Alpha, the Star Trek Wiki [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering Careers in India : How to become a ... [Last Updated On: September 10th, 2015] [Originally Added On: September 10th, 2015]
- Genetic Engineering (song) - Wikipedia, the free encyclopedia [Last Updated On: August 8th, 2016] [Originally Added On: August 8th, 2016]
- Genetic Engineering - BiologyMad [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- UNL's AgBiosafety for Educators [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Recent Articles | Genetic Engineering | The Scientist ... [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- Human Genetic Engineering - Popular Issues [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Explore More: Genetic Engineering - iptv.org [Last Updated On: October 29th, 2016] [Originally Added On: October 29th, 2016]
- Genetic Engineering and GM Crops - Pocket K | ISAAA.org [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Pros and Cons of Genetic Engineering | HRFnd [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering - The New York Times [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering | MSPCA-Angell [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- What is genetic engineering? - Definition from WhatIs.com [Last Updated On: November 10th, 2016] [Originally Added On: November 10th, 2016]
- Genetic Engineering in Agriculture | Union of Concerned ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- Free genetic engineering Essays and Papers - 123helpme [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Gene therapy - Wikipedia [Last Updated On: November 20th, 2016] [Originally Added On: November 20th, 2016]
- Writing the human genome - The Biological SCENE [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- America's First Free-Roaming Genetically Engineered Insects Are ... - Gizmodo [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]