Large-scale and small-scale population genetic structure of the medically important gastropod species Bulinus truncatus (Gastropoda, Heterobranchia) -…

Posted: September 25, 2022 at 2:25 am

Adema CM, Bayne CJ, Bridger JM, Knight M, Loker ES, Yoshino TP, et al. Will all scientists working on snails and the diseases they transmit please stand up? PLoS Negl Trop Dis. 2012;6:56.

Article Google Scholar

Brown DS, Shaw KM. Freshwater snails of the Bulinus truncatus/tropicus complex in Kenya: tetraploid species. J Molluscan Stud. 1989;55:50932.

Article Google Scholar

Jorgensen A, Madsen H, Nalugwa A, Nyakaana S, Rollinson D, Stothard JR, et al. A molecular phylogenetic analysis of Bulinus (Gastropoda: Planorbidae) with conserved nuclear genes. Zool Scr. 2011;40:12636.

Article Google Scholar

Jrgensen A, Jrgensen LVG, Kristensen TK, Madsen H, Stothard JR. Molecular phylogenetic investigations of Bulinus (Gastropoda: Planorbidae) in Lake Malawi with comments on the topological incongruence between DNA loci. Zool Scr. 2007;36:57785.

Article Google Scholar

Brown D. Freshwater snails of Africa and their medical importance. Boca Raton: Taylor & Francis; 1994.

Book Google Scholar

Cowie RH, Dillon RT, Robinson DG, Smith JW. Alien non-marine snails and slugs of priority quarantine importance in the United States: a preliminary risk assessment. Am Malacol Bull. 2009;27:11332.

Article Google Scholar

Maes T, Hammoud C, Volckaert FAM, Huyse T. A call for standardised snail ecological studies to support schistosomiasis risk assessment and snail control efforts. Hydrobiologia. 2021;848:177393.

Article Google Scholar

Najarian HH. Biological studies on the snail, Bulinus truncatus, in central Iraq. Bull World Health Organ. 1961;25:43546.

CAS PubMed PubMed Central Google Scholar

Watson JM. Ecology and distribution of Bulinus truncatus in the Middle East; with comments on the effect of some human activities in their relationship to the snail host on the incidence of Bilharziasis haematobia in the Middle East and Africa. Bull World Health Organ. 1958;18:83394.

CAS PubMed PubMed Central Google Scholar

Picquet M, Ernould JC, Vercruysse J, Southgate VR, Mbaye A, Sambou B, et al. The epidemiology of human schistosomiasis in the Senegal river basin. Trans R Soc Trop Med Hyg. 1990;90:3406.

Article Google Scholar

Abdel-Wahab MF, Yosery A, Narooz S, Esmat G, El Hak S, Nasif S, et al. Is Schistosoma mansoni replacing Schistosoma haematobium in the Fayoum? Am J Trop Med Hyg. 1993;49:697700.

CAS PubMed Article Google Scholar

Barakat R, El Morshedy H, Farghaly A. Human schistosomiasis in the Middle East and North Africa region. In: Mary AM, Sima R, editors. Neglected tropical diseasesMiddle East and North Africa. Neglected tropical diseases series. Vienna: Springer; 2014. p. 2357.

Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis. 2012;6:1475.

Article Google Scholar

Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: current trends and future expectations. Acta Trop. 2019;190:25768.

PubMed Article Google Scholar

Boissier J, Grech-Angelini S, Webster BL, Allienne J-F, Huyse T, Mas-Coma S, et al. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect Dis. 2016;16:9719.

PubMed Article Google Scholar

Githeko A, Lindsay S, Confalonieri U, Patz J. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000;78:113647.

CAS PubMed PubMed Central Google Scholar

Berry A, Mon H, Iriart X, Mouahid G, Aboo O, Boissier J, et al. Schistosomiasis haematobium, Corsica. Fr Emerg Infect Dis. 2014;20:15957.

Article Google Scholar

Martnez-Ort A, Vilavella D, Bargues MD, Mas-Coma S. Risk map of transmission of urogenital schistosomiasis by Bulinus truncatus (Audouin, 1827) (Mollusca Gastropoda, Bulinidae) in Spain and Portugal. Anim Biodivers Conserv. 2019;42:25766.

Article Google Scholar

Mulero S, Rey O, Arancibia N, Mas-Coma S, Boissier J. Persistent establishment of a tropical disease in Europe: the preadaptation of schistosomes to overwinter. Parasit Vectors. 2019;12:379.

PubMed PubMed Central Article Google Scholar

Stensgaard A-S, Booth M, Nikulin G, McCreesh N. Combining process-based and correlative models improves predictions of climate change effects on Schistosoma mansoni transmission in eastern Africa. Geospat Health. 2016;11:406.

PubMed Article Google Scholar

Coustau C, Gourbal B, Duval D, Yoshino TP, Adema CM, Mitta G. Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: a review of research progress over the last decade. Fish Shellfish Immunol. 2015;46:516.

CAS Article Google Scholar

Rollinson D, Webster JP, Webster B, Nyakaana S, Jrgensen A, Stothard JR. Genetic diversity of schistosomes and snails: implications for control. Parasitology. 2009;136:180111.

CAS PubMed Article Google Scholar

Gow JL, Noble LR, Rollinson D, Tchuent LAT, Jones CS. Contrasting temporal dynamics and spatial patterns of population genetic structure correlate with differences in demography and habitat between two closely-related African freshwater snails. Biol J Linn Soc. 2007;90:74760.

Article Google Scholar

Gow JL, Noble LR, Rollinson D, Mimpfoundi R, Jones CS. Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes. Mol Ecol. 2004;13:356173.

CAS PubMed Article Google Scholar

Jarne P, Thron A. Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology. 2001;123:2740.

Article Google Scholar

Adema CM, Hillier LDW, Jones CS, Loker ES, Knight M, Minx P, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:112.

Article CAS Google Scholar

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:110.

Article CAS Google Scholar

Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270:31321.

CAS Article Google Scholar

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:2949.

CAS PubMed Google Scholar

Kane RA, Stothard JR, Emery AM, Rollinson D. Molecular characterization of freshwater snails in the genus Bulinus: a role for barcodes? Parasit Vectors. 2008;1:15.

PubMed PubMed Central Article CAS Google Scholar

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:16479.

PubMed PubMed Central Article Google Scholar

Sonet G, Jordaens K, Nagy ZT, Breman FC, De Meyer M, Backeljau T, et al. Adhoc: an R package to calculate ad hoc distance thresholds for DNA barcoding identification. Zookeys. 2013;365:32935.

Article Google Scholar

Meier R, Shiyang K, Vaidya G, Ng PKL. DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol. 2006;55:71528.

PubMed Article Google Scholar

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:11120.

CAS PubMed Article Google Scholar

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:27259.

CAS PubMed PubMed Central Article Google Scholar

Boon NAM, Mbow M, Paredis L, Moris P, Sy I, Maes T, et al. No barrier breakdown between human and cattle schistosome species in the Senegal River Basin in the face of hybridisation. Int J Parasitol. 2019;49:103948.

CAS PubMed Article Google Scholar

Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet. 2011;1:17182.

CAS Google Scholar

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:21568.

CAS PubMed PubMed Central Article Google Scholar

Keenan K, McGinnity P, Cross TF, Crozier WW. Diversity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4:7828.

Article Google Scholar

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour. 2010;10:5647.

PubMed Article Google Scholar

Guo SW, Thompson EA. Performing the exact test of HardyWeinberg proportion for multiple alleles. Biometrics. 1992;48:361.

CAS PubMed Article Google Scholar

Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:3308.

Article Google Scholar

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:135870.

CAS PubMed Google Scholar

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289300.

Google Scholar

Jombart T, Devillard S, Dufour A-B, Pontier D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity. 2008;101:92103.

CAS PubMed Article Google Scholar

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:94559.

CAS PubMed PubMed Central Article Google Scholar

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14:261120.

CAS PubMed Article Google Scholar

Earl DA, VonHoldt BM. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour. 2012;4:35961.

Article Google Scholar

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:18016.

CAS PubMed Article Google Scholar

Rosenberg NA. Distruct a program for the graphical display of population structure. Mol Ecol Notes. 2004;4:1378.

Article Google Scholar

Smouse PE, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity. 1999;82:56173.

More here:
Large-scale and small-scale population genetic structure of the medically important gastropod species Bulinus truncatus (Gastropoda, Heterobranchia) -...

Related Posts