Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion – Nature.com

Posted: July 27, 2022 at 2:47 am

Johri, A. K. et al. Group B Streptococcus: global incidence and vaccine development. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro1552 (2006).

Nizet, V. I., Ferrieri, P. A. & Rubens, C. E. Molecular pathogenesis of group B streptococcal disease in newborns. Streptococcal Infect. Clin. Asp. Microbiol. Mol. Pathog. 180221 (Oxford Univ. Press, New York, NY, 2000).

Davies, H. G., Carreras-Abad, C., Le Doare, K. & Heath, P. T. Group B Streptococcus: trials and tribulations. Pediatr. Infect. Dis. J. https://doi.org/10.1097/INF.0000000000002328 (2019).

Seale, A. C. et al. Estimates of the burden of Group B Streptococcal disease worldwide for pregnant women, stillbirths, and children. Clin. Infect. Dis. https://doi.org/10.1093/cid/cix664 (2017).

World Health Organisation. Group B Streptococcus Vaccine: Full Value of Vaccine Assessment. Financial Analysis. (World Health Organisation, 2021).

Schuchat, A. Epidemiology of group B streptococcal disease in the United States: Shifting paradigms. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.11.3.497 (1998).

Bekker, V., Bijlsma, M. W., van de Beek, D., Kuijpers, T. W. & Van der Ende, A. Incidence of invasive group B streptococcal disease and pathogen genotype distribution in newborn babies in the Netherlands over 25 years: a nationwide surveillance study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(14)70919-3 (2014).

Bevan, D., White, A., Marshall, J. & Peckham, C. Modelling the effect of the introduction of antenatal screening for group B Streptococcus (GBS) carriage in the UK. BMJ Open https://doi.org/10.1136/bmjopen-2018-024324 (2019).

Ancona, R. J., Ferrieri, P. & Williams, P. P. Maternal factors that enhance the acquisition of group-B streptococci by newborn infants. J. Med. Microbiol. 13, 273280 (1980).

CAS PubMed Article Google Scholar

Tazi, A. et al. Risk factors for infant colonization by hypervirulent CC17 group B Streptococcus: toward the understanding of late-onset disease. Clin. Infect. Dis. 69, 17401748 (2019).

CAS PubMed Article Google Scholar

Gizachew, M. et al. Proportion of Streptococcus agalactiae vertical transmission and associated risk factors among Ethiopian mother-newborn dyads, Northwest Ethiopia. Sci. Rep. 10, 3477 (2020).

ADS CAS PubMed PubMed Central Article Google Scholar

Hung, L.-C. et al. Risk factors for neonatal early-onset group B streptococcus-related diseases after the implementation of a universal screening program in Taiwan. BMC Public Health 18, 438 (2018).

PubMed PubMed Central Article Google Scholar

Schrag, S. J. et al. A population-based comparison of strategies to prevent early-onset group B Streptococcal disease in neonates. N. Engl. J. Med. 347, 233239 (2002).

PubMed Article Google Scholar

Lawn, J. E. et al. Every country, every family: time to act for group B Streptococcal disease worldwide. Clin. Infect. Dis. ciab859, https://doi.org/10.1093/cid/ciab859 (2021).

Romain, A.-S. et al. Clinical and laboratory features of group B Streptococcus meningitis in infants and newborns: study of 848 cases in France, 20012014. Clin. Infect. Dis. 66, 857864 (2018).

PubMed Article Google Scholar

Alhhazmi, A., Hurteau, D. & Tyrrell, G. J. Epidemiology of invasive group B Streptococcal disease in Alberta, Canada, from 2003 to 2013. J. Clin. Microbiol. 54, 17741781 (2016).

CAS PubMed PubMed Central Article Google Scholar

Moore, M. R., Schrag, S. J. & Schuchat, A. Effects of intrapartum antimicrobial prophylaxis for prevention of group-B-streptococcal disease on the incidence and ecology of early-onset neonatal sepsis. Lancet Infect. Dis. 3, 201213 (2003).

PubMed Article Google Scholar

Ohlsson, A. & Shah, V. S. Intrapartum antibiotics for known maternal Group B streptococcal colonization. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD007467.pub4 (2014).

Nishihara, Y., Dangor, Z., French, N., Madhi, S. & Heyderman, R. Challenges in reducing group B Streptococcus disease in African settings. Arch. Dis. Child. 102, 72 LP72 77 (2017).

Article Google Scholar

Buurman, E. T. et al. A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group b streptococcal infections by maternal immunization. J. Infect. Dis. https://doi.org/10.1093/infdis/jiz062 (2019).

Madhi, S. A. et al. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: a randomised phase 1b/2 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(16)00152-3 (2016).

Heyderman, R. S. et al. Group B streptococcus vaccination in pregnant women with or without HIV in Africa: a non-randomised phase 2, open-label, multicentre trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(15)00484-3 (2016).

Nilo, A. et al. Anti-group B Streptococcus glycan-conjugate vaccines using pilus protein GBS80 as carrier and antigen: comparing lysine and tyrosine-directed conjugation. ACS Chem. Biol. https://doi.org/10.1021/acschembio.5b00247 (2015).

Absalon, J. et al. Safety and immunogenicity of a novel hexavalent group B streptococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial. Lancet Infect. Dis. 21, 263274 (2021).

CAS PubMed Article Google Scholar

Martin, T. R., Ruzinski, J. T., Rubens, C. E., Chi, E. Y. & Wilson, C. B. The effect of type-specific polysaccharide capsule on the clearance of group B Streptococci from the lungs of infant and adult rats. J. Infect. Dis. 165, 306314 (1992).

CAS PubMed Article Google Scholar

Marques, M. B., Kasper, D. L., Pangburn, M. K. & Wessels, M. R. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect. Immun. https://doi.org/10.1128/iai.60.10.3986-3993.1992 (1992).

Uchiyama, S. et al. Dual actions of group B Streptococcus capsular sialic acid provide resistance to platelet-mediated antimicrobial killing. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1815572116 (2019).

Herbert, M. A., Beveridge, C. J. E. & Saunders, N. J. Bacterial virulence factors in neonatal sepsis: group B streptococous. Curr. Opin. Infect. Dis. https://doi.org/10.1097/00001432-200406000-00009 (2004).

Lynskey, N. N. et al. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLOS Pathog. 13, e1006493 (2017).

PubMed PubMed Central Article CAS Google Scholar

Bryan, J. D. & Shelver, D. W. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J. Bacteriol. 191, 18471854 (2009).

CAS PubMed Article Google Scholar

Poyart, C. et al. Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect. Immun. 69, 50985106 (2001).

CAS PubMed PubMed Central Article Google Scholar

Gibson, R. L., Nizet, V. & Rubens, C. E. Group B Streptococcal -hemolysin promotes injury of lung microvascular endothelial cells. Pediatr. Res. 45, 626634 (1999).

CAS PubMed Article Google Scholar

Zhu, L. et al. Genetic basis underlying the hyperhemolytic phenotype of Streptococcus agalactiae strain CNCTC10/84. J. Bacteriol. 202, e00504e00520 (2020).

CAS PubMed PubMed Central Google Scholar

Deng, L. et al. Characterization of a two-component system transcriptional regulator, LtdR, that impacts group B Streptococcal colonization and disease. Infect. Immun. 86, e0082217 (2018).

CAS PubMed PubMed Central Article Google Scholar

Wang, N.-Y. et al. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J. Infect. Dis. 210, 982991 (2014).

CAS PubMed PubMed Central Article Google Scholar

Buscetta, M. et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. J. Biol. Chem. 289, 2100321015 (2014).

CAS PubMed PubMed Central Article Google Scholar

Doran, K. S. et al. Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Invest. 115, 24992507 (2005).

CAS PubMed PubMed Central Article Google Scholar

Almeida, A. et al. Whole-genome comparison uncovers genomic mutations between group B Streptococci sampled from infected newborns and their mothers. J. Bacteriol. 197, 33543366 (2015).

CAS PubMed PubMed Central Article Google Scholar

Andrea, G. et al. Pan-GWAS of Streptococcus agalactiae highlights lineage-specific genes associated with virulence and niche adaptation. MBio 11, e0072820 (2021).

Google Scholar

Read, T. D. & Massey, R. C. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med. 6, 109 (2014).

PubMed PubMed Central Article CAS Google Scholar

Power, R. A., Parkhill, J. & De Oliveira, T. Microbial genome-wide association studies: lessons from human GWAS. Nat. Rev. Genet. https://doi.org/10.1038/nrg.2016.132 (2016).

Lees, J. A. et al. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis. Microb. Genomics 3, e000103e000103 (2017).

Google Scholar

Lilje, B. et al. Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis. Microb. Genomics 3, e000138 (2017).

Google Scholar

Lees, J. A. et al. Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat. Commun. https://doi.org/10.1038/s41467-019-09976-3 (2019).

Li, Y. et al. Genome-wide association analyses of invasive pneumococcal isolates identify a missense bacterial mutation associated with meningitis. Nat. Commun. 10, 178 (2019).

ADS PubMed PubMed Central Article CAS Google Scholar

Young, B. C. et al. Panton-valentine leucocidin is the key determinant of staphylococcus aureus pyomyositis in a bacterial GWAS. Elife https://doi.org/10.7554/eLife.42486 (2019).

Kulohoma, B. W. et al. Comparative genomic analysis of meningitis- and bacteremia-causing pneumococci identifies a common core genome. Infect. Immun. 83, 41654173 (2015).

Davies, M. R. et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 51, 10351043 (2019).

CAS PubMed PubMed Central Article Google Scholar

Chaguza, C. et al. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun. Biol. 3, 559 (2020).

CAS PubMed PubMed Central Article Google Scholar

Laabei, M. et al. Predicting the virulence of MRSA from its genome sequence. Genome Res. https://doi.org/10.1101/gr.165415.113 (2014).

Coll, F. et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. https://doi.org/10.1038/s41588-017-0029-0 (2018).

Chewapreecha, C. et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 10, e1004547e1004547 (2014).

PubMed PubMed Central Article CAS Google Scholar

Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 11831189 (2013).

CAS PubMed PubMed Central Article Google Scholar

Suzuki, M., Shibayama, K. & Yahara, K. A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains. Sci. Rep. 6, 37811 (2016).

ADS CAS PubMed PubMed Central Article Google Scholar

Hicks, N. D., Carey, A. F., Yang, J., Zhao, Y. & Fortune, S. M. Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. MBio 10, e00616e00619 (2019).

CAS PubMed PubMed Central Article Google Scholar

Sieber, R. N. et al. Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Sci. Rep. 9, 18655 (2019).

ADS CAS PubMed PubMed Central Article Google Scholar

Ma, K. C. et al. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat. Commun. 11, 4126 (2020).

ADS CAS PubMed PubMed Central Article Google Scholar

Chewapreecha, C. et al. Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Commun. Biol. 2, 428 (2019).

CAS PubMed PubMed Central Article Google Scholar

Jamrozy, D. et al. Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23. Sci. Rep. 10, 9539 (2020).

ADS PubMed PubMed Central Article CAS Google Scholar

Bianchi-Jassir, F. et al. Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. Vaccine https://doi.org/10.1016/j.vaccine.2020.08.052 (2020).

Nicola, J. et al. Multilocus sequence typing system for group B Streptococcus. J. Clin. Microbiol. 41, 25302536 (2003).

Article CAS Google Scholar

Cheng, L., Connor, T. R., Sirn, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 12241228 (2013).

CAS PubMed PubMed Central Article Google Scholar

View post:
Population genomics of Group B Streptococcus reveals the genetics of neonatal disease onset and meningeal invasion - Nature.com

Related Posts