Human Induced Pluripotent Stem Cell Derived Neuronal Cells …

Posted: August 18, 2016 at 4:49 am

Bal-Price, A. et al. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch. Toxicol. 89, 269287 (2015).

Crofton, K. M. et al. Developmental neurotoxicity testing: Recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX-Altern. Anim. Exp. 28, 915 (2011).

Grandjean, P. & Landrigan, P. J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13, 330338 (2014).

Bellinger, D. C. A Strategy for Comparing the Contributions of Environmental Chemicals and Other Risk Factors to Neurodevelopment of Children. Environ. Health Perspect. 120, 501507 (2012).

Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regulatory Toxicology and Pharmacology 32, 5667 (2000).

National Research Council Toxicity Testing in the 21st Century: A Vision and a Strategy. (The National Academies Press, Washington, DC, 2007).

Judson, R. et al. In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme. Basic Clin. Pharmacol. Toxicol. 115, 6976 (2014).

Pellett, S. in Botulinum Neurotoxins. Vol. 364. (eds. A. Rummel & T. Binz) 257285 (Springer-Verlag Berlin, Berlin, 2013).

Whitemarsh, R. C. M., Tepp, W. H., Johnson, E. A. & Pellett, S. Persistence of Botulinum Neurotoxin A Subtypes 15 in Primary Rat Spinal Cord Cells. PLoS One 9, e90252 (2014).

Whitemarsh, R. C. M. et al. Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro. Infect. Immun. 81, 38943902 (2013).

Whitemarsh, R. C. M. et al. Novel Application of Human Neurons Derived from Induced Pluripotent Stem Cells for Highly Sensitive Botulinum Neurotoxin Detection. Toxicol. Sci. 126, 426435 (2012).

McNutt, P., Celver, J., Hamilton, T. & Mesngon, M. Embryonic stem cell-derived neurons are a novel, highly sensitive tissue culture platform for botulinum research. Biochem. Biophys. Res. Commun. 405, 8590 (2011).

Kiris, E. et al. Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Research 6, 195205 (2011).

Nuss, J. E. et al. Development of Cell-Based Assays to Measure Botulinum Neurotoxin Serotype A Activity Using Cleavage-Sensitive Antibodies. J. Biomol. Screen 15, 4251 (2010).

Lee, J.-O., Rosenfield, J., Tzipori, S. & Park, J.-B. M17 human neuroblastoma cell as a cell model for investigation of Botulinum Neurotoxin A activity and evaluation of BoNT/A specific antibody. The Botulinum Journal 1, 135152 (2008).

Pellett, S., Tepp, W. H., Clancy, C. M., Borodic, G. E. & Johnson, E. A. A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies. FEBS Lett. 581, 48034808 (2007).

Fernandez-Salas, E. et al. Botulinum Neurotoxin Serotype a Specific Cell-Based Potency Assay to Replace the Mouse Bioassay. PLoS One 7 (2012).

Pantano, S. & Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 71, 793811 (2014).

Gill, D. M. Bacterial toxins - A table of lethal amounts. Microbiological Reviews 46, 8694 (1982).

Pirazzini, M. et al. Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins. Cell Reports 8, 18701878 (2014).

Montal, M. In Annual Review of Biochemistry, Vol 79, (eds. R.D. Kornberg, C. R. H. Raetz, J. E. Rothman & J. W. Thorner) 591617 (Annual Reviews, Palo Alto, 2010).

Fischer, A. et al. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc. Natl. Acad. Sci. USA 106, 13301335 (2009).

Fischer, A. & Montal, M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J. Biol. Chem. 282, 2960429611 (2007).

Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717766 (2000).

Schiavo, G., Rossetto, O., Tonello, F. & Montecucco, C. Intracellular targets and metalloprotease activity of tetanus and botulism neurotoxins. Curr. Top. Microbiol. Immunol. 195, 257274 (1995).

Montecucco, C. & Schiavo, G. Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 18 (1994).

Hoyle, C. E. & Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chem. -Int. Edit. 49, 15401573 (2010).

Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 50055010 (2009).

Hansen, T. D. et al. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and non-tumorigenic human mesenchymal cell types. Biomaterials Science 2, 745756 (2014).

Lin, C.-C., Ki, C. S. & Shih, H. Thiolnorbornene photoclick hydrogels for tissue engineering applications. J. Appl. Polym. Sci. In Press (2015).

Van Hove, A. H., Beltejar, M.-J. G. & Benoit, D. S. W. Development and in vitro assessment of enzymatically-responsive poly(ethylene glycol) hydrogels for the delivery of therapeutic peptides. Biomaterials 35, 97199730 (2014).

Wang, C., Tong, X. M. & Yang, F. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Mol. Pharm. 11, 21152125 (2014).

Nguyen, E. H., Zanotelli, M. R., Schwartz, M. P. & Murphy, W. L. Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials 35, 21492161 (2014).

Musah, S. et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proceedings of the National Academy of Sciences 111, 1380513810 (2014).

Hynes, W. F. et al. Micropatterning of 3D Microenvironments for Living Biosensor Applications. Biosensors 4, 2844 (2014).

McKinnon, D. D., Kloxin, A. M. & Anseth, K. S. Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomaterials Science 1, 460469 (2013).

Schwartz, M. P. et al. A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype. PLoS One 8, e81689 (2013).

Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 98039811 (2013).

Lin, C.-C., Raza, A. & Shih, H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32, 96859695 (2011).

Anderson, S. B., Lin, C. C., Kuntzler, D. V. & Anseth, K. S. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32, 35643574 (2011).

Benton, J. A., Fairbanks, B. D. & Anseth, K. S. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30, 65936603 (2009).

Yu, J. Y. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 19171920 (2007).

Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861872 (2007).

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147 (1998).

Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 11291133 (2001).

Liu, H. S. & Zhang, S. C. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell. Mol. Life Sci. 68, 39954008 (2011).

Gaspard, N. & Vanderhaeghen, P. Mechanisms of neural specification from embryonic stem cells. Curr. Opin. Neurobiol. 20, 3743 (2010).

Eiraku, M. & Sasai, Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr. Opin. Neurobiol. 22, 768777 (2012).

Xu, X. H. & Zhong, Z. Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacol. Sin. 34, 755764 (2013).

Hou, Z. et al. A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res. Ther. 4 (Suppl 1), S12 (2013).

Schantz, E. J. & Johnson, E. A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiological Reviews 56, 8099 (1992).

Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 3033 (1984).

Hatheway, C. in Laboratory Diagnosis of Infectious Diseases. (eds. A. Balows, W. J. Hausler, Jr., M. Ohashi, A. Turano & E. H. Lennete) 111133 (Springer New York, 1988).

Schantz, E. J. & Kautter, D. A. Standardized Assay for Clostridium-Botulinum Toxins. Journal of the Association of Official Analytical Chemists 61, 9699 (1978).

Hughes, C. S., Radan, L., Betts, D., Postovit, L. M. & Lajoie, G. A. Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics 11, 39833991 (2011).

Li, X. J. et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26, 886893 (2008).

Nagase, H. & Fields, G. B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399416 (1996).

Sarnat, H. B., Nochlin, D. & Born, D. E. Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in the early human fetal nervous system1. Brain and Development 20, 8894 (1998).

Lampe, K. J., Mooney, R. G., Bjugstad, K. B. & Mahoney, M. J. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. J. Biomed. Mater. Res. Part A 94A, 11621171 (2010).

Saha, K. et al. Substrate Modulus Directs Neural Stem Cell Behavior. Biophys. J. 95, 44264438 (2008).

Leipzig, N. D. & Shoichet, M. S. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 68676878 (2009).

Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165178 (2011).

Miyake, K., Satomi, N. & Sasaki, S. Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89, 031925 (2006).

Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541549 (2003).

Ader, M. & Tanaka, E. M. Modeling human development in 3D culture. Curr. Opin. Cell Biol. 31, 2328 (2014).

Malizio, C., Goodnough, M. & Johnson, E. in Bacterial Toxins: Methods and Protocols. Vol. 145. (ed. O. Holst) 2739 (Humana Press, 2000).

Pellett, S., Tepp, W. H., Toth, S. I. & Johnson, E. A. Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination. J. Pharmacol. Toxicol. Methods 61, 304310 (2010).

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to Image J: 25 years of image analysis. Nat Meth 9, 671675 (2012).

Rasband, W. S. (Image J, U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ 1997-2012).

See the rest here:
Human Induced Pluripotent Stem Cell Derived Neuronal Cells ...

Related Posts