Five world-class teams are set to receive a total of over 19 million from the UK's Biotechnology and Biological Sciences Research Council (BBSRC) to support adventurous research aimed at tackling significant fundamental questions in bioscience.
Each of these teams - involving 39 investigators from 16 research organisations - will look to advance the frontiers of bioscience knowledge by exploring bold and exciting questions at the forefront of contemporary bioscience.
By pursuing world-class ideas and multidisciplinary research, these projects will convene the people, places, and transformative technologies necessary to tackle complex biological problems from a multitude of perspectives.
The funding through BBSRCs strategic Longer and Larger (sLoLa) grants programme aims to catalyse ground-breaking collaborations that advance our understanding of fundamental rules of life, with potentially far reaching implications for agriculture, health, biotechnology, and the green economy.
The five projects aim to:
Professor Melanie Welham, Executive Chair of BBSRC, said: Long-term support for discovery science is key to delivering the fundamental breakthroughs that keep the UK at the leading edge of bioscience research.
These five very different projects will each pursue adventurous avenues of investigation at the frontiers of biology by convening the multidisciplinary teams of people, skills and national facilities over the longer timeframes necessary to realise transformational change.
The projects have huge potential to make underpinning discoveries in the life sciences, which could produce future advances to address global challenges from tackling plastic pollution to treating cancer and discoveries with commercialisation potential for biopharma, biotechnology and other industries.
The projects
Specialised ribosomes
Led by Dr Julie Aspden, University of Leeds
Ribosomes are machines within cells that read the instructions from genes and use those instructions to construct proteins. The pivotal role of ribosomes in translating our genetic instructions means that a better understanding of how ribosomes function could be important to understand many diseases, including cancers.
Recently, it has been shown that ribosomes, once considered to be identical and inflexible decoding machines that translate RNA into proteins, can in fact be structurally and functionally specialised.
This specialisation promotes the selective translation of RNAs. In other words, ribosome specialisation can regulate the expression of genes at the level of translation.
However, there are only a handful of examples of ribosome specialisation known to science. This means we lack an in-depth understanding of how widespread this mode of gene regulation is, how it functions mechanistically, and what kind of ribosome code might exist.
Using a synthesis of evolutionary, functional genomic, and biophysical approaches, this project aims to tackle these big questions in four different groups of organisms (fungi, insects, plants and humans).
The team will use machine learning approaches to integrate data generated by a series of cutting-edge technologies in four major eukaryotic models (fungi, insects, plants and humans):
This will allow them to decipher the ribosome code, which has the potential to re-write our understanding of the fundamental principles of translation regulation.
Cracking the ribosome code could provide insight into how translation goes wrong in ribosomopathies and certain cancers. It could also reveal promising new avenues for manipulating the proteome, thus expanding the toolkit for future engineering biology approaches.
This project is a collaboration between eight investigators based at:
Enzymatic photocatalysis
Led by Professor Nigel Scrutton, The University of Manchester
Enzymes are proteins which catalyse biochemical reactions in all living organisms.
Most of the enzymes found in nature are heat-activated. However, there exists a few rare examples of natural light-activated enzymes or photocatalysts which use a photo-sensitive cofactor called flavin.
As their name suggests, heat-activated enzymes require heat to function. They also work with highly specific and often expensive coenzymes and catalyse reaction types limited to those found in the living cell.
In contrast, photocatalysts require light to function and have fewer chemical restraints. This enables photocatalysts to catalyse reactions that are unavailable to heat-activated enzymes, harnessing a process known as photo-biocatalysis.
There is a pressing need to better understand how photo-biocatalysis works. This would not only provide insight into how biology works with light but could also facilitate the exploitation of this process in industrial biocatalysis.
Combining state-of-the-art biophysical, computational and protein engineering methodologies, this project will apply a cyclical design-build-evaluate-learn approach to discovering the generalisable principles of photo-biocatalysis.
The team will use cutting-edge biophysical techniques to study photocatalyst functionality:
This will allow them to simultaneously contribute new fundamental knowledge on the function of existing photo-enzymes whilst illuminating a path towards the engineering of entirely new-to-nature flavin-containing photocatalysts.
In the longer-term, these engineered photocatalysts could be used to synthesise novel products that heat-activated enzymes are unable to synthesise, such as fuels and other high-value chemicals.
This project is a collaboration between six investigators based at:
Multi-layered bacterial genome defences
Led by Professor Edze Westra, University of Exeter
Bacteria are able to protect themselves from infection by viruses and other mobile genetic elements (MGEs) using highly sophisticated genome defence systems.
Aside from protecting bacterial populations against infection, these systems also influence the spread of antimicrobial resistance (AMR) which relies on the transfer of mobile antibiotic resistance genes between bacteria.
In addition to the CRISPR-Cas system, which has already been co-opted by scientists to revolutionise the field of DNA editing, new bacterial defence systems continue to be discovered.
In nature, these systems do not work in isolation. However, very little is known about how they integrate and what the consequences of this integration are on bacteria-MGE interactions.
This project aims to develop a broader understanding of multi-layered bacterial genome defence systems, at scales ranging from molecules to populations.
The team will use bioinformatic, biophysical and molecular biology approaches to understand how the interactions between genome defence systems protect bacteria against infection.
They will then combine experimental evolution and mathematical modelling to determine how multi-layered defence systems shape bacterial genome and MGE evolution.
Knowledge generated through this project has the potential to uncover how combinations of natural genome defence systems could be exploited in the fight against AMR. In addition, these combinations could be further refined in the laboratory to produce a new generation of genome editing tools for a wide range of engineering biology applications.
This project is a collaboration between 12 investigators based at:
Novel plastizymes
Led by Professor Florian Hollfelder, University of Cambridge
The number of new and untested proteins available in metagenomic databases is in the billions and is currently doubling each year.
This represents a treasure trove for the discovery of novel enzymes with exciting properties. However, there is a need for better tools to be able to effectively mine these databases and find enzymes of interest.
One group of enzymes which are drawing attention are plastic-degrading enzymes or plastizymes.
Plastizymes could be used to remove the pollution caused by plastic products. This pollution is a fundamental environmental challenge, an enormous waste of resources, and has the potential to become a major world health issue through the ingestion of micro-plastics.
However, there are currently very few known natural plastizymes and these are relatively inefficient and do not degrade all types of plastic pollutants.
This project aims to address these limitations by employing a combination of computational and protein engineering approaches to discovering new plastizymes and improving their catalytic ability.
The team will employ a number of cutting-edge technologies:
This will allow them to simultaneously derive generic pipelines for the discovery and directed evolution of novel enzymes, whilst exploiting these pipelines to produce improved plastizymes.
Longer-term, these novel plastizymes could contribute towards the UKs net-zero ambition by increasing our capacity to recycle plastic waste.
This project is a collaboration between four investigators based at:
Understanding an ancient universal membrane effector
Led by Professor Gavin Thomas, University of York
Cell membranes are generally impermeable to most chemicals, which enables proteins within the membrane to establish chemical gradients between the inside and the outside of cells.
These gradients are used as the driving forces behind some of lifes most essential chemical reactions, including photosynthesis, respiration, and active transport. Therefore, it is vital that any damage to the membrane is rapidly repaired to ensure the continuation of these crucial processes.
In recent studies, a protein belonging to the IM30 protein family has been shown to repair membrane damage in a number of bacterial pathogens and bacteria used in biotechnology to produce toxin chemicals. Interestingly, IM30 proteins are present in a range of diverse bacteria and even in bacterially-derived chloroplasts, demonstrating their ancientness and suggesting that they provided an ancestral mechanism of membrane repair.
However, while some information is known about their structure and localisation in cells, the mechanisms by which they work are still a mystery.
This project aims to functionally characterise the IM30 system in a number of clinically and industrially-relevant microbes, using bioinformatics, microbial genetics, and advanced biophysical approaches.
The team will optimise new transformative technologies to accurately measure membrane potential in live microbial cells:
These will be used to help determine how IM30 proteins protect against membrane damage in evolutionarily-divergent organisms. This will uncover new fundamental knowledge about an early step in the evolution of robust cellular life.
Mechanistic understanding of this cellular process could also reveal new pathways to target in the fight against anti-microbial resistance (AMR), since some bacteria use IM30 proteins to resist membrane-targeting antibiotics.
This project is a collaboration between nine investigators based at:
About sLoLa funding
Advancing our understanding of the rules of life is a key part of BBSRCs Delivery Plan.
The large-scale support offered through the sLoLa awards scheme enables world-class teams to pursue innovative avenues of multidisciplinary investigation over the longer timeframes necessary to realise transformational change.
By encouraging researchers to pursue bold and creative questions, BBSRC aims to catalyse exciting fundamental bioscience discoveries that may have far reaching implications for agriculture, health, biotechnology, and the green economy.
This is the fourth round of sLoLa funding since the scheme relaunched in 2018 and brings its total investment to 64 million. BBSRC plans to invest up to a further 16 million in a fifth round which is ongoing.
Go here to see the original:
19 million to investigate bold ideas in bioscience research - EurekAlert
- Silicon Biosystems to Present Single-Circulating Tumor Cell Molecular Characterization at the Fourth World CTC Summit [Last Updated On: April 26th, 2012] [Originally Added On: April 26th, 2012]
- Protein could be key for drugs that promote bone growth [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Study sheds light on genetic 'clock' in embryonic cells [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Study involving twin sisters provides clues for battling aggressive cancers [Last Updated On: February 9th, 2014] [Originally Added On: February 9th, 2014]
- Clues for battling aggressive cancers from twin sisters study [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Genetic cause found for premature ovarian failure [Last Updated On: March 6th, 2014] [Originally Added On: March 6th, 2014]
- Rutgers' Human Genetics Institute Wins $19 Million Federal Contract [Last Updated On: May 15th, 2014] [Originally Added On: May 15th, 2014]
- Elsevier Publishes Four New Books in Microbiology Portfolio [Last Updated On: November 13th, 2014] [Originally Added On: November 13th, 2014]
- Disease, Evolution, Neurology, and Drugs: Fruit Fly Research Continues to Teach Us About Human Biology [Last Updated On: February 28th, 2015] [Originally Added On: February 28th, 2015]
- "Big Brain" Gene Allowed for Evolutionary Expansion of Human Neocortex [Last Updated On: March 8th, 2015] [Originally Added On: March 8th, 2015]
- Director Molecular Genetics jobs in Rtp at LabCorp [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- Molecular Genetics definition of Molecular Genetics in the ... [Last Updated On: June 4th, 2015] [Originally Added On: June 4th, 2015]
- molecular and human genetics | Momentum - The Baylor ... [Last Updated On: June 19th, 2015] [Originally Added On: June 19th, 2015]
- Molecular evolution - Wikipedia, the free encyclopedia [Last Updated On: July 16th, 2015] [Originally Added On: July 16th, 2015]
- The Rockefeller University Laboratory of Molecular Genetics [Last Updated On: July 21st, 2015] [Originally Added On: July 21st, 2015]
- Microbiology & Molecular Genetics - Rutgers New Jersey ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Clinical Genetics Congress | Clinical Genetics 2016 ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Molecular genetics - Wikipedia, the free encyclopedia [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Molecular Genetics - DNA, RNA, & Protein [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- MCW: Microbiology and Molecular Genetics Department [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Newcastle Hospitals - Molecular Genetics [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Molecular evolution - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- Molecular Genetics (Stanford Encyclopedia of Philosophy) [Last Updated On: October 30th, 2016] [Originally Added On: October 30th, 2016]
- Molecular Genetics - mmrl.edu [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Molecular biology - Wikipedia [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Human Molecular Genetics - amazon.com [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Molecular Genetics Service - Great Ormond Street Hospital ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- The Passions of Nazneen Rahman - San Francisco Classical Voice [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Genetic Testing for the Healthy - Harvard Medical School (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Fundraising page set up in memory of Nottingham's Maid Marian - Nottingham Post [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Dogs have their day at conference - Otago Daily Times [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- GGC Graduates Two from Medical Genetics Training Program - Index-Journal [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Irvine-based CombiMatrix in $33 million merger deal with Bay Area genetics firm - OCRegister [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- First of 10 expected BJC Investigators named - Washington University School of Medicine in St. Louis [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- Madhuri Hegde, PhD is Elected to the Board of the ACMG Foundation for Genetic and Genomic Medicine - Markets Insider [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- Getting the word out: Seminar, walk put spotlight on Sickle Cell disease - Dothan Eagle [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Out of a fish gut study, researchers open new doors in intestinal health - Durham Herald Sun [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Gene-Silencing Finding May Lead to Better Understanding of Some ... - Genetic Engineering & Biotechnology News [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Molecular Genetics and Genomics Program - Wake Forest ... [Last Updated On: October 1st, 2017] [Originally Added On: October 1st, 2017]
- Genetics and Molecular Biology | Peer Reviewed Journal [Last Updated On: June 30th, 2018] [Originally Added On: June 30th, 2018]
- Leeds Genetics Laboratory - Leeds Teaching Hospitals NHS Trust [Last Updated On: July 17th, 2018] [Originally Added On: July 17th, 2018]
- Genetics and Molecular Biology Research - iMedPub [Last Updated On: August 2nd, 2018] [Originally Added On: August 2nd, 2018]
- Molecular Genetics | ARUP Laboratories [Last Updated On: August 7th, 2018] [Originally Added On: August 7th, 2018]
- Molecular Genetics - The Ohio State University [Last Updated On: August 21st, 2018] [Originally Added On: August 21st, 2018]
- Peer Reviewed Genetics and Molecular Biology Journals ... [Last Updated On: September 5th, 2018] [Originally Added On: September 5th, 2018]
- Department of Microbiology and Molecular Genetics [Last Updated On: October 7th, 2018] [Originally Added On: October 7th, 2018]
- Molecular Genetics Jobs, Employment | Indeed.com [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Genomic Career: Molecular Geneticist ($35,620-$101,030) [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Molecular Genetics, Biochemistry & Microbiology [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Molecular Genetics | Department of Pediatrics [Last Updated On: December 1st, 2018] [Originally Added On: December 1st, 2018]
- Graduate Molecular Genetics - University of Toronto [Last Updated On: January 25th, 2019] [Originally Added On: January 25th, 2019]
- Molecular Genetics - OCME - nyc.gov [Last Updated On: February 19th, 2019] [Originally Added On: February 19th, 2019]
- Molecular Genetics - University of Toronto [Last Updated On: March 6th, 2019] [Originally Added On: March 6th, 2019]
- Department of Microbiology, Immunology and Molecular Genetics [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Molecular Genetics and Cell Biology [Last Updated On: May 4th, 2019] [Originally Added On: May 4th, 2019]
- Molecular Reproduction, Development and Genetics at IISc [Last Updated On: May 18th, 2019] [Originally Added On: May 18th, 2019]
- Molecular genetics | biology | Britannica.com [Last Updated On: September 7th, 2019] [Originally Added On: September 7th, 2019]
- BCH N of 1 Trial Yields Approved Therapy for Single Rare Disease Patient - Clinical OMICs News [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- 5 habits of highly successful entrepreneurs revealed - GrowthBusiness.co.uk [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Leading by example: how AquaBounty, Oxford Biomedica, and Berkeley Lights have successfully brought products to market - SynBioBeta [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Blue Devil of the Week: Searching for Answers in the Genetic Code - Duke Today [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- New Viruses Found in Farmed and Wild Salmon - Hakai Magazine [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Veterinary Molecular Diagnostics Market to Reach at a CAGR of 8.48% by 2026 With NEOGEN CORPORATION , Thermo Fisher Scientific, Inc., Virbac, General... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Quantabio to Showcase Industry's Fastest qPCR-based NGS Library Quantification Kit and HiFi PCR Mix at American Society of Human Genetics Annual... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Top Researchers to Present Discoveries Made Possible by Bionanos Saphyr System for Genome Imaging Technology at the ASHG 2019 Annual Meeting - Yahoo... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Bionano Genomics Announces Adoption of Its Saphyr System by Clinical Cytogenetics Groups in Academia and Industry to Replace Traditional Methods for... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Racial Disparities In NIH R01 Funding May Be Partly Caused By Topic Choice : Shots - Health News - NPR [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Denison presents: 'Christianity, Race, and the Haunting of the Biomedical Sciences' - The Newark Advocate [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- This image shows the aftermath of two galaxies colliding - CTV News [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Meet The Cast of Charmed Season 2 - TVOvermind [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Inherited Learning? It Happens, but How Is Uncertain - Quanta Magazine [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Where do Canada's federal parties stand on research funding? - Varsity [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- The double bind faced by black research applicants - University World News [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Excessive Brain Activity Linked to Shorter Life Span - PsychCentral.com [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- World Renowned Experts Appointed to Skyhawk Therapeutics Scientific Advisory Board - PRNewswire [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Lupus Study Illustrates the Importance of Diversity in Genetic Research - Nature World News [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Interpace to Present Data at the ATA Annual Meeting - GlobeNewswire [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Pacific subspecies of fin whales has been revealed by new genetic study - Oceanographic - Oceanographic Magazine [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Genetic Study: Shared Molecular Pathway Might Influence Susceptibility to Lack of Oxygen Caused by Sleep-disordered Breathing and Other Lung Illnesses... [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- ERT to Treat Pompe May Work Better in Combo with Blood Pressure Medication, Study Says - Pompe Disease News [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]