a branch of genetics and molecular biology concerned with learning the material bases of heredity and variation in living things by investigating on the subcellular molecular level the processes of the transmission, materialization, and alteration of genetic information and the methods of storing that information.
Molecular genetics became an independent discipline in the 1940s as a result of the application of new physical and chemical methods to biology (X-ray diffraction analysis, chromatography, electrophoresis, high-speed centrifugation, electron microscopy, the use of radioactive isotopes). These methods made possible a deeper and more accurate study of the structures and functions of individual cell components and of the entire cell as a unified system. In addition, new ideas from chemistry, physics, mathematics, and cybernetics were introduced into biology. Molecular genetics to a large extent owes its rapid development to the transfer of the focus of genetic research from higher organisms (eucaryotes)the principal subjects of classical geneticsto lower organisms (procaryotes)bacteria, viruses, and many other microorganisms. The advantages of using simpler forms of life to solve genetic problems consist in the rapid succession of generations in these forms and the possibility of studying numerous individuals simultaneously; this leads to an increase in the resolving power and accuracy of genetic analysis. In addition, the relative simplicity of organization of bacteria, especially of viruses, facilitates elucidation of the molecular nature of genetic phenomena. The opinion sometimes expressed that molecular genetics and the genetics of microorganisms are one and the same is erroneous. Molecular genetics studies the molecular bases of genetic processes in both lower and higher organisms and does not include the specific genetics of procaryotes, which occupies a prominent place in the genetics of microorganisms.
During its short history, molecular genetics has made great strides, deepening and broadening our knowledge of the nature of heredity and variation; it has become the leading and most rapidly developing branch of genetics.
One of the main achievements of molecular genetics is the elucidation of the chemical nature of the gene. Classical genetics established that all hereditary potentials of organisms (their genetic information) are determined by discrete units of heredity called genes, which are located mainly in the chromosomes of the cell nucleus and in some organelles of the cytoplasm (plastids, mitochondria). However, the methods of classical genetics were unable to elucidate the chemical nature of the genes, which was noted as far back as 1928 by the outstanding Soviet biologist N. K. Koltsov, who substantiated the necessity of studying the mechanism of heredity on the molecular level. The first success in this area was achieved with the study of genetic transformation in bacteria. In 1944 the American scientist O. T. Avery and his associates discovered that hereditary characteristics of one type of pneumococcus could be transmitted to another, genetically different type by introducing into its cells the deoxyribonucleic acid (DNA) obtained from the first type. Subsequently, a similar genetic transformation by means of DNA was accomplished in other bacteria and recently in some multicellular organisms (flowering plants and insects).
Thus, it was shown that the genes consist of DNA. This conclusion was confirmed by experiments with DNA-containing viruses: it is sufficient to inject molecules of viral DNA into the cell of a susceptible host to cause the virus to reproduce; all the other components of the virus (proteins, lipides) lack infectious properties and are genetically inert. Similar experiments with viruses containing ribonucleic acid (RNA) instead of DNA have shown that the genes in these viruses consist of RNA. Clarification of the genetic roles of DNA and RNA served as a powerful stimulus to the study of nucleic acids by biochemical, physico-chemical, and X-ray diffraction methods.
In 1953 the American scientist J. Watson and the British scientist F. Crick proposed a model of the structure of DNA, hypothesizing that its gigantic molecules consist of a double helix made up of a pair of strands formed by nucleotides, arranged aperiodically but in a definite sequence. Each nucleotide of one strand is paired with an oppositely situated nucleotide of the other strand according to the rule of complementarity. Numerous experimental data have confirmed the Watson-Crick model. Somewhat later it was established that the molecules of various RNAs have an analogous structure but that they consist for the most part of a single polynucleotide strand. Later research, in which chemical and physicochemical methods were combined with precise genetic methods (for example, the use of various mutants and the phenomena of transduction and transformation) showed that different genes differ in the number of nucleotide pairs (from several dozens to 1,500 or more), as well as in the sequence of nucleotides, which is strictly determined for each gene and in which the genetic information is encoded. Genes consisting of RNAin viruses of the RNA-typehave a fundamentally similar structure.
Classical genetics regarded the gene as a discrete and indivisible unit of heredity. The works of A. S. Serebrovskii and his students in the 1930s, which first suggested the possibility of the divisibility of the gene, were of great significance in the reexamination of that concept. However, the resolving power of the methods of classical genetics was inadequate for the study of the fine structure of the gene. It was only with the development of molecular genetics in the 1950s and 1960s that it became possible to solve this problem. Through many studies, first conducted on bacteria and viruses and then on multicellular organisms, it became clear that the gene has a complex structure: it consists of tens or hundreds of sectionssiteswhich are capable of mutating and recombining independently. The limit of divisibility of a gene, and consequently the minimal size of a site, is one pair of nucleotides (in viruses containing one RNA strand, one nucleotide). Determination of the fine structure of genes has made possible a deeper insight into the mechanism of genetic recombination and the principles of the origin of gene mutations; it has also promoted elucidation of the mechanism of gene function.
Data on the chemical nature and fine structure of genes have made it possible to develop methods of isolating them. This was first done in 1969 by the American scientist J. Beckwith and his associates for one of the genes of Escherichia coli. Subsequently, the same was successfully accomplished in some higher organisms (amphibians). An even more significant achievement of molecular genetics was the first chemical synthesis of a gene (the one that encodes the alanine transfer RNA of yeasts), accomplished by H. Khorana in 1968. Studies of this kind are being conducted throughout the world. The latest biochemical methods, based on the phenomenon of reverse transcription( see below), have been successfully used for the extracellular synthesis of larger genes. Using these methods, S. Spiegelman, D. Baltimore, P. Leder, and their associates (USA) have made great progress in artificially synthesizing the genes that determine protein structure in hemoglobin molecules of rabbits and humans. Similar studies have recently been conducted elsewhere, including the USSR.
Thus, molecular genetics has already explained, in theory, how genetic information received by offspring from parents
is recorded and stored, although much work is still required to decipher the detailed content of that information for each individual gene.
Determination of the DNA structure has paved the way for experimental investigation of the biosynthesis of DNA molecules that is, their replication. The process of DNA replication is the basis for the transfer of genetic information from cell to cell and from generation to generationthat is, it determines the relative constancy of genes. Study of DNA replication has led to the important conclusion of the template nature of DNA biosynthesis: in order for biosynthesis to take place, the presence of a completed DNA molecule is necessary, upon which, as on a template, the new DNA molecules are synthesized. In this process, the double helix of DNA unwinds, and on each of its strands a new, complementary strand is synthesized; as a result, the daughter DNA molecules consist of one old and one new strand (semiconservative replication). The protein that induces unwinding of the double helix of DNA and the enzymes that carry out the biosynthesis of nucleotides and their linkage have been identified. Undoubtedly, there are mechanisms in the cell that regulate DNA synthesis. The means of such regulation are still largely unclear, but it is evident that regulation is largely determined by genetic factors.
Excerpt from:
Molecular Genetics definition of Molecular Genetics in the ...
- Silicon Biosystems to Present Single-Circulating Tumor Cell Molecular Characterization at the Fourth World CTC Summit [Last Updated On: April 26th, 2012] [Originally Added On: April 26th, 2012]
- Protein could be key for drugs that promote bone growth [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Study sheds light on genetic 'clock' in embryonic cells [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Study involving twin sisters provides clues for battling aggressive cancers [Last Updated On: February 9th, 2014] [Originally Added On: February 9th, 2014]
- Clues for battling aggressive cancers from twin sisters study [Last Updated On: February 11th, 2014] [Originally Added On: February 11th, 2014]
- Genetic cause found for premature ovarian failure [Last Updated On: March 6th, 2014] [Originally Added On: March 6th, 2014]
- Rutgers' Human Genetics Institute Wins $19 Million Federal Contract [Last Updated On: May 15th, 2014] [Originally Added On: May 15th, 2014]
- Elsevier Publishes Four New Books in Microbiology Portfolio [Last Updated On: November 13th, 2014] [Originally Added On: November 13th, 2014]
- Disease, Evolution, Neurology, and Drugs: Fruit Fly Research Continues to Teach Us About Human Biology [Last Updated On: February 28th, 2015] [Originally Added On: February 28th, 2015]
- "Big Brain" Gene Allowed for Evolutionary Expansion of Human Neocortex [Last Updated On: March 8th, 2015] [Originally Added On: March 8th, 2015]
- Director Molecular Genetics jobs in Rtp at LabCorp [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- molecular and human genetics | Momentum - The Baylor ... [Last Updated On: June 19th, 2015] [Originally Added On: June 19th, 2015]
- Molecular evolution - Wikipedia, the free encyclopedia [Last Updated On: July 16th, 2015] [Originally Added On: July 16th, 2015]
- The Rockefeller University Laboratory of Molecular Genetics [Last Updated On: July 21st, 2015] [Originally Added On: July 21st, 2015]
- Microbiology & Molecular Genetics - Rutgers New Jersey ... [Last Updated On: September 5th, 2015] [Originally Added On: September 5th, 2015]
- Clinical Genetics Congress | Clinical Genetics 2016 ... [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Molecular genetics - Wikipedia, the free encyclopedia [Last Updated On: September 28th, 2016] [Originally Added On: September 28th, 2016]
- Molecular Genetics - DNA, RNA, & Protein [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- MCW: Microbiology and Molecular Genetics Department [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Newcastle Hospitals - Molecular Genetics [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Molecular evolution - Wikipedia [Last Updated On: October 23rd, 2016] [Originally Added On: October 23rd, 2016]
- Molecular Genetics (Stanford Encyclopedia of Philosophy) [Last Updated On: October 30th, 2016] [Originally Added On: October 30th, 2016]
- Molecular Genetics - mmrl.edu [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Molecular biology - Wikipedia [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Human Molecular Genetics - amazon.com [Last Updated On: November 12th, 2016] [Originally Added On: November 12th, 2016]
- Molecular Genetics Service - Great Ormond Street Hospital ... [Last Updated On: November 16th, 2016] [Originally Added On: November 16th, 2016]
- The Passions of Nazneen Rahman - San Francisco Classical Voice [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Genetic Testing for the Healthy - Harvard Medical School (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Fundraising page set up in memory of Nottingham's Maid Marian - Nottingham Post [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Dogs have their day at conference - Otago Daily Times [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- GGC Graduates Two from Medical Genetics Training Program - Index-Journal [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Irvine-based CombiMatrix in $33 million merger deal with Bay Area genetics firm - OCRegister [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- First of 10 expected BJC Investigators named - Washington University School of Medicine in St. Louis [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- Madhuri Hegde, PhD is Elected to the Board of the ACMG Foundation for Genetic and Genomic Medicine - Markets Insider [Last Updated On: August 7th, 2017] [Originally Added On: August 7th, 2017]
- Getting the word out: Seminar, walk put spotlight on Sickle Cell disease - Dothan Eagle [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Out of a fish gut study, researchers open new doors in intestinal health - Durham Herald Sun [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Gene-Silencing Finding May Lead to Better Understanding of Some ... - Genetic Engineering & Biotechnology News [Last Updated On: August 31st, 2017] [Originally Added On: August 31st, 2017]
- Molecular Genetics and Genomics Program - Wake Forest ... [Last Updated On: October 1st, 2017] [Originally Added On: October 1st, 2017]
- Genetics and Molecular Biology | Peer Reviewed Journal [Last Updated On: June 30th, 2018] [Originally Added On: June 30th, 2018]
- Leeds Genetics Laboratory - Leeds Teaching Hospitals NHS Trust [Last Updated On: July 17th, 2018] [Originally Added On: July 17th, 2018]
- Genetics and Molecular Biology Research - iMedPub [Last Updated On: August 2nd, 2018] [Originally Added On: August 2nd, 2018]
- Molecular Genetics | ARUP Laboratories [Last Updated On: August 7th, 2018] [Originally Added On: August 7th, 2018]
- Molecular Genetics - The Ohio State University [Last Updated On: August 21st, 2018] [Originally Added On: August 21st, 2018]
- Peer Reviewed Genetics and Molecular Biology Journals ... [Last Updated On: September 5th, 2018] [Originally Added On: September 5th, 2018]
- Department of Microbiology and Molecular Genetics [Last Updated On: October 7th, 2018] [Originally Added On: October 7th, 2018]
- Molecular Genetics Jobs, Employment | Indeed.com [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Genomic Career: Molecular Geneticist ($35,620-$101,030) [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Molecular Genetics, Biochemistry & Microbiology [Last Updated On: October 10th, 2018] [Originally Added On: October 10th, 2018]
- Molecular Genetics | Department of Pediatrics [Last Updated On: December 1st, 2018] [Originally Added On: December 1st, 2018]
- Graduate Molecular Genetics - University of Toronto [Last Updated On: January 25th, 2019] [Originally Added On: January 25th, 2019]
- Molecular Genetics - OCME - nyc.gov [Last Updated On: February 19th, 2019] [Originally Added On: February 19th, 2019]
- Molecular Genetics - University of Toronto [Last Updated On: March 6th, 2019] [Originally Added On: March 6th, 2019]
- Department of Microbiology, Immunology and Molecular Genetics [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Molecular Genetics and Cell Biology [Last Updated On: May 4th, 2019] [Originally Added On: May 4th, 2019]
- Molecular Reproduction, Development and Genetics at IISc [Last Updated On: May 18th, 2019] [Originally Added On: May 18th, 2019]
- Molecular genetics | biology | Britannica.com [Last Updated On: September 7th, 2019] [Originally Added On: September 7th, 2019]
- BCH N of 1 Trial Yields Approved Therapy for Single Rare Disease Patient - Clinical OMICs News [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- 5 habits of highly successful entrepreneurs revealed - GrowthBusiness.co.uk [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Leading by example: how AquaBounty, Oxford Biomedica, and Berkeley Lights have successfully brought products to market - SynBioBeta [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Blue Devil of the Week: Searching for Answers in the Genetic Code - Duke Today [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- New Viruses Found in Farmed and Wild Salmon - Hakai Magazine [Last Updated On: October 13th, 2019] [Originally Added On: October 13th, 2019]
- Veterinary Molecular Diagnostics Market to Reach at a CAGR of 8.48% by 2026 With NEOGEN CORPORATION , Thermo Fisher Scientific, Inc., Virbac, General... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Quantabio to Showcase Industry's Fastest qPCR-based NGS Library Quantification Kit and HiFi PCR Mix at American Society of Human Genetics Annual... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Top Researchers to Present Discoveries Made Possible by Bionanos Saphyr System for Genome Imaging Technology at the ASHG 2019 Annual Meeting - Yahoo... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Bionano Genomics Announces Adoption of Its Saphyr System by Clinical Cytogenetics Groups in Academia and Industry to Replace Traditional Methods for... [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Racial Disparities In NIH R01 Funding May Be Partly Caused By Topic Choice : Shots - Health News - NPR [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Denison presents: 'Christianity, Race, and the Haunting of the Biomedical Sciences' - The Newark Advocate [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- This image shows the aftermath of two galaxies colliding - CTV News [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Meet The Cast of Charmed Season 2 - TVOvermind [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Inherited Learning? It Happens, but How Is Uncertain - Quanta Magazine [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Where do Canada's federal parties stand on research funding? - Varsity [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- The double bind faced by black research applicants - University World News [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Excessive Brain Activity Linked to Shorter Life Span - PsychCentral.com [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- World Renowned Experts Appointed to Skyhawk Therapeutics Scientific Advisory Board - PRNewswire [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Lupus Study Illustrates the Importance of Diversity in Genetic Research - Nature World News [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Interpace to Present Data at the ATA Annual Meeting - GlobeNewswire [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Pacific subspecies of fin whales has been revealed by new genetic study - Oceanographic - Oceanographic Magazine [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- Genetic Study: Shared Molecular Pathway Might Influence Susceptibility to Lack of Oxygen Caused by Sleep-disordered Breathing and Other Lung Illnesses... [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- ERT to Treat Pompe May Work Better in Combo with Blood Pressure Medication, Study Says - Pompe Disease News [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]
- GM could be decisive: An open letter to the Green Party from young NZ scientists - The Spinoff [Last Updated On: October 30th, 2019] [Originally Added On: October 30th, 2019]