An effective nano drug delivery and combination therapy for the treatment of Tuberculosis | Scientific Reports – Nature.com

Posted: June 13, 2022 at 1:57 am

WHO. Global Tuberculosis Report. 2020. (2020).

Mabhula, A. & Singh, V. Drug-resistance in Mycobacterium tuberculosis: where we stand. MedChemComm 10, 13421360 (2019).

ADS CAS Article Google Scholar

Saifullah, B., Hussein, M. Z. B. & Al Ali, S. H. H. Controlled-release approaches towards the chemotherapy of tuberculosis. Int. J. Nanomed. 7, 5451 (2012).

CAS Article Google Scholar

Tafazoli, S., Mashregi, M. & OBrien, P. J. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol. Appl. Pharmacol. 229, 94101 (2008).

CAS Article Google Scholar

Saifullah, B. et al. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide. Int. J. Nanomed. 9, 4749 (2014).

Google Scholar

Erwin, E. R., Addison, A. P., John, S. F., Olaleye, O. A. & Rosell, R. C. Pharmacokinetics of isoniazid: The good, the bad, and the alternatives. Tuberculosis (Edinburgh, Scotland) 116s, S66S70. https://doi.org/10.1016/j.tube.2019.04.012 (2019).

CAS Article Google Scholar

Schaberg, T., Rebhan, K. & Lode, H. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur. Respir. J. 9, 20262030 (1996).

CAS Article Google Scholar

Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase: Peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591593 (1992).

ADS CAS Article Google Scholar

Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227230 (1994).

ADS CAS Article Google Scholar

Musser, J. M. et al. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: Restricted array of mutations associated with drug resistance. J. Infect. Dis. 173, 196202 (1996).

CAS Article Google Scholar

Basso, L. A., Zheng, R., Musser, J. M., Jacobs, W. R. Jr. & Blanchard, J. S. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: Enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J. Infect. Dis. 178, 769775. https://doi.org/10.1086/515362%JTheJournalofInfectiousDiseases (1998).

CAS Article PubMed Google Scholar

Park, Y. K. et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J. Microbiol. Methods 63, 165172 (2005).

CAS Article Google Scholar

Luo, T. et al. Selection of mutations to detect multidrug-resistant Mycobacterium tuberculosis strains in Shanghai, China. Antimicrob. Agents Chemother. 54, 10751081 (2010).

CAS Article Google Scholar

Haas, W. H. et al. Molecular analysis of katG gene mutations in strains of Mycobacterium tuberculosis complex from Africa. Antimicrob. Agents Chemother. 41, 16011603 (1997).

CAS Article Google Scholar

Doustdar, F., Khosravi, A. D., Farnia, P., Masjedi, M. R. & Velayati, A. A. Molecular analysis of isoniazid resistance in different genotypes of Mycobacterium tuberculosis isolates from Iran. Microb. Drug Resist. 14, 273279 (2008).

CAS Article Google Scholar

Khosravi, A. D., Goodarzi, H. & Alavi, S. M. Detection of genomic mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis isolates using polymerase chain reaction and multiplex allele-specific polymerase chain reaction. Braz. J. Infect. Dis. 16, 5762 (2012).

CAS PubMed Google Scholar

Munoz-Bellido, J. L., Munoz-Criado, S. & Garca-Rodrguez, J. A. Antimicrobial activity of psychotropic drugs: Selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents 14, 177180 (2000).

CAS Article Google Scholar

de Sousa, A. K. et al. New roles of fluoxetine in pharmacology: Antibacterial effect and modulation of antibiotic activity. Microb. Pathog. 123, 368371 (2018).

Article Google Scholar

Sheikhpour, M. The current recommended drugs and strategies for the treatment of coronavirus disease (COVID-19). Ther. Clin. Risk Manag. 16, 933 (2020).

CAS Article Google Scholar

Peng, L., Gu, L., Li, B. & Hertz, L. Fluoxetine and all other SSRIs are 5-HT2B agonists-importance for their therapeutic effects. Curr. Neuropharmacol. 12, 365379 (2014).

CAS Article Google Scholar

Ni, Y. G. & Miledi, R. Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc. Natl. Acad. Sci. 94, 20362040 (1997).

ADS CAS Article Google Scholar

Stanley, S. A. et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog. 10, e1003946 (2014).

Article Google Scholar

Sheikhpour, M., Golbabaie, A. & Kasaeian, A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng., C 76, 12891304 (2017).

CAS Article Google Scholar

Yang, W., Thordarson, P., Gooding, J. J., Ringer, S. P. & Braet, F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 412001 (2007).

Article Google Scholar

Kamazani, F. M., Siadat, S. D., Pornour, M. & Sheikhpour, M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci. Rep. 11, 115 (2021).

Article Google Scholar

Mocan, T. et al. Carbon nanotubes as anti-bacterial agents. Cell. Mol. Life Sci. 74, 34673479 (2017).

CAS Article Google Scholar

Sheikhpour, M., Arabi, M., Kasaeian, A., Rabei, A. R. & Taherian, Z. Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnol. Sci. Appl. 13, 47 (2020).

CAS Article Google Scholar

da Silva, P. et al. Nanotechnology-based drug delivery systems for treatment of tuberculosis: A review. J. Biomed. Nanotechnol. 12(2), 241260 (2016).

Article Google Scholar

Zomorodbakhsh, S., Abbasian, Y., Naghinejad, M. & Sheikhpour, M. The effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int. J. Nanomed. 15, 5901 (2020).

CAS Article Google Scholar

Sheikhpour, M. et al. The applications of carbon nanotubes in the diagnosis and treatment of lung cancer: A critical review. Int. J. Nanomed. 15, 7063 (2020).

CAS Article Google Scholar

Jain, S. N. et al. Antibiotic synergy test: Checkerboard method on multidrug resistant Pseudomonas aeruginosa. Int. Res. J. Pharm. 2, 196198 (2011).

Google Scholar

Lorian, V. Antibiotics in Laboratory Medicine (Lippincott Williams & Wilkins, 2005).

Google Scholar

Munoz-Bellido, J., Munoz-Criado, S. & Garca-Rodrguez, J. Antimicrobial activity of psychotropic drugs: Selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents 14, 177180 (2000).

CAS Article Google Scholar

Ni, Y. & Miledi, R. Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc. Natl. Acad. Sci. 94, 20362040 (1997).

ADS CAS Article Google Scholar

Rawat, R., Whitty, A. & Tonge, P. J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance. Proc. Natl. Acad. Sci. 100, 1388113886 (2003).

ADS CAS Article Google Scholar

Vgeli, B. et al. InhA, the enoyl-thioester reductase from Mycobacterium tuberculosis forms a covalent adduct during catalysis. J. Biol. Chem. 293, 1720017207 (2018).

Article Google Scholar

Kumar, M. M. K., Madhavi, K., Mohan, T., Nagasree, K. P. & Sangeeta, G. Novel synthetic analogues of Fluoxetine as potent and selective anti-TB agents. J. Appl. Pharm. Sci. 8, 107115 (2018).

CAS Google Scholar

Schrlau, M. G., Falls, E. M., Ziober, B. L. & Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 19, 015101 (2007).

ADS Article Google Scholar

Ladel, C. H. et al. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect. Immun. 65, 48434849 (1997).

CAS Article Google Scholar

Sheikhpour, M., Barani, L. & Kasaeian, A. Biomimetics in drug delivery systems: A critical review. J. Control. Release 253, 97109 (2017).

CAS Article Google Scholar

Ma, W. et al. Efficacy of dual-targeting combined anti-tuberculosis drug delivery system in the treatment of tuberculous meningitis. J. Biomed. Nanotechnol. 17(10), 20342042 (2021).

CAS Article Google Scholar

Mazlan, M. K. N. et al. Antituberculosis targeted drug delivery as a potential future treatment approach. Antibiotics 10(8), 908 (2021).

CAS Article Google Scholar

Mohammadi, M., Arabi, L. & Alibolandi, M. Doxorubicin-loaded composite nanogels for cancer treatment. J. Control. Release 328, 171191 (2020).

CAS Article Google Scholar

Continue reading here:
An effective nano drug delivery and combination therapy for the treatment of Tuberculosis | Scientific Reports - Nature.com

Related Posts