Nanotechnology, nicknamed "the manufacturing technology of the twenty-first century," allows us to manufacture a vast range of sophisticated molecular devices by manipulating matter on an atomic and molecular scale. These nanomaterials possess the ideal properties of strength, ductility, reactivity, conductance, and capacity at the atomic, molecular, and supramolecular levels to create useable devices and systems in a length range of 1-100 nm. The materials' physical, chemical, and mechanical characteristics differ fundamentally and profoundly at the nanoscale from those of individual atoms, molecules, or bulk material, which enables the most efficient atom alignment in a very tiny space. Nanotechnology allows us to build various intricate nanostructured materials by manipulating matter at the atomic and molecular scale in terms of strength, ductility, reactivity, conductance, and capacity [1,2].
"Nanomedicine" is the science and technology used to diagnose, treat, and prevent diseases. It is also used for pain management and to safeguard and improve people's health through nanosized molecules, biotechnology, genetic engineering, complex mechanical systems, and nanorobots [3]. Nanoscale devices are a thousand times more microscopic than human cells, being comparable to biomolecules like enzymes and their respective receptors in size. Because of this property, nanosized devices can interact with receptors on the cell walls, as well as within the cells. By obtaining entry into different parts of the body, they can help pick up the disease, as well as allow delivery oftreatment to areas of the body that one can never imagine being accessible. Human physiology comprises multiple biological nano-machines. Biological processes that can lead to cancer also occur at the nanoscale. Nanotechnology offers scientists the opportunity to experiment on macromolecules in real time and at the earliest stage of disease, even when very few cells are affected. This helps in the early and accurate detection of cancer.
In a nutshell, the utility of the nanoscale materials for cancer is due to the qualities such as the ability to be functionalized and tailored to human biological systems (compatibility), the ability to offer therapy or act as a therapeutic agent, the ability to act as a diagnostic tool, the capability to penetrate various physiological barriers such as the blood-brain barrier, the capability to accumulate passively in the tumor, and the ability to aggressively target malignant cells.
Nanotechnology in cancer management has yielded various promising outcomes, including drug administration, gene therapy, monitoring and diagnostics, medication carriage, biomarker tracing, medicines, and histopathological imaging. Quantum dots (QDs) and gold nanoparticles are employed at the molecular level to diagnose cancer. Molecular diagnostic techniques based on these nanoparticles, such as biomarker discovery, can properly and quickly diagnose tumors. Nanotechnology therapeutics, such as nanoscale drug delivery, will ensure that malignant tissues are specifically targeted while reducing complications. Because of their biological nature, nanomaterials can cross cell walls with ease. Because of their active and passive targeting, nanomaterials have been used in cancer treatment for many years. This research looks at its applications in cancer diagnosis and therapy, emphasizing the technology's benefits and limitations [3-5]. The various uses of nanotechnology have been enumerated in the Table 1.
Early cancer detection is half the problem solved in the battle against cancer. X-ray, ultrasonography, CT, magnetic resonance imaging (MRI), and PET scan are the imaging techniques routinely used to diagnose cancer. Morphological changes in tissues or cells (histopathology or cytology) help in the final confirmation of cancer. These techniques detect cancer only after visible changes in tissues, by which time the cancer might have proliferated and caused metastasis. Another limitation of conventional imaging techniques is their failure to distinguish benign from malignant tumors. Also, cytology and histopathology cannot be employed as independent, sensitive tests to detect cancer at an early stage. With innovative molecular contrast media and materials, nanotechnology offers quicker and more accurate initial diagnosis, along with an ongoing assessment of cancer patient care [6].
Although nanoparticles are yet to be employed in actual cancer detection, they are currently being used in a range of medical screening tests. Gold nanoparticles are among the most commonly used in home test strips. A significant advantage of using nanoparticles for the detection of cancer is that they have a large surface area to volume ratio in comparison to their larger counterparts. This property ensures antibodies, aptamers, small molecules, fluorescent probes, polyethylene glycol (PEG), and other molecules cover the nanoparticle densely. This presents multiple binding ligands for cancer cells (multivalent effect of nanotools) and therefore increases the specificity and sensitivity of the bioassay [7,8]. Applications of nanotechnology in diagnosis are for the detection of extracellular biomarkers for cancer and for in vivo imaging. A good nanoprobe must have a long circulating time, specificity to the cancer tissue, and no toxicity to nearby tissue [9,10].
Detection of Biomarkers
Nanodevices have been studied to detect blood biomarkers and toxicity to healthy tissues nearby. These biomarkers include cancer-associated circulating tumor cells, associated proteins or cell surface proteins, carbohydrates or circulating tumor nucleic acids, and tumor-shed exosomes. Though it is well known that these biomarkers help to detect cancer at apreliminary stage, they also help to monitor the therapy and recurrence. They have limitations such as low concentrations in body fluids, variations in their levels and timings in different patients, and difficult prospective studies. These hurdles are overcome by nanotechnology, which offers high specificity and sensitivity. High sensitivity, specificity, and multiplexed measurements are all possible with nano-enabled sensors. To further illuminate a problem, next-generation gadgets combine capture with genetic analysis [11-15].
Imaging Using Nanotechnology
Nanotechnology uses nanoprobes that will accumulate selectively in tumor cells by passive or active targeting. The challenges faced are the interaction of nanoparticles with blood proteins, their clearance by the reticuloendothelial system, and targeting of tumors.Passive targeting suggests apreference for collecting the nanoparticles in the solid tumors due to extravasation from the blood vessels. This is made possible by the defective angiogenesis of the tumorwherein the new blood vessels do not have tight junctions in their endothelial cells and allow the leaking out of nanoparticles up to 150 nm in size, leading to a preferential accumulation of nanoparticles in the tumor tissue. This phenomenon is called enhanced permeability and retention (EPR).Active targeting involves the recognition of nanoparticles by the tumor cell surface receptors. This will enhance the sensitivity of in vivo tumor detection. For early detection of cancer, active targeting will give better results than passive targeting [16-18].
This can be classified as delivery of chemotherapy, immunotherapy, radiotherapy, and gene therapy, and delivery of chemotherapy is aimed at improving the pharmacokinetics and reducing drug toxicity by selective targeting and delivery to cancer tissues. This is primarily based on passive targeting, which employs the EPReffect described earlier [16]. Nanocarriers increase the half-life of the drugs. Immunotherapy is a promising new front in cancer treatment based on understanding the tumor-host interaction. Nanotechnology is being investigated to deliver immunostimulatory or immunomodulatory molecules. It can be used as an adjuvant to other therapies [19-21].
Role of Nanotechnology in Radiotherapy
Thistechnology involves targeted delivery of radioisotopes, targeted delivery of radiosensitizer, reduced side effects of radiotherapy by decreasing distribution to healthy tissues, and combining radiotherapy with chemotherapy to achieve synergism but avoid side effects, andadministering image-guided radiotherapy improves precision and accuracy while reducing exposure to surrounding normal tissues[22,23].
Gene Therapy Using Nanotechnology
There is a tremendous interest in the research in gene therapy for cancer, but the results are still falling short of clinical application. Despite a wide array of therapies aimed at gene modulation, such as gene silencing, anti-sense therapy, RNAinterference, and gene and genome editing, finding a way to deliver these effects is challenging. Nanoparticles are used as carriers for gene therapy, with advantages such as easy construction and functionalizing and low immunogenicity and toxicity. Gene-targeted delivery using nanoparticles has great future potential. Gene therapy is still in its infancy but is very promising [24].
Nanodelivery Systems
Quantum dots: Semiconductor nanocrystal quantum dots (QDs) have outstanding physical properties. Probes based on quantum dots have achieved promising cellular and in vivo molecular imaging developments. Increasing research is proving that technology based on quantum dots may become an encouraging approach in cancer research[4]. Biocompatible QDs were launched for mapping cancer cells in vitro in 1998. Scientists used these to create QD-based probes for cancer imaging that were conjugated with cancer-specific ligands, antibodies, or peptides. QD-immunohistochemistry (IHC) has more sensitivity and specificity than traditional immunohistochemistry (IHC) and can accomplish measurements of even low levels, offering considerably higher information for individualized management. Imaging utilizing quantum dots has emerged as a promising technology for early cancer detection[25,26].
Nanoshells and gold nanoparticles/gold nanoshells (AuNSs) are an excellent example of how combining nanoscience and biomedicine can solve a biological problem. They have an adjustable surface plasmon resonance, which can be set to the near-infrared to achieve optimal penetration of tissues. During laser irradiation, AuNSs' highly effective light-to-heat transition induces thermal destruction of the tumor without harming healthy tissues. AuNSs can even be used as a carrier for a wide range of diagnostic and therapeutic substances[27].
Dendrimers: These are novel nanoarchitectures with distinguishing characteristics such as a spherical three-dimensional shape, a monodispersed uni-micellar nature, and a nanometric size range. The biocompatibility of dendrimers has been employed to deliver powerful medications such as doxorubicin. This nanostructure targets malignant cells by attaching ligands to their surfaces. Dendrimers have been intensively investigated for targeting and delivering cancer therapeutics and magnetic resonance imaging contrast agents. The gold coating on its surface significantly reduced their toxicity without significantly affecting their size. It also served as an anchor for attaching high-affinity targeting molecules to tumor cells [28].
Liposomal nanoparticles (Figure 1): These have a role in delivery to a specific target spot, reducing biodistribution toxicity because of the surface-modifiable lipid composition, and have a structure similar to cell membranes. Liposome-based theranostics (particles constructed for the simultaneous delivery of therapeutic and diagnostic moieties) have the advantage of targeting specific cancer cells.Liposomes are more stable in the bloodstream and increase the solubility of the drug. They also act as sustained release preparations and protect the drug from degradation and pH changes, thereby increasing the drug's circulating half-life. Liposomes help to overcome multidrug resistance. Drugs such as doxorubicin, daunorubicin, mitoxantrone, paclitaxel, cytarabine, and irinotecanare used with liposome delivery [29-31].
Polymeric micelles: Micelles are usually spherical particles with a diameter of 10-100 nm, which are self-structured and have a hydrophilic covering shell and a hydrophobic core, suspended in an aqueous medium. Hydrophobic medicines can be contained in the micelle's core. A variety of molecules having the ability to bind to receptors, such as aptamers, peptides, antibodies, polysaccharides, and folic acid, are used to cover the surface of the micelle in active tumor cell targeting. Enzymes, ultrasound, temperature changes, pH gradients, and oxidationare used as stimuli in micelle drug delivery systems. Various physical and chemical triggers are used as stimuli in micelle drug delivery systems. pH-sensitive polymer micelle is released by lowering pH. A co-delivery system transports genetics, as well as anticancer medicines. Although paclitaxel is a powerful microtubule growth inhibitor, it has poor solubility, which causes fast drug aggregation and capillary embolisms. Such medicines' solubility can beraised to 0.0015-2 mg/ml by encapsulating them in micelles. Polymeric micelles are now being tested for use in nanotherapy [32].
Carbon nanotubes (CNTs): Carbon from burned graphite is used to create hollow cylinders known as carbon nanotubes (CNTs). They possess distinct physical and chemical characteristics that make them interesting candidates as carriers of biomolecules and drug delivery transporters. They have a special role in transporting anticancer drugs with a small molecular size. Wu et al. formed amedicine carrier system using multi-walled CNTs (MWCNTs) and the 10-hydroxycamptothecin (HCPT) anticancer compound. As a spacer between MWCNTs and HCPT, they employed hydrophilic diamine trimethylene glycol. In vitro and in vivo, their HCPT-MWCNT conjugates showed significantly increased anticancer efficacy when compared to traditional HCPTformulations. These conjugates were able to circulate in the blood longer and were collected precisely at the tumor site [33,34].
Limitations
Manufacturing costs, extensibility, safety, and the intricacy of nanosystems must all be assessed and balanced against possible benefits. The physicochemical properties of nanoparticles in biological systems determine their biocompatibility and toxicity. As a result, stringent manufacturing and delineation of nanomaterials for delivery of anticancer drugs are essential to reduce nanocarrier toxicity to surrounding cells. Another barrier to medication delivery is ensuring public health safety, as issues with nanoparticles do not have an immediate impact. The use of nanocarriers in cancer treatment may result in unforeseen consequences. Hypothetical possibilities of environmental pollution causing cardiopulmonary morbidity and mortality, production of reactive oxygen species causing inflammation and toxicity, and neuronal or dermal translocations are a few possibilities that worry scientists. Nanotoxicology, a branch of nanomedicine, has arisen as a critical topic of study, paving the way for evaluating nanoparticle toxicity [35-37].
Nanotechnology has been one of the recent advancements of science that not only has revolutionized the engineering field but also is now making its impact in the medical and paramedical field. Scientists have been successful in knowing the properties and characteristics of these nanomaterials and optimizing them for use in the healthcare industry. Although some nanoparticles have failed to convert to the clinic, other new and intriguing nanoparticles are now in research and show great potential, indicating that new treatment options may be available soon. Nanomaterials are highly versatile, with several benefits that can enhance cancer therapies and diagnostics.
These are particularly useful as drug delivery systems due to their tiny size and unique binding properties. Drugs such as doxorubicin, daunorubicin, mitoxantrone, paclitaxel, cytarabine, irinotecan, and amphotericin B are already being conjugated with liposomes for their delivery in current clinical practices. Doxorubicin, cytarabine, vincristine, daunorubicin, mitoxantrone, and paclitaxel, in particular, are key components of cancer chemotherapy. Even in the diagnosis of cancer for imaging and detection of tumor markers, particles such as nanoshells, dendrimers, and gold nanoparticles are currently in use.
Limitations of this novel technology include manufacturing expenses, extensibility, intricacy, health safety, and potential toxicity. These are being overcome adequately by extensive research and clinical trials, and nanomedicine is becoming one of the largest industries in the world. A useful collection of research tools and clinically practical gadgets will be made available in the near future thanks to advancements in nanomedicine. Pharmaceutical companies will use in vivo imaging, novel therapeutics, and enhanced drug delivery technologies in their new commercial applications. In the future, neuro-electronic interfaces and cell healing technology may change medicine and the medical industry when used to treat brain tumors.
Continue reading here:
The Application of Nanotechnology and Nanomaterials in Cancer Diagnosis and Treatment: A Review - Cureus
- Carla wants to know [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- Carla wants to know [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- U.S. and Canadian Scientists Form a Global Alliance for Nano-Bio-Electronics in Order to Rapidly Find Solutions for ... [Last Updated On: February 13th, 2012] [Originally Added On: February 13th, 2012]
- Regenerative Medicine Biotech Company, Eqalix, Names Scientific Advisory Board [Last Updated On: October 9th, 2012] [Originally Added On: October 9th, 2012]
- Welcome to the body parts shop... would you like to place an order? [Last Updated On: April 15th, 2014] [Originally Added On: April 15th, 2014]
- Stem cells hold keys to body's plan [Last Updated On: June 6th, 2014] [Originally Added On: June 6th, 2014]
- InVivo Therapeutics [Last Updated On: November 12th, 2014] [Originally Added On: November 12th, 2014]
- Nanobiotechnology - Wikipedia, the free encyclopedia [Last Updated On: October 1st, 2015] [Originally Added On: October 1st, 2015]
- Center for Drug Delivery and Nanomedicine (CDDN) [Last Updated On: October 8th, 2015] [Originally Added On: October 8th, 2015]
- Nanomedicine: Nanotechnology, Biology and Medicine ... [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- Nanobiotechnology - Wikipedia [Last Updated On: November 19th, 2016] [Originally Added On: November 19th, 2016]
- Exploiting acidic tumor microenvironment for the development of novel cancer nano-theranostics - Medical Xpress [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Nano-sized drug carriers could be the future for patients with lung disease - Phys.Org [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Nano Medicine [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Healthcare Nanotechnology (Nanomedicine) Market Expected to Generate Huge Profits by 2015 2021: Persistence ... - MilTech [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Nanomedicine Research Journal [Last Updated On: September 25th, 2017] [Originally Added On: September 25th, 2017]
- Top Nanomedicine Conferences|DrugDelivery meetings ... [Last Updated On: June 29th, 2018] [Originally Added On: June 29th, 2018]
- The Promise of Nanomedicine - Laboratory Equipment [Last Updated On: July 23rd, 2018] [Originally Added On: July 23rd, 2018]
- Nanomedicine Conferences | Nanotechnology Events ... [Last Updated On: October 8th, 2018] [Originally Added On: October 8th, 2018]
- Nanomedicine - Overview [Last Updated On: October 8th, 2018] [Originally Added On: October 8th, 2018]
- IEEE-NANOMED 2016 The 10th IEEE International Conference ... [Last Updated On: October 13th, 2018] [Originally Added On: October 13th, 2018]
- Journal of Nanomedicine and Biotherapeutic Discovery- Open ... [Last Updated On: May 1st, 2019] [Originally Added On: May 1st, 2019]
- Nano-biotechnology Market by Manufacturer Analysis 2016-2024 - BitGmx [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Growing hair on bald heads with electric tech may soon be easy - Livemint [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Global Nanorobots Market Prospective Growth, Opportunities, Top Key Players and Forecast to 2024 - Pioneer Reporter [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Nanotechnology in Medical Applications Market: Strategic Analysis to Understand the Competitive Outlook of the Industry, 2025 - Market Forecast [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Functional Polymer Market Insights, Trends, Analysis, Types, Applications, key players, Market shares and Forecast 2019 to 2027 - The Market Plan [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Healthcare Nanotechnology (Nanomedicine) Market to Witness Growth Acceleration During 2015 2021 - Trading Herald [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Curcumin hope in TB fight - Telegraph India [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- TB vaccines with nano-curcumin work wonders - Deccan Herald [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Healthcare Nanotechnology (Nanomedicine) Market Likely To Experience High Revenue Generation In The Forthcoming Years - Commerce Gazette [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Healthcare Nanotechnology Nanomedicine Market to Witness a Pronounce Growth During 2019-2029 - Zebvo [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Self-Assembly Of Retinoid Nanoparticles For Melanoma Therapy | IJN - Dove Medical Press [Last Updated On: October 5th, 2019] [Originally Added On: October 5th, 2019]
- Improving 131I Radioiodine Therapy By Hybrid Polymer-Grafted Gold Nano | IJN - Dove Medical Press [Last Updated On: October 5th, 2019] [Originally Added On: October 5th, 2019]
- Nanorobotic Market 2019 Technological Perspective, Latest Trends and key manufacturers:: Bruker, Jeol, Thermo Fisher Scientific, Ginkgo Bioworks -... [Last Updated On: October 22nd, 2019] [Originally Added On: October 22nd, 2019]
- Quantum dots that light up TVs could be used for brain research - Stuff Magazines [Last Updated On: October 22nd, 2019] [Originally Added On: October 22nd, 2019]
- 4 Innovative Solutions Fostering Advanced Cancer Treatment - Medical Tech Outlook [Last Updated On: October 28th, 2019] [Originally Added On: October 28th, 2019]
- Nanotechnology for disease diagnosis and treatment earns Florida Poly professor international award - Yahoo Finance [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Nanorobotics Market analysis and outlook for 2019-202 available in the latest report - WhaTech - WhaTech [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Global Next-Generation Sequencing (NGS) Market Report 2019 - World Market Projected to Surpass $25 Billion by 2026, Rising at a CAGR of 20.6% -... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- World Pancreatic Cancer Day: increasing awareness and inspiring action - UNSW Newsroom [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- NanoRobotics Market Overview on Future Threats by 2026 - Crypto News Byte [Last Updated On: November 25th, 2019] [Originally Added On: November 25th, 2019]
- Nanoparticle therapy shows promise for treatment of rare cancer - The Brown Daily Herald [Last Updated On: November 25th, 2019] [Originally Added On: November 25th, 2019]
- What is the Role of Nanomedicine in Treating Melanoma? - Medical Tech Outlook [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- Our top 20 features of 2019 - COVER [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Examine Triple Negative Breast Cancer Treatment Market expected to reach US$ 720 mn by 2026 - WhaTech Technology and Markets News [Last Updated On: January 10th, 2020] [Originally Added On: January 10th, 2020]
- Triple Negative Breast Cancer Treatment Market Combining Therapies - Communal News [Last Updated On: January 10th, 2020] [Originally Added On: January 10th, 2020]
- A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Thera | IJN - Dove Medical Press [Last Updated On: January 10th, 2020] [Originally Added On: January 10th, 2020]
- VVUS Stock Jumps 70% on FDA Nod for New Formulation of Pancreaze - MicroSmallCap [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- Is the Lieber Arrest Linked to Military Brain Research and China? - Bryen's Blog [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- The Future Of Nano Medicine [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- Nano Medicine: Meaning, Advantages and Disadvantages [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- Immix Doses First Patient in USA in its Phase 1b/2a Trial in Patients with Advanced Solid Tumors - BioSpace [Last Updated On: February 11th, 2020] [Originally Added On: February 11th, 2020]
- Kanazawa University Research: Combined Drug Treatment for Lung Cancer and Secondary Tumors - Yahoo Finance [Last Updated On: February 11th, 2020] [Originally Added On: February 11th, 2020]
- Edited Transcript of NANO earnings conference call or presentation 6-Feb-20 9:30pm GMT - Yahoo Finance [Last Updated On: February 11th, 2020] [Originally Added On: February 11th, 2020]
- All your questions about how to wear a face mask -- answered - Action News Now [Last Updated On: April 26th, 2020] [Originally Added On: April 26th, 2020]
- The future of medicine - Switzer Financial News [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Recent Progress and Future Directions: The Nano-Drug Delivery System f | IJN - Dove Medical Press [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Inolife is going to revolutionize how we take our medicine - BNNBloomberg.ca [Last Updated On: May 24th, 2020] [Originally Added On: May 24th, 2020]
- Evergreen Medical Acupuncture is now offering its own supplement and herbal products, Dr. Ficks Functional Farmacy! - TippNews DAILY [Last Updated On: June 10th, 2020] [Originally Added On: June 10th, 2020]
- Impact of Covid-19 on Nano Chemotherapy Market is Expected to Grow at an active CAGR by Forecast to 2026 | Top Players Dell Wyse, IBM, Microsoft -... [Last Updated On: June 15th, 2020] [Originally Added On: June 15th, 2020]
- Kanazawa University Research: Cell Removal as the Result of a Mechanical Instability - PR Newswire UK [Last Updated On: June 15th, 2020] [Originally Added On: June 15th, 2020]
- Coronavirus threat to global Healthcare Nanotechnology (Nanomedicine) Market 2020 Industry Share, Size, Consumption, Growth, Top Manufacturers, Type... [Last Updated On: June 15th, 2020] [Originally Added On: June 15th, 2020]
- Nanocellulose Market to Reach USD 1.08 Billion by 2027 | CAGR:20.4% | Reports And Data - PRNewswire [Last Updated On: June 17th, 2020] [Originally Added On: June 17th, 2020]
- Cellics Therapeutics Announces the Publication of Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity in Nano Letters - BioSpace [Last Updated On: June 17th, 2020] [Originally Added On: June 17th, 2020]
- Opportunities in the World Nanotechnology Market to 2025 - Application of Nanotechnology in Wastewater Treatment and Enhanced Renewable Energy Driving... [Last Updated On: August 12th, 2020] [Originally Added On: August 12th, 2020]
- Interview: The NDB team on its revolutionary nano-diamond batteries - New Atlas [Last Updated On: August 29th, 2020] [Originally Added On: August 29th, 2020]
- What is Nanoscience? | Outlook and How to Invest | INN - Investing News Network [Last Updated On: September 23rd, 2020] [Originally Added On: September 23rd, 2020]
- Global Nano Therapy Market- Industry Analysis and Forecast (2020-2027) - Stock Market Vista [Last Updated On: October 29th, 2020] [Originally Added On: October 29th, 2020]
- Nanox Signs With Ambra Health to Enable Image Access and Transfer with US Hospitals and Medical imaging Providers - BioSpace [Last Updated On: October 31st, 2020] [Originally Added On: October 31st, 2020]
- Global Nanobots Market 2020 | Research Report Covers | (COVID-19 Analysis) | Industry Research, Drivers, Top Trends | Global Analysis And Forecast to... [Last Updated On: October 31st, 2020] [Originally Added On: October 31st, 2020]
- Thomas Jefferson Awards Highlight Research and Service to the University - UVA Today [Last Updated On: June 6th, 2021] [Originally Added On: June 6th, 2021]
- The Future of Cancer Treatment Using Nanotechnology - AZoNano [Last Updated On: June 6th, 2021] [Originally Added On: June 6th, 2021]
- Nanomedicine is transforming healthcare innovation - Korea IT Times [Last Updated On: June 6th, 2021] [Originally Added On: June 6th, 2021]
- Nanomedicine in Central Nervous System Injury and Repair Market Report- Trends Key Programs Analysis and Competitive Landscape Analysis The Manomet... [Last Updated On: June 23rd, 2021] [Originally Added On: June 23rd, 2021]
- Matrix Meats Adds to Team as Interest in Cultivated Meat Grows - PRNewswire [Last Updated On: July 21st, 2021] [Originally Added On: July 21st, 2021]
- Biodistribution of sphingolipid nanoemulsions with 68Ga | IJN - Dove Medical Press [Last Updated On: August 31st, 2021] [Originally Added On: August 31st, 2021]
- 2009 show based on conspiracy theories is shared as proof of WHO working on COVID-19 vaccines to create permanent sterility - Factly [Last Updated On: January 5th, 2022] [Originally Added On: January 5th, 2022]