Page 1,072«..1020..1,0711,0721,0731,074..1,0801,090..»

Britain starts clinical trial of cell therapy treatment for Covid-19 patients – Livemint

Posted: April 8, 2020 at 10:41 am

NEW DELHI :Researchers at Queen's University Belfast are leading a UK-wide clinical trial, offering an innovative cell therapy treatment for Covid-19 patients with acute respiratory failure.

This clinical trial led by Professor Danny McAuley and Professor Cecilia O'Kane, both researchers from the Wellcome-Wolfson Institute for Experimental Medicine at Queen's is investigating the use of allogenic Mesenchymal stromal cells (MSCs) in patients with a complication known as acute respiratory distress syndrome (ARDS) caused by coronavirus.

In the most critically unwell patients with Covid-19, many develop a complication known as ARDS.

In ARDS, the lungs become inflamed and leaky so they fill with fluid. This causes respiratory failure and patients may require admission to intensive care and a ventilator to support their breathing.

A recent statement from the four UK Chief Medical Officers outlined the importance of clinical trials amid the Covid-19 crisis.

Professor Cecilia O'Kane said: "It is only through clinical trials will we be able to determine if new treatments are effective and safe in critically ill patients."

The trial involves the use of MSCs, a type of cell derived from human tissue such as bone marrow or umbilical cord (which is otherwise discarded after the baby is born), to treat the injury to the lung caused by Covid-19.

MSCs are a novel treatment that has been shown in experimental models to reduce inflammation, fight infection and improve the repair of injured tissue.

Patients in this trial, which is known as Realist Covid-19, will be treated with a purified population of MSCs derived from umbilical cord tissue called ORBCEL-C.

The ORBCEL-C therapy has been developed by scientists at Orbsen Therapeutics in Galway, Ireland.

The ORBCEL-C therapeutic is manufactured under licence by the UK NHS Blood and Transplant Service for the Realist Covid-19 trial.

The trial is being introduced as part of an existing programme of research investigating the use of MSCs in patients with ARDS.

The first patient has now been recruited with plans to recruit at least 60 patients throughout the Covid-19 pandemic at multiple sites across the UK, including Belfast, Birmingham and London.

Professor Ian Young, Clinical Professor at the Centre for Public Health, Queen's University Belfast, Director of HSC R&D and Chief Scientific Advisor at the Department of Health, said: "The Health and Social Care Research & Development Division has been working with researchers across HSC to address the global problem of coronavirus.

"The vital research which will provide important evidence regarding a potential new treatment for respiratory failure, a leading cause of mortality in Covid-19.A

"We will continue to support health research and encourage people to participate in research trials and other studies so patients can get the best possible treatment to help tackle the spread of Covid-19."

The trial has been identified by the National Institute for Health Research (NIHR) as a national urgent public health study.

It is one of the many Covid-19 studies that have been given urgent public health research status by the Chief Medical Officer and the Deputy Chief Medical Officer for England.

The study is funded by the Health and Social Care Research & Development Division and the Wellcome Trust, sponsored by the Belfast Health and Social Care Trust and supported by the NI Clinical Trials Unit, the NIHR Clinical Research Network and the Northern Ireland Clinical Research Network.

Orbsen CSO Steve Elliman noted: "While there are over 100 vaccines and therapies in development targeting the SARS-CoV-2 infection - at present there are no disease modifying therapies approved for ARDS.

"We're delighted the Realist trial was approved and listed by NIHR as an Urgent Public Health Research Study so we can continue assess the safety of the ORBCEL-C therapy in patients with ARDS."

Sir Professor Alimuddin Zumla of University College London, a global coronavirus and infectious diseases expert said: "This is an exciting and important trial which targets rectifying the underlying causes of lung damage and has great potential of saving many lives from Covid-19."

Go here to read the rest:
Britain starts clinical trial of cell therapy treatment for Covid-19 patients - Livemint

Posted in Cell Therapy | Comments Off on Britain starts clinical trial of cell therapy treatment for Covid-19 patients – Livemint

Evotec Expands Its IPSC-Based Cell Therapy Platform Evocells Through Licensing Agreement with panCella – Yahoo Finance

Posted: April 8, 2020 at 10:41 am

HAMBURG, GERMANY, AND TORONTO, ON / ACCESSWIRE / April 2, 2020 / Evotec SE (Frankfurt Stock Exchange: EVT, MDAX/TecDAX, ISIN: DE0005664809) and the innovative biotechnology company panCELLa Inc. announced today that the companies have entered into a licensing and investment agreement.

Under the terms of the agreement, Evotec will receive a non-exclusive licence to access panCELLa's proprietary iPS cell lines "iACT Stealth Cells(TM)", which are genetically modified to prevent immune rejection of derived cell therapy products ("cloaking"). Furthermore, Evotec will also have access to a new-generation cloaking technology known as hypoimmunogenic cells. In addition, the "FailSafe(TM)" mechanism effectively addresses a key challenge in iPSC-based cell therapy, potential tumour formation by residual undifferentiated cells.

Using the cell lines, Evotec will be able to develop iPSC-based, off-the-shelf cell therapies with long-lasting efficacy that can be safely administered to a broad population of patients without the use of medication to supress the patients' immune system. With a growing portfolio of iPSC-based cell therapy projects at Evotec, access to research as well as GMP-grade iPSC lines modified with one or both of the panCELLa technologies significantly accelerates Evotec's cell therapy discovery and development efforts. Modified iPSC lines will be available for the development of cell therapy approaches across a broad range of indications by Evotec and potential partners. Furthermore, Evotec has made an investment to take a minority stake in panCELLa and has nominated Dr Andreas Scheel to join panCELLa's supervisory board.

Dr Cord Dohrmann, Chief Scientific Officer of Evotec, commented: "Cell therapies hold enormous potential as truly regenerative or curative approaches for a broad range of different diseases with significant medical need. Integrating panCELLa's technology and cell lines into our ongoing proprietary research and development efforts strengthens Evotec's position in cell therapy. It is our goal to provide safe highly-effective cell therapy products to as many patients as possible. In addition to small molecules and biologics, cell therapy will become yet another major pillar of Evotec's multimodality discovery and development platform."

Mahendra Rao, MD, PhD, CEO at panCELLa, added: "We welcome the partnership with Evotec. Evotec's widely recognised expertise and existing portfolio of iPSC-related technology platforms will allow panCELLa to rapidly advance its own therapeutic interests in NK cell therapy, pancreatic islet production and iPSC-derived MSC platform, in addition to enabling panCELLa to make its platform technologies widely available. I believe that the investment by Evotec in our company is a strong validation of the leading role of panCELLa in the field of regenerative medicine and in the utility of its platform technologies. We welcome Dr Andreas Scheel to our Board."

No financial details of the agreement were disclosed.

About Evotec and iPSCInduced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes encoding transcription factors could convert adult cells into pluripotent stem cells. He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent". Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

Evotec has built an industrialised iPSC infrastructure that represents one of the largest and most sophisticated iPSC platforms in the industry. Evotec's iPSC platform has been developed over the last years with the goal to industrialise iPSC-based drug screening in terms of throughput, reproducibility and robustness to reach the highest industrial standards, and to use iPSC-based cells in cell therapy approaches via the Company's proprietary EVOcells platform.

Story continues

About cell therapy and panCELLa's FailSafe(TM) iPSC technologyCell therapy, one of the most promising regenerative medicine approaches, replaces a patient's missing or broken cells with functioning cells from a range of different sources, either from a donor, from the patient's own material, or from stem cells. The advent of induced pluripotent stem cells ("iPSC") has opened up stem cells as an almost unlimited source of consistent-quality material for such cell therapies. At the same time, differentiating cell therapies from a single validated source circumvents critical risks of contamination associated with administering both donor and patient cell material.

However, the patient's immune system will treat such iPSC-based transplants as "foreign" and use the body's immune system to counteract the therapy, thus undermining its long-term efficacy. While organ transplants require an often lifelong regimen of immunosuppressants, iPSC-derived cells used for cell therapies can be cloaked to make them undetectable by the patient's immune system, thus avoiding rejection and enabling effective long-term relief of the patient's symptoms.

To increase the safety of such iPSC-derived cell products, panCELLa's proprietary FailSafe(TM) technology is able to inactivate any iPSC-derived proliferating cell before and after transplantation through the use of a readily available anti-infective medication. FailSafe(TM) is the only quantifiable "safety switch" on the market which is expected to be critical for regulators, clinicians and patients to make informed decisions when evaluating treatment options.

ABOUT PANCELLA INC.Incorporated in August 2015, panCELLa (www.pancella.com) was founded by Dr Andras Nagy and Dr Armand Keating based on Dr Nagy's ground-breaking work in the area of stem cell research. Through panCELLa, Drs Keating and Nagy are seeking to create an effective cell therapy derived from stem cells, which are modified to provide a sufficient and very high level of safety before and after the cells are introduced to the patient. panCELLa serves those companies developing products from stem cells. panCELLa seeks to create universal "off the shelf" FailSafe(TM) Cells and to assist pharmaceutical and biotechnology sectors to achieve such with their own cell lines. Targeted medical applications include deadly, debilitating, or aggressive diseases requiring immediate treatment where there is no time to cultivate a customized stem cell treatment from the patient (i.e. cancer, cardiac infarct, diabetes, stroke and spinal cord injury).

ABOUT EVOTEC SEEvotec is a drug discovery alliance and development partnership company focused on rapidly progressing innovative product approaches with leading pharmaceutical and biotechnology companies, academics, patient advocacy groups and venture capitalists. We operate worldwide and our more than 3,000 employees provide the highest quality stand-alone and integrated drug discovery and development solutions. We cover all activities from target-to-clinic to meet the industry's need for innovation and efficiency in drug discovery and development (EVT Execute). The Company has established a unique position by assembling top-class scientific experts and integrating state-of-the-art technologies as well as substantial experience and expertise in key therapeutic areas including neuronal diseases, diabetes and complications of diabetes, pain and inflammation, oncology, infectious diseases, respiratory diseases, fibrosis, rare diseases and women's health. On this basis, Evotec has built a broad and deep pipeline of approx. 100 co-owned product opportunities at clinical, pre-clinical and discovery stages (EVT Innovate). Evotec has established multiple long-term alliances with partners including Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, CHDI, Novartis, Novo Nordisk, Pfizer, Sanofi, Takeda, UCB and others. For additional information please go to http://www.evotec.com and follow us on Twitter @Evotec.

FORWARD LOOKING STATEMENTSInformation set forth in this press release contains forward-looking statements, which involve a number of risks and uncertainties. The forward-looking statements contained herein represent the judgement of Evotec as of the date of this press release. Such forward-looking statements are neither promises nor guarantees, but are subject to a variety of risks and uncertainties, many of which are beyond our control, and which could cause actual results to differ materially from those contemplated in these forward-looking statements. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in our expectations or any change in events, conditions or circumstances on which any such statement is based.

Contact Evotec SE:Gabriele Hansen, SVP Corporate Communications, Marketing & Investor Relations, Phone: +49.(0)40.56081-255, gabriele.hansen@evotec.com

SOURCE: Evotec AG

View source version on accesswire.com: https://www.accesswire.com/583603/Evotec-Expands-Its-IPSC-Based-Cell-Therapy-Platform-Evocells-Through-Licensing-Agreement-with-panCella

Read the original here:
Evotec Expands Its IPSC-Based Cell Therapy Platform Evocells Through Licensing Agreement with panCella - Yahoo Finance

Posted in Cell Therapy | Comments Off on Evotec Expands Its IPSC-Based Cell Therapy Platform Evocells Through Licensing Agreement with panCella – Yahoo Finance

TCR Therapeutics to Present at the Goldman Sachs Cell Therapy Day – Yahoo Finance

Posted: April 8, 2020 at 10:41 am

CAMBRIDGE, Mass., April 03, 2020 (GLOBE NEWSWIRE) -- TCR2 Therapeutics Inc. (TCRR), a clinical-stage immunotherapy company developing the next generation of novel T cell therapies for patients suffering from cancer, today announced that Alfonso Quints Cardama, M.D., Chief Medical Officer of TCR2 Therapeutics, will present an update on company progress during the panel Emergence of TCRs and Next-Generation Therapies at the Goldman Sachs Cell Therapy Day on April 6, 2020 at 2:00pm ET using a virtual platform.

About TCR2 Therapeutics

TCR2Therapeutics Inc.is a clinical-stage immunotherapy company developing the next generation of novel Tcell therapies for patients suffering from cancer.TCR2sproprietary T cell receptor (TCR) Fusion Construct Tcells (TRuC-T cells) specifically recognize and kill cancer cells by harnessing signaling from the entire TCR, independent ofhuman leukocyte antigens (HLA). In preclinical studies, TRuC-T cells have demonstrated superior anti-tumor activity compared to chimeric antigen receptor T cells (CAR-T cells), while exhibiting lower levels of cytokine release. The Companys lead TRuC-T cell product candidate targeting solid tumors, TC-210, is currently being studied in a Phase 1/2 clinical trial to treat patients with mesothelin-positive non-small cell lung cancer (NSCLC), ovarian cancer, malignant pleural/peritoneal mesothelioma, and cholangiocarcinoma. The Companys lead TRuC-T cell product candidate targeting hematological malignancies, TC-110, is currently being studied in a Phase 1/2 clinical trial to treat patients with CD19-positive adult acute lymphoblastic leukemia (aALL) and with aggressive or indolent non-Hodgkin lymphoma (NHL). For more information about TCR2, please visitwww.tcr2.com.

Investor and Media Contact:

Carl MauchDirector, Investor Relations and Corporate Communications(617) 949-5667carl.mauch@tcr2.com

See the rest here:
TCR Therapeutics to Present at the Goldman Sachs Cell Therapy Day - Yahoo Finance

Posted in Cell Therapy | Comments Off on TCR Therapeutics to Present at the Goldman Sachs Cell Therapy Day – Yahoo Finance

Stempeutics partners with Global Consortium of cell therapy companies – Express Healthcare

Posted: April 8, 2020 at 10:41 am

Seeking European Commission Funding to Fight Against Corona

Stempeutics Research, a group company of Manipal Education and Medical Group (MEMG), recently announced that it has partnered with Global Consortium of cell therapy companies seeking European Commission Funding to Fight Against Corona! (FAC!). Under this partnership, Stempeutics will export its stem cell product Stempeucel (subject to regulatory approvals) for treating critically ill COVID-19 patients with lung disease. First the product will be clinically tested and upon successful outcomes, it intends to export the product on a regular basis. In this connection it is signing up an alliance with Educell, Slovenia.

Currently, no specific drugs or vaccines are available to cure the patients with COVID-19 infection. Mortality in COVID-19 infected patients with the inflammatory lung condition ARDS (Acute Respiratory Distress Syndrome)is reported to approach 50 per cent, and is associated with older age, co-morbidities such as diabetes, cardiovascular disease, COPD (chronic obstructive pulmonary disease), higher disease severity, and elevated markers of inflammation. Current therapeutic interventions (with the exception of ventilators / respirators which are in very short supply) do not appear to be improving in-hospital survival. Hence, there is a large unmet need for a safe and effective treatment for COVID-19 infected patients, especially in severe cases. A promising new therapy for the ARDS, the terminal stage of COVID-19, using MSCs can quickly (2-4 days) reduce inflammation of the lung tissue, and allow patients to more quickly come off of the ventilatory support and hopefully fully recover with less significant lung damage.

Stempeucel is an allogeneic, off the shelf, pooled mesenchymal stromal cells having anti- inflammatory and immune-modulatory properties which prevents the over activation of the immune system. Stempeucel product exhibits a wide range of potent therapeutic properties. The product exhibits potent immunomodulatory and anti-inflammatory properties which could help in reducing the inflammation caused due to the cytokine storm elicited by the bodys immune cells in response to SARS-CoV-2 (COVID-19) related infection in the lungs. Also, the growth factor, Angiopoietin-1 (Ang-1) is effective in reducing alveolar epithelium permeability in the lung. Hence it is envisaged, Stempeucel will reduce the fatal symptoms of COVID 19 induced pneumonia and its progression to ARDS.

Commenting on this initiative, Dr Miomir Knezevic, Leader, Global Consortium and Founder, Educell said, We are happy to partner with Stempeutics since its product Stempeucel is already designated as an ATMP [1] in Europe and also Stempeucel technology has been patented in many countries in Europe. Stempeutics manufacturing process is scalable and the product is affordable which are key to meet the demands of COVID-19 patients.

BN Manohar, CEO, Stempeutics said, From the clinical data using Stempeucel in different clinical trials in other indications it may be postulated that Stempeucel has the potential capability for treating COVID-19 infection. Together with the safety profile observed from DCGI approved clinical trials involving more than 350 patients injected with Stempeucel by different routes of injection, this therapy may help in mitigating the lung tissue damaging effects of COVID-19 infection.

Dr Stephen Minger, Scientific Advisor, Global Consortium and ex Global Director of R&D, Cell Technologies GE Healthcare added, The most severely affected CV-2 infected patients will often go on to develop ARDS which necessitates assisted ventilation to preserve breathing and lung function. Moreover, many ARDS patients will also experience an acute but severe life-threatening inflammatory response (cytokine storm) which can result in long-term damage to lung tissue and lung function. Treating ARDS patients with allogeneic expanded bone marrow derived MSCs could alleviate and ameliorate lung inflammation and compromised lung function and significantly reduce the time required for patients to be ventilated.

Dr Raviraja NS, Sr Director, Business Development and Innovation, Stempeutics, said, Given the severe shortage of ventilators in the world, and the high mortality rate of patients who develop ARDS (approx. 50 per cent), the clinical use of MSCs in COVID-19 ADRS patients could drastically impact on the healthcare burden currently occurring due to very large patient numbers, limited equipment and overworked medical personnel.

Reference:

[1] ATMP is Advanced Therapy Medicinal Product regulated by EU Act December 7, 2007.

Read this article:
Stempeutics partners with Global Consortium of cell therapy companies - Express Healthcare

Posted in Cell Therapy | Comments Off on Stempeutics partners with Global Consortium of cell therapy companies – Express Healthcare

Cell therapy treatment mooted as potential way to beat coronavirus – Evening Standard

Posted: April 8, 2020 at 10:41 am

The latest headlines in your inbox

A group of scientists are reportedly in talks with the Government on a potential treatment for the coronavirus using immune cells from young and healthy volunteers.

Researchers from TC Biopharm near Glasgow, responsiblefor cloning Dolly the Sheep,have used the new therapy which uses immunity-building cell transfusions to successfully treat cancer.

They are now hoping it will also work against the coronavirus, and are in talks with the Government to trial the therapy for that purpose, the Daily Telegraph reports.

It is hoped the treatment will be made available in NHS hospitals by July.

Dr Brian Kelly, senior strategic medical adviser to TC Biopharm, told the paper: One of the key challenges of fighting viral infection is to develop something that is going to attack the infected cells and not the normal cells.

So the solution that we came up with was to look at the bodys natural defences to viral infection.

In patients who have successfully fought a viral infection, they have expanded their own immune system and that persists after that to stop them becoming infected again.

The donor T-cells differ from normal immune cells as they do not identify invaders in the body based on alien protrusions on the surface of cells, but by detecting the unusual metabolism of viruses.

When the donor cells do detect a virus, they begin to destroy while also signalling it to the rest of the immune system as an alien intrusion requiring eradication.

Dr Kelly said with this approach, even if the virus mutated and returned to a body, the infusion exercise could be repeated and would still work.

Listen to The Leader: Coronavirus Daily podcast

TC Biopharm was founded by Angela Scott, who was part of the team who cloned Dolly the Sheep in Edinburgh in 1996.

Additional reporting by Press Association.

Here is the original post:
Cell therapy treatment mooted as potential way to beat coronavirus - Evening Standard

Posted in Cell Therapy | Comments Off on Cell therapy treatment mooted as potential way to beat coronavirus – Evening Standard

How pharma companies are shifting deal strategies for cell and gene therapies – EPM Magazine

Posted: April 8, 2020 at 10:41 am

Lev Gerlovin, vice president in the Life Sciences Practice at Charles River Associates (CRA), and Pascale Diesel former vice president in the Life Sciences Practice at CRA, discuss how pharma companies are changing their strategies when it comes to cell and gene therapies.

In recent years, drug development has been transitioning from a one pill fits all approach to a focus on more targeted and personalised therapies, including many cell and gene therapies. These innovative treatments often bring the promise of high efficacy and even curative benefit and, in many cases, are options for patients with diseases that previously had limited or no treatments available. With several cell and gene therapies now approved and many more advancing toward late-stage clinical development, patient communities and healthcare systems are rapidly recognising their potential benefits, whilst pharmaceutical companies are considering opportunities including mergers, acquisitions, licensing agreements, and partnerships. The deal-making landscape for cell and gene therapies is already very active and positioned to grow exponentially in the years ahead.

While the pace of deal-making is accelerating, the unique qualities of cell and gene therapies are also requiring dealmakers on both sides to consider some innovative and previously untried strategies designed to optimise returns and reduce risk. They are structuring deals to address many factors, including the lack of commercial benchmarks for these products and limited long-term safety and efficacy data often associated with cell and gene therapies. We conducted an analysis of more than 30 deals executed in the cell and gene therapy sector recently and compared them to deals executed for monoclonal antibodies (mAbs) between 1999-2013. Emerging cell and gene therapies are often considered magic bullets in the treatment of many serious diseases a claim that was applied to many mAbs when they were first introduced to the market about 20 to 25 years ago and the level of interest in deal-making for these therapies is a reflection of the level of optimism companies have regarding their clinical and commercial potential. Findings from our analysis show that the pace of deal-making in cell and gene therapy is faster and occurring much earlier in the drug development process compared to deals seen in the past for breakthrough therapies including mAbs.

When the first mAb was approved in the mid-1980s, deal-making interactions were mostly limited to collaborations and licensing agreements between smaller biotechnology firms. It took more than 20 years for big pharma to become significantly interested in mAbs and start proactively pursuing deals for these drugs. Conversely, deals within the cell and gene therapy sector have shown a much faster uptake, quickly growing in momentum since approval of the first cell and gene therapies in the early 2010s. More than 50 cell and gene therapy-related partnerships and investments were established between 2010-2016, with big pharma involved in many deals from the beginning. In one example, Novartis initiated a collaboration with GenVec in 2010 for clinical development of adeno-based gene therapies a deal worth potentially $213 million (excluding royalties). That same year Novartis also formed a strategic alliance with GlaxoSmithKline and the Telethon Institute of Gene Therapy to pursue additional gene therapy research and development.

Larger pharmaceutical companies such as Novartis seem more eager to embrace cell and gene therapies compared to prior innovative therapies including mAbs, but the types and values of related deals are evolving compared to what has historically been seen. While the largest mAb deals were often characterised by the acquisitions of late-stage and marketed products, which present more robust data and potentially lower risk to acquisition or licensing partners, most major cell and gene therapy acquisitions involve product pipelines, platform technologies, and manufacturing capabilities rather than one single product. Larger pharmaceutical companies are also targeting earlier stage opportunities, with a higher proportion of partnerships involving Phase 1 or even preclinical stage assets. For example, Pfizer established a collaboration deal with Spark Therapeutics for the development and potential commercialisation of a Phase 1/2 gene therapy for the treatment of haemophilia B and also acquired Bamboo Therapeutics based on a promising gene therapy portfolio including one Phase 1 and several preclinical assets for the treatment of rare diseases impacting the nervous system.

As more companies work to establish a presence in this sector, both larger and smaller companies now often prefer innovative licensing and collaborative agreements, whereas the majority of deals executed for mAbs were straightforward mergers or acquisitions. Given that cell and gene therapy development is still in its nascent stages and many stakeholders, including payers, have questions related to their long-term clinical benefit and budget impact, the fact that mergers or acquisitions are deemed less attractive is unsurprising. Innovative partnerships can be a lower risk option for licensors or investors who want to expand their cell and gene therapy portfolios without assuming full financial responsibility. Partnership and licensing deals can also help reduce the risk of possible disruptions in business operations and productivity, which often occur following M&A deals and the subsequent restructuring of company resources and teams.

The opportunity to access complementary business capabilities is another factor that is driving interest in innovative licensing and collaborative agreements. With licensing arrangements, a licensor might be seeking a partner who can offer specialised expertise in a specific indication whereas a licensee might see the benefit of collaborating with a company with technical abilities or assets that align with their own product pipeline. The partnership between Neurocrine Bioscience and Voyager Therapeutics reflects this type of synergistic collaboration, where Neurocrine provides expertise in central nervous system (CNS) drug development as well as financial support for the clinical development of gene therapies for Parkinson's disease and Friedreichs ataxia. In return, Neurocrine gains the opportunity to co-commercialise and potentially obtain global rights to portfolio-compatible therapies.

As new cell and gene therapies emerge and others progress to late-stage clinical development and regulatory approval, most industry stakeholders anticipate that both the structure and value of deals in the sector will mature. Companies will exercise the option to follow up on previous collaborative deals, punctuating the space with potentially massive exclusive licensing agreements and acquisitions.

*The views expressed herein are the authors and not those of Charles River Associates (CRA) or any of the organisations with which the authors are affiliated.The authors wish to acknowledge the contributions ofSil Collins and Alex Davidto this article.

See more here:
How pharma companies are shifting deal strategies for cell and gene therapies - EPM Magazine

Posted in Cell Therapy | Comments Off on How pharma companies are shifting deal strategies for cell and gene therapies – EPM Magazine

SNUH team finds causal gene of inherited retinal disorder – Korea Biomedical Review

Posted: April 8, 2020 at 10:41 am

A group of Korean researchers said they have confirmed a gene responsible for inherited retinal disorders (IRD) among Koreans.

IRD is a combination of several rare diseases that usually develops at a young age and progresses slowly over the lifetime. The patients gradually lose their sight, and most of them eventually lose their vision entirely due to continuous retinal cell degeneration.

The Seoul National University Bundang Hospital (SNUBH) Department of Ophthalmology and Seoul National University Hospital (SNUH) Department of Laboratory Medicine jointly conducted the study.

Currently, antioxidant therapy, artificial retinal transplantation, and stem cell therapy are being used to treat the disorder regardless of mutations, but the only viable treatment is gene therapy. Even when gene therapy is possible, only less than 1 percent of all IRD patients can be treated with it.

In the West, genetic abnormalities of these retinal diseases have been studied and known well. However, researches on Korean cases are still lacking, and the joint research team tackled the subject to find the causative gene for IRDs with 86 domestic patients, the team said in a news release on Wednesday.

The team studied and identified the gene responsible for the disorders by using the latest technique of gene analysis with the most number of patients who have been reported so far.

The study revealed that only 44 percent of the patients, 38 out of 86, possessed the causal gene for IRDs. Even among the patients with retinitis pigmentosa, the most common disorder among the IRDs, only 41 percent had the causative gene.

The causative genes could be quite diverse even in the same disorder. The patients can find a responsible gene only when they receive genetic counseling very actively and can receive gene counseling, too, the research team explained.

Differences were found in the type and frequency of causal gene mutations between Korean and Western cases. However, there were similarities between those of Korean and other Asian nations, including Japan.

The research and diagnosis environment for IRDs has been very poor until now, and our study has significance as a basic data for diagnosis and treatment for Korean patients with IRDs, SNUH Department of Ophthalmology Professor Woo Se-joon said.

Patients need to receive causal gene tests actively to provide the domestic medical communities with sufficient data, and a list of patients who can be treated. By doing so, clinical trials and new drug development in gene therapy will progress smoothly, he added.

Previously, only a few hospitals could diagnose the causative gene for IRDs and afford to test and treat IRD patients due to the high cost of genetic testing. Recently, however, the chance of diagnosis has increased as more hospitals are conducting genetic tests amid the lowered cost thanks to insurance benefits.

Also, the therapeutic opportunity for IRD patients is likely to get broadened, as the retinal pigment epithelium 65 gene (RPE65) therapy won approval from the U.S. Food and Drug Administration for the first time in the world.

Although we do not have a clear way to prevent IRDs at the moment, the prediction of risk and their early detection are developing through the discovery of family history and causative genes, Professor Woo said. Early diagnosis can prevent impaired vision by gene therapy and vision correction, and the patients will be able to choose appropriate jobs with social activities.

Also taking part in the research team were Professors Joo Kwang-sic and Park Kyu-hyung of SNUBH and Professors Seong Moon-woo and Park Sung-sup of SNUH.

The results of this study were published in the Journal of Korean Medical Science.

shim531@docdocdoc.co.kr

< Korea Biomedical Review, All rights reserved.>

Go here to read the rest:
SNUH team finds causal gene of inherited retinal disorder - Korea Biomedical Review

Posted in Cell Therapy | Comments Off on SNUH team finds causal gene of inherited retinal disorder – Korea Biomedical Review

A quick pivot turns an infectious disease class into timely education – Penn: Office of University Communications

Posted: April 6, 2020 at 11:53 pm

Biologist David Roos studied influenza as a grad student, and he typically kicks off his advanced course on infectious disease biology with a focus on that virus. Thats how he began this semester, too, with plans to also cover aspects of HIV and malaria.

Then COVID-19 emerged.

A small silver lining to this dark cloud of the pandemic is that its not a bad semester to be taking, or teaching, a class on infectious disease biology and public health, says Roos, the E. Otis Kendall Professor of Biology in Penns School of Arts and Sciences.

In the midst of the campus shutdown that compelled faculty to move their courses online, Roos has also shifted the content of his course, Molecular Mechanisms of Infectious Disease Biology, to encompass what is playing out all around us. Because the approach of the course emphasizes how to think rather than how to memorize biological pathways and proteins, says Roos, the scientific approaches students have already learned allow them to consider strategies for discovering, characterizing, and fighting this new disease.

We had already spent considerable time this semester discussing the cell biology, molecular genetics, evolution, and epidemiology of influenza, including the 1918 pandemic and subsequent outbreaks, says Roos, as well as the emergence, spread, and management of HIV.

From the first weeks of the semester in January, Roos began sharing information with his students about the novel coronavirus in class discussions and suggesting readings and online resources related to the escalating outbreak.

Even before COVID-19 was really on everyones radar, he says, we had been challenging ourselves with questions like, Imagine there is a new disease outbreak. What do you look for? What data do you need? How could you obtain this information?

Roos has a wealth of experience to inform his teachings, including three decades of laboratory research on the parasites that cause malaria and other diseases and, more recently, the responsibility for supporting genomic datasets for hundreds of parasite and fungal pathogens. Several of his former trainees have gone on to careers in public health, including at the U.S. Centers for Disease Control and Prevention and other government labs, and in the pharmaceutical and biotech sectors. He also directs teams managing a constantly expanding database related to viral and parasite disease (VEuPathDB.org, the Eukaryotic Pathogen, Host & Vector Genomics Resource) and clinical and epidemiological datasets (ClinEpiDB.org).

Transitioning to video conference-style teaching has not posed a major barrier for Roos, whose database group is dispersed around the globe and relies on such technology on a daily basis.

Within several days of the Universitys announcement that Penn would be moving classes online for the remainder of the spring semester, Roos sent a note to his students offering an optional online meeting during spring break to smooth out any technological difficulties, to check in to see how they were faring, and to discuss some of the science behind the COVID-19 pandemic.

Most of our readings this semester focus on primary research literature, so I shared articles on the evolution of coronaviruses than can cause the common cold, previous epidemics like SARS and MERS, and recent preprints on the SARS-CoV-2 virus responsible for COVID-19, he says.

Recognizing the personal toll of the pandemic, and with many students now home with their families, Roos also invited questions from family members about coronavirus biology, the ongoing pandemic, and public health responses. Im not a practicing physician, so I cannot answer medical questions, says Roos, but I wanted to do my best to address whatever concerns they may have.

Abhinav Suri, who graduated from Penn last year with a double major in biology and computer science, is now taking the course remotely from his home in San Antonio as part of the post-baccalaureate Pre-Health Specialized Studies Program. While getting a firsthand view of the pandemic responsehis parents are both physiciansSuri, who plans to go to medical school, also appreciates how what hes been learning has given him a deeper understanding of the scientific approaches to fighting the novel coronavirus.

The research papers we read and the methodologies we learned in the first part of the class when we were dealing with influenza are coming full circle, says Suri. Now were talking about things like, How can scientists use these methodologies to make something along the lines of a vaccine or an antiviral for this disease? Its making our discussions even more relevant to whats going on in the world today.

As the pandemic continuesand classes do, tooRoos plans to work in additional readings, discussions, and probably exam questions relating to COVID-19.

The point I make at the beginning of this class is that in most university courses we do a pretty good job of teaching students the stuff we know, says Roos. But we dont always do a great job of teaching students how scientists figured all that stuff out. With this brand new virus now spreading throughout the world, its an important time to learn about the how.

See the article here:
A quick pivot turns an infectious disease class into timely education - Penn: Office of University Communications

Posted in Molecular Genetics | Comments Off on A quick pivot turns an infectious disease class into timely education – Penn: Office of University Communications

Stony Brook Hospital Expands Staff and Capacity – East Hampton Star

Posted: April 6, 2020 at 11:53 pm

Dr. Bettina Fries, right, a professor of medicine and the chief of the division of infectious diseases, and Agjah Libohova with a new face shield they developed for treating Covid-19 patients.

Stony Brook University Hospital will soon increase both the number of its health care providers and its hospital capacity, it was announced this week.

Representative Lee Zeldin's office said on Monday that the Army Corps of Engineers has paid a construction company $50 million to expand the hospital space by building climate-controlled tents on its campus. The project, which will add 1,038 beds to Stony Brook's capacity, is expected to be completed by April 18.

Stony Brook Medicine, which oversees all of Stony Brook University Medicine's educational and hospital functions, announced several initiatives and research activities this week related to the Covid-19 pandemic. These include clinical trials of treatments for the illness, the design and manufacture of a new face shield for medical workers, and the early graduation of senior medical students who have met the requirements in April.

The students will be rolled into Stony Brook University Hospital's staff under the supervision of residents, fellows, and attending physicians. The graduates will begin their residencies on July 1.

The university has developed the face shields through the efforts of Dr. Bettina Fries, a professor of medicine, molecular genetics, and microbiology and the chief of the division of infectious diseases, and Agjah Libohova, a neighbor of Dr. Fries who is a research and development specialist at Clear-Vu Lighting, a Long Island manufacturing company.

The company will mass-produce a shield using a prototype of one that Dr. Fries wears, starting with an order of 20,000 with plans to scale up to 40,000 a day for a total of 1.2 million per month. The shields will be available to caregivers at all of Stony Brook's affiliate hospitals.

In addition, the hospital is conducting its own research and trials into several initiatives now being looked at nationally. These include the sharing of ventilators between patients, trials of Remdesivir and Sarilumab, and harvesting and sharing plasma from those who have recovered from Covid-19. Remdesivir is a drug developed to treat the Ebola and Marburg viruses, and Sarilumab is a human antibody.

The university is also part of a national effort in which caregivers wear a device to collect physiological data that could help detect and predict the onset of the virus that causes Covid-19 in high-risk medical facilities.

Read this article:
Stony Brook Hospital Expands Staff and Capacity - East Hampton Star

Posted in Molecular Genetics | Comments Off on Stony Brook Hospital Expands Staff and Capacity – East Hampton Star

Bill Of The Month: Pricey Genetic Test For Essential Thrombocythemia : Shots – Health News – NPR

Posted: April 6, 2020 at 11:53 pm

Michelle Kuppersmith's doctor recommended a bone marrow biopsy after suspecting she had a rare blood disorder. Though the biopsy was done by an in-network provider at an in-network hospital, Kuppersmith learned she was on the hook for $2,400 for out-of-network genetic profiling. Shelby Knowles for KHN hide caption

Michelle Kuppersmith's doctor recommended a bone marrow biopsy after suspecting she had a rare blood disorder. Though the biopsy was done by an in-network provider at an in-network hospital, Kuppersmith learned she was on the hook for $2,400 for out-of-network genetic profiling.

Michelle Kuppersmith feels great, works full time and exercises three to four times a week. So she was surprised when a routine blood test found that her body was making too many platelets, which help control bleeding.

Kuppersmith's doctor suspected the 32-year-old Manhattanite had a rare blood disorder called essential thrombocythemia, which can lead to blood clots, strokes and, in rare cases, leukemia.

Her doctor suggested a bone marrow biopsy, in which a large needle is used to suck out a sample of the spongy tissue at the center of the patient's hip bone.

Doctors examine the bone marrow under a microscope and analyze the DNA. The procedure allows doctors to judge a patient's prognosis and select treatment, if needed. Kuppersmith had heard the procedure can be intensely painful, so she put it off for months.

The biopsy performed by a provider in her insurance network, at a hospital in her network lasted only a few minutes, and Kuppersmith received relatively good news.

While a genetic analysis of her bone marrow confirmed her doctor's suspicions, it showed that the only treatment she needs, for now, is a daily, low-dose aspirin. She will check in with her doctor every three to four months to make sure the disease isn't getting worse.

All in all, Kuppersmith felt relieved.

Then she got a notice saying her insurer refused to pay for the genetic analysis, leaving her responsible for a $2,400 payment.

The patient: New York resident Michelle Kuppersmith, 32, who is insured by Maryland-based CareFirst Blue Cross Blue Shield. She works as director of special projects at a Washington-based watchdog group. Because she was treated in New York, Empire Blue Cross Blue Shield which covers that region handled part of her claim.

Total amount owed: $2,400 for out-of-network genetic profiling

The providers: Kuppersmith had her bone marrow removed at the Mount Sinai Ruttenberg Treatment Center in New York City, which sent her biopsy sample to a California lab, Genoptix, for testing.

Medical services: Bone marrow biopsy and molecular profiling, which involves looking for genetic mutations

What gives: The field of molecular diagnostics, which includes a variety of gene-based testing, is undergoing explosive growth, said Gillian Hooker, president of the National Society of Genetic Counselors and vice president of clinical development for Concert Genetics, a health IT company in Nashville, Tennessee.

A report from Concert Genetics, a company that helps clients manage genetic testing, found there are more than 140,000 molecular diagnostic products on the market, with 10 to 15 added each day.

The field is growing so quickly that even doctors are struggling to develop a common vocabulary, Hooker said.

Kuppersmith underwent a type of testing known as molecular profiling, which looks for DNA biomarkers to predict whether patients will benefit from new, targeted therapies. These mutations aren't inherited; they develop over the course of a patient's life, Hooker said.

Medicare spending on molecular diagnostics more than doubled from 2016 to 2018, increasing from $493 million to $1.1 billion, according to Laboratory Economics, a lab industry newsletter.

Charges range from hundreds to thousands of dollars, depending on how many genes are involved and which billing codes insurers use, Hooker said.

Based on Medicare data, at least 1,500 independent labs perform molecular testing, along with more than 500 hospital-based labs, said Jondavid Klipp, the newsletter's publisher.

In a fast-evolving field with lots of money at stake, tests that a doctor or lab may regard as state-of-the-art an insurer might view as experimental.

Worse still, many of the commercial labs that perform the novel tests are out-of-network, as was Genoptix.

Stephanie Bywater, chief compliance officer at NeoGenomics Laboratories, which owns Genoptix, said that insurance policies governing approval have not kept up with the rapid pace of scientific advances. Kuppersmith's doctor ordered a test that has been available since 2014 and was updated in 2017, Bywater said.

Although experts agree that molecular diagnostics is an essential part of care for patients like Kuppersmith, doctors and insurance companies may not agree on which specific test is best, said Dr. Gwen Nichols, chief medical officer of the Leukemia & Lymphoma Society.

Tests "can be performed a number of different ways by a number of different laboratories who charge different amounts," Nichols said.

Insurance plans are much more likely to refuse to pay for molecular diagnostics than other lab tests. Laboratory Economics found Medicare contractors denied almost half of all molecular diagnostics claims over the past five years, compared with 5-10% of routine lab tests.

With so many insurance plans, so many new tests and so many new companies, it is difficult for a doctor to know which labs are in a patient's network and which specific tests are covered, Nichols said.

"Different providers have contracts with different diagnostic companies," which can affect a patient's out-of-pocket costs, Nichols said. "It is incredibly complex and really difficult to determine the best, least expensive path."

Kuppersmith said she has always been careful to check that her doctors accept her insurance. She made sure Mount Sinai was in her insurance network, too. But it never occurred to her that the biopsy would be sent to an outside lab or that it would undergo genetic analysis.

She added: "The looming threat of a $2,400 bill has caused me, in many ways, more anxiety than the illness ever has."

The resolution: Despite making dozens of phone calls, Kuppersmith got nothing but confusing and contradictory answers when she tried to sort out the unexpected charge.

An agent for her insurer told her that her doctor hadn't gotten preauthorization for the testing. But in an email to Kuppersmith, a Genoptix employee told her the insurance company had denied the claim because molecular profiling was viewed as experimental.

A spokesperson for New York-based Empire Blue Cross Blue Shield, which handled part of Kuppersmith's claim, said her health plan "covers medically necessary genetic testing."

New York, one of 28 states with laws against surprise billing, requires hospitals to inform patients in writing if their care may include out-of-network providers, said attorney Elisabeth Benjamin, vice president of health initiatives at the Community Service Society, which provides free help with insurance problems.

A spokesperson for Mount Sinai said the hospital complies with that law, noting that Kuppersmith was given such a document in 2018 nearly one year before her bone marrow biopsy and signed it.

Benjamin said that's not OK, explaining: "I think a one-year-old, vague form like the one she signed would not comply with the state law and certainly not the spirit of it."

Instead of sending Kuppersmith a bill, Genoptix offered to help her appeal the denied coverage to CareFirst. At first, Genoptix asked Kuppersmith to designate the company as her personal health care representative. She was uncomfortable signing over what sounded like sweeping legal rights to strangers. Instead, she wrote an email granting the company permission to negotiate on her behalf. It was sufficient.

A few days after being contacted by KHN, Kuppersmith's insurer said it would pay Genoptix at the in-network rate, covering $1,200 of the $2,400 charge. Genoptix said it has no plans to bill Kuppersmith for the other half of the charge.

The takeaway: Kuppersmith is relieved her insurer changed its mind about her bill. But, she said: "I'm a relatively young, savvy person with a college degree. There are a lot of people who don't have the time or wherewithal to do this kind of fighting."

Patients should ask their health care providers if any outside contractors will be involved in their care, including pathologists, anesthesiologists, clinical labs or radiologists, experts said. And check if those involved are in-network.

"Try your best to ask in advance," said Jack Hoadley, a research professor emeritus at Georgetown University. "Ask, 'Do I have a choice about where [a blood or tissue sample] is sent?'"

Ask, too, if the sample will undergo molecular diagnostics. Since the testing is still relatively new and expensive most insurers require patients to obtain "prior authorization," or special permission, said Dr. Debra Regier, a medical geneticist at Children's National Hospital in Washington and an associate with NORD, the National Organization of Rare Diseases. Getting this permission in advance can prevent many headaches.

Finally, be wary of signing blanket consent forms telling you that some components of your care may be out-of-network. Tell your provider that you want to be informed on a case-by-case basis when an out-of-network provider is involved and to consent to their participation.

Bill of the Month is a crowdsourced investigation by Kaiser Health News and NPR that dissects and explains medical bills. Do you have a perplexing medical bill you want to share with us? Tell us about it here.

View original post here:
Bill Of The Month: Pricey Genetic Test For Essential Thrombocythemia : Shots - Health News - NPR

Posted in Molecular Genetics | Comments Off on Bill Of The Month: Pricey Genetic Test For Essential Thrombocythemia : Shots – Health News – NPR

Page 1,072«..1020..1,0711,0721,0731,074..1,0801,090..»