Page 1,118«..1020..1,1171,1181,1191,120..1,1301,140..»

5 things to know about Miss Anthropocene by Grimes – Vancouver Sun

Posted: February 25, 2020 at 10:42 pm

Grimes. Promo shot for Miss Anthropocene release. 2020 [PNG Merlin Archive]PNG

Grimes | Grimes Creative Corporation/Crystal Math Music

In only a decade, Grimes (a.k.a. Vancouver-born and raised Claire Boucher) has gone from the eerie DYI of 2010s Halifaxa to 2012s confident and expansive critically acclaimed Visions right up to the wildly ambitious and successful sounds of 2015s Art Angels.

Now Miss Anthropocene arrives at a time when Grimes is as much a global brand for her romantic affiliation with Elon Musk and shrewd manipulation of social media platforms as for her music.

Her fifth album is either a concept album about anthropomorphizing climate change into an evil entity, or another delightfully damming confusion of sounds and statements from an artist who is putting out her final earth album this year. This may very well be because she is fed up with all the attention being paid to her amorous adventures rather than her adventurous art.

Spoiler alert: Repeated listenings wont divulge any grand statements about impending global chaos, save for the advice to gleefully fk the world.

However the 11 tracks (or 15 on the superior deluxe edition of the album) are philosophically assembled, Miss Anthropocene lands as one of the first big releases of this decade and certainly one of 2020s most-anticipated records. Here are five things to know about it:

1. So Heavy I Fell Through the Earth. A booming bass line haunts the back of the mix while leaden drums pound out echoing patterns until a vocal bursts forth to lets us all know what Enya huffing helium would sound like. The layers keep on stacking onto the six-minute song, until the lightest thing about it is Grimes repeating the tunes title. The sudden 360 turnaround at the 4:30 mark is quite brilliant, as she apparently falls clean through the planet and its gravity to float in some ambient expanse.

2. Violence (with i_o). This uptempo electro banger is one of the most straightforward songs on the record. But with lyrics such as You wanna make me bad, make me bad/(And I like it like that, and I like it like that), it turns the coquettish pop cluttering up the radio into something far darker and disturbing. Fans will be reading into the juxtaposing of violence, pain, partying and more as some kind of commentary on her relationship. Or Grimes is just eviscerating everyones expectations in public. The video is well worth a peek.

3. New Gods.Even someone used to making sense of the words on extreme black metal recordings could have trouble translating what Grimes is actually saying. Her voice is so often mutated past the point of comprehension, or pinging around the vast echoing background as it does in this song, that you are hard-pressed to pry any kind of meaning out of the music. Which works for a project that is meant to be both ethereal and personal. The mood is as, or more, important than the meaning.

4. Youll miss me when Im not around. From not-fully-realized drum and bass tracks (4M) to the weirdly Taylor Swift-ish acoustic strumming in Delete Forever, the album mixes somewhat experimental approaches with mainstream songcraft. Nowhere is this more realized than in the full-on dance-rock of this hooky track. The heavy guitars coupled with the blasts of mega-manipulated vocal harmonies make this a likely single.

5. We Appreciate Power. Available on the deluxe version of the album, this earlier collaboration with Hana came complete with press statements that it was influenced by everything from pro-A.I. pop bands to ideas of transhumanist desire. OK computer. What is clear is that the songs title is an accurate reflection of the artists being. Its the kind of hard industrial rock track you might expect from Nine Inch Nails, but with a goofball spoken-word bit that could rival Madonnas bad rapping in Vogue. In other words, its more fun than scary. The other remixes on the deluxe edition are of varying quality, with the Algorithm mix of IDORU particularly good.

Myopia | Universal Music Canada

At some point, Obels classical orientation is going to have to take shape in an opera. The voice arrangements paired against the orchestrations in Cameras Rolling sound ready-made to be the opening song to some noir-esque stage play as much as any album track. And that is only the beginning of this lush chamber-pop recordings highlights. Obels music has become even more sparse and flowing with silence used to add emotional impact to every note. Check out how Cant Be uses a riff almost like Laurie Andersons O Superman, and pairs it with a choir that sounds straight out of the Middle Ages. Gorgeous.

[USA] | Polyvinyl Record Co.

More digital thrashing from this chiptune quartet whose use of hacked Nintendo hardware to craft tunes has produced some truly delightful results. To prove that they are more than just a bunch of tech nerds with a love of neat noises, Lorem Ipsum (Arctic Anthem) derives its lyrics from Ciceros 1st-century BC debate about the difference between pleasure and goodness. Of course, rendered through Vocaloid treatment, youre listening to Latin sung by a possessed childs toy. Still, as one example of the groups album with words, so thats pretty good.

March 4 at the Biltmore Cabaret, 2755 Prince Edward St. Tickets and info: $24.00 at eventbrite.ca

Suddenly | Merge Records

Dan Snaith puts the past five years of his life down in a way he never has before on his latest release as Caribou. The opening song, Sister, is a haunting chant about making false promises and the need to break things to change them. Coming from the maths professor-cum-electronic musician, its a melancholy start to the dozen new tracks he selected out of a rumoured 900 to make this album. From the warped lounge piano jazz of Sunnys Theme to slinky sex groover Home, this is full of surprises. Obviously, there are some dance happy tracks too. Never Come Back will have backbones slipping.

All Or Nothing | Fat Cat

This U.K. trio really sounds like some long-lost release from the 1980s heyday of Gang of Four, Au Pairs and others was suddenly discovered, remastered and released. Songs such as Initiative, No Apologies or About You could all have been hits back then or today. Singer/guitarist Rachel Aggs has a way with laying melodic leads over top of bassist/vocalist Billy Easter and drummer/vocalist Andrew Milks mechanistic rhythms that just ripples with edginess. Its a sound that deserves reviving and revering.

March 7 at the Biltmore Cabaret, 2755 Prince Edward St. Tickets and info: $14.50 at eventbrite.ca

sderdeyn@postmedia.com

twitter.com/stuartderdeyn

See the original post here:
5 things to know about Miss Anthropocene by Grimes - Vancouver Sun

Posted in Transhumanist | Comments Off on 5 things to know about Miss Anthropocene by Grimes – Vancouver Sun

Cell Analysis Market is Expected to See Growth Rate of 6.96% – Nyse Nasdaq Live

Posted: February 25, 2020 at 10:41 pm

Cells constitute discrete units of biological function and serve as starting points in a myriad of studies to identify and map many of the basic biochemical and physical processes of life. Cell analysis is a wide term that can be applied to a range of different technologies, the technology used depends on experimental needs. Compiling data sets from multiple cell analysis investigations allows scientists to better understand, predict, and ultimately influence the factors that underlie cell health, function, death, and proliferation.

This intelligence report provides a comprehensive analysis of the Global Cell Analysis Market. This includes Investigation of past progress, ongoing market scenarios, and future prospects. Data True to market on the products, strategies and market share of leading companies of this particular market are mentioned. Its a 360-degree overview of the global markets competitive landscape. The report further predicts the size and valuation of the global market during the forecast period. Some of the key players profiled in the study are Thermo Fisher Scientific, Inc. (United States), Danaher Corporation (United States), The Merck KGaA Group (Germany), Becton, Dickinson and Company (United States), GE Healthcare (United States), Agilent Technologies, Inc. (United States), Olympus Corporation (Japan), PerkinElmer, Inc. (United States), Promega Corporation (United States), Sysmex Corporation (Japan) and AbbVie, Inc.(United States) are some of the key players profiled in the study. Additionally, the Players which are also part of the research are Lonza Group (Switzerland), Tecan Group (Switzerland), Miltenyi Biotec (Germany), Stemline Therapeutics, Inc.(United States), Fujifilm Irvine Scientific (United States), STEMCELL Technologies Inc. (Canada), Sino Biological Inc. (United States), BIOTIME, Inc. (United States), Miltenyi Biotec (Germany), PromoCell GmbH (Germany), Carl Zeiss (Germany), Bio-Rad Laboratories Inc (United States), MacroGenics, Inc. (United States), OncoMed Pharmaceuticals, Inc. (United States) and Bionomics (Australia).

Free Sample Report + All Related Graphs & Charts @: https://www.advancemarketanalytics.com/sample-report/124696-global-cell-analysis-market

Market Trend

Market Drivers

Restraints

Opportunities

Each segment and sub-segment is analyzed in the research report. The competitive landscape of the market has been elaborated by studying a number of factors such as the best manufacturers, prices and revenues. Global Cell Analysis Market is accessible to readers in a logical, wise format. Driving and restraining factors are listed in this study report to help you understand the positive and negative aspects in front of your business.

This study mainly helps understand which market segments or Region or Country they should focus in coming years to channelize their efforts and investments to maximize growth and profitability. The report presents the market competitive landscape and a consistent in depth analysis of the major vendor/key players in the market.Furthermore, the years considered for the study are as follows:Historical year 2013-2017Base year 2018Forecast period** 2019 to 2025 [** unless otherwise stated]

**Moreover, it will also include the opportunities available in micro markets for stakeholders to invest, detailed analysis of competitive landscape and product services of key players.The Global Cell Analysis segments and Market Data Break Down are illuminated below:Type (Flow Cytometry Products (Reagents and Consumables, Instruments, Accessories, and Software), QPCR Products (Reagents and Consumables, and Instruments), Cell Microarrays (Consumables, and Instruments), Microscopes (Electron, Inverted, Stereo, and Near-field Scanning Optical), Spectrophotometers (Single-mode Readers, and Multi-mode Readers), Cell Counters (Automated Cell Counters, Hemocytometers, and Manual Cell Counters), HCS Systems, Others)

Application (Cell Culture, Cell Imaging, Cell Isolation and Expansion, Cell Signaling Pathways, Cell Structure, Cell Tracing & Tracking, Cell Function Assays, Stem Cell Research, Others), End Use Verticals (Hospitals and Diagnostic Laboratories, Pharmaceutical & Biotechnology Companies, Research Institutes, Cell Culture Collection Repositories, Others), Process (Cell Identification, Cell Viability, Cell Signaling Pathways/Signal Transduction, Cell Proliferation, Cell Counting and Quality Control, Cell Interaction, Target Identification and Validation, Single-cell Analysis)

.

.

Enquire for customization in Report @ https://www.advancemarketanalytics.com/enquiry-before-buy/124696-global-cell-analysis-marketRegion Included are: North America, Europe, Asia Pacific, Oceania, South America, Middle East & Africa

Country Level Break-Up: United States, Canada, Mexico, Brazil, Argentina, Colombia, Chile, South Africa, Nigeria, Tunisia, Morocco, Germany, United Kingdom (UK), the Netherlands, Spain, Italy, Belgium, Austria, Turkey, Russia, France, Poland, Israel, United Arab Emirates, Qatar, Saudi Arabia, China, Japan, Taiwan, South Korea, Singapore, India, Australia and New Zealand etc.

Objectives of the Study

Read Detailed Index of full Research Study at @ https://www.advancemarketanalytics.com/reports/124696-global-cell-analysis-market

Strategic Points Covered in Table of Content of Global Cell Analysis Market:

Chapter 1: Introduction, market driving force product Objective of Study and Research Scope the Cell Analysis market

Chapter 2: Exclusive Summary the basic information of the Cell Analysis Market.

Chapter 3: Displaying the Market Dynamics- Drivers, Trends and Challenges of the Cell Analysis

Chapter 4: Presenting the Cell Analysis Market Factor Analysis Porters Five Forces, Supply/Value Chain, PESTEL analysis, Market Entropy, Patent/Trademark Analysis.

Chapter 5: Displaying the by Type, End User and Region 2013-2018

Chapter 6: Evaluating the leading manufacturers of the Cell Analysis market which consists of its Competitive Landscape, Peer Group Analysis, BCG Matrix & Company Profile

Chapter 7: To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries in these various regions.

Chapter 8 & 9: Displaying the Appendix, Methodology and Data SourceKey questions answered

Definitively, this report will give you an unmistakable perspective on every single reality of the market without a need to allude to some other research report or an information source. Our report will give all of you the realities about the past, present, and eventual fate of the concerned Market.

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Author:

Advance Market Analytics is Global leaders of Market Research Industry provides the quantified B2B research to Fortune 500 companies on high growth emerging opportunities which will impact more than 80% of worldwide companies revenues.

Our Analyst is tracking high growth study with detailed statistical and in-depth analysis of market trends & dynamics that provide a complete overview of the industry. We follow an extensive research methodology coupled with critical insights related industry factors and market forces to generate the best value for our clients. We Provides reliable primary and secondary data sources, our analysts and consultants derive informative and usable data suited for our clients business needs. The research study enable clients to meet varied market objectives a from global footprint expansion to supply chain optimization and from competitor profiling to M&As.

Contact US :

Craig Francis (PR & Marketing Manager)AMA Research & Media LLPUnit No. 429, Parsonage Road Edison, NJNew Jersey USA 08837Phone: +1 (206) 317 1218[emailprotected]

Connect with us athttps://www.linkedin.com/company/advance-market-analyticshttps://www.facebook.com/AMA-Research-Media-LLP-344722399585916https://twitter.com/amareport

Read the original post:
Cell Analysis Market is Expected to See Growth Rate of 6.96% - Nyse Nasdaq Live

Posted in New Mexico Stem Cells | Comments Off on Cell Analysis Market is Expected to See Growth Rate of 6.96% – Nyse Nasdaq Live

Who are the Stem Cell Cartilage Regeneration Market Global Key Players? What are the Challenges and Threats Faced by Players? – Sound On Sound Fest

Posted: February 25, 2020 at 10:41 pm

Stem Cell Cartilage Regeneration Market outlook 2020, is a professional and comprehensive study on the current state of the global Stem Cell Cartilage Regeneration Industry with a focus on the global market. Stem Cell Cartilage Regeneration Market Report provides extensive information which advances the understanding, scope and application of this report. Global Stem Cell Cartilage Regeneration Market research report provides a real industry outlook, future trends and dynamics for market size, shares, growth rate, trends and key players. The analysts of report offer an intricate description of the value chain and its distributor analysis. The comprehensive primary analysis report highlights numerous facets such as development factors, growth factors, key opportunities, challenges, business enhancement strategies, financial gain, statistical growth or loss to help readers and clients understand the market on a global scale.

Morever, during the forecast period, the report also mentions the expected CAGR of the global market. The report provides readers with accurate historical statistics and forecast of the future.

The market has witnessed rapid development in the past and present years and is likely to expand in the near future. In the market report, there is a segment for the competitive landscape of the key players operating in the global industry. Overall, the report provides an in-depth insight into the 2020-2029 global Stem Cell Cartilage Regeneration market encompassing all important parameters.

Stem Cell Cartilage Regeneration Market research report offers a close watch on leading competitors with strategic analysis.

Global Market involves Top Key players such as: EMD Serono Inc, Merck KGaA, Xintela AB (publ), Theracell (Laboratories), BioTissue Technologies GmbH, Osiris Therapeutics Inc, Smith & Nephew plc, Orthocell Limited, Vericel Corporation and CellGenix GmbH

For Better Understanding, Download Free Sample Copy Of Stem Cell Cartilage Regeneration Market Report At:https://marketresearch.biz/report/stem-cell-cartilage-regeneration-market/request-sample

[***Are You A Start-Up, On The Way To Make It Vast? Grab an Exclusive Sample Copy Here***]

Furthermore, the Stem Cell Cartilage Regeneration market research report offers a complete analysis of the market segmentation on the basis of stem cell type, treatment, end user, and region.

Segmentation by stem cell type:

Hematopoietic Stem Cells (HSCs)Pluripotent Stem Cells (iPSC/ESCs)Mesenchymal Stem Cells (MSCs)Segmentation by treatment:

MicrofractureOsteochondral TransplantAutologous Chondrocyte ImplantationStem Cell InjectionsSegmentation by end user:

Hospitals & ClinicsAmbulatory Surgical Centers

Geographical Analysis:

The analyst of the report analyzed the market potential for each geographical region with respect to the consumer buying patterns, growth rate, demand, and present scenarios, macroeconomic parameters in the industry. Geographically, this report is subdivided into several regions, covering:

Europe: UK, Germany, France, Italy, Spain, and Russia.

North America: Canada, United States, and Mexico.

South & Central America: Argentina, Chile, and Brazil.

Middle East & Africa: Egypt, Saudi Arabia, UAE, Turkey, and South Africa.

Asia-Pacific: China, Japan, India, South Korea, Indonesia, Singapore, and Australia.

Owning our reports will help you to solve the following issues:

1. Uncertainty and doubt about the future market?

Our research report help our clients to foresee upcoming revenue pockets and growth areas. This helps our clients to invest or divest their resources.

2. Understanding market principles?

It is essential to have a fair understanding of market principles for a strategy. Our insights spot a light on market sentiment. We keep this observation by engaging with opinion leaders of a value chain of each industry we track.

3. Awareness of the most reliable investment centers?

Our research ranks investment centers of the market by considering their future demands, returns, and profit margins. By procuring our market research report our clients can focus on the most prominent investment centers.

4. assessment of potential business partners?

This research report help organization in identifying compatible business partners.

Why Should Buy This Report?

Get a comprehensive understanding of the Stem Cell Cartilage Regeneration market, the dynamics of the market and current state of the sector

To Strategize marketing, market-entry, market expansion and other business plans by understanding the factors driving the growth of the market

Be informed regarding the key developments in the Stem Cell Cartilage Regeneration market and the prime opportunity areas

Understand top competitors business and market dynamics, and respond accordingly

Customize Report AndInquiry For The Stem Cell Cartilage Regeneration Market Report:https://marketresearch.biz/report/stem-cell-cartilage-regeneration-market/#inquiry

If you have any special requirement regarding this report please let us know we will offer you a report as per your requirement.

At the end, the Stem Cell Cartilage Regeneration market report is an authentic source for gaining the market research that is likely to exponentially accelerate your business. The report gives the principle locale, economic situations coupled with benefit, limit, item value, generation, supply, request, and market development rate, figure and so on. The Stem Cell Cartilage Regeneration report additionally presents a new task SWOT examination, speculation attainability investigation, and venture return investigation.

About Us:

MarketResearch.biz is one spot destination for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We provide customized reports as per the requirements of our clients. Our inventory of research reports caters to various industry verticals including Technology and Media, Healthcare, Information, and Communication Technology (ICT), Chemicals, Materials, Energy, Heavy Industry, etc.

Contact Us At

Mr. Benni Johnson

MarketResearch.Biz (Powered By Prudour Pvt. Ltd.)

420 Lexington Avenue, Suite 300

New York City, NY 10170,

United States

Tel: +1 347 826 1876

Website:https://marketresearch.biz

Email ID:inquiry@marketresearch.biz

See the original post here:
Who are the Stem Cell Cartilage Regeneration Market Global Key Players? What are the Challenges and Threats Faced by Players? - Sound On Sound Fest

Posted in New Mexico Stem Cells | Comments Off on Who are the Stem Cell Cartilage Regeneration Market Global Key Players? What are the Challenges and Threats Faced by Players? – Sound On Sound Fest

Data On Enlivex’s Allocetra-OTS Immunotherapy for Peritoneal Solid Tumors and for Prevention of GvHD Selected for Presentation at the Transplantation…

Posted: February 24, 2020 at 10:51 am

Nes-Ziona, Israel, Feb. 20, 2020 (GLOBE NEWSWIRE) -- Enlivex Therapeutics Ltd. (Nasdaq: ENLV), a clinical-stage immunotherapy company, today announced that the company wasselected, for a scientific presentation of two posters: (i) Allocetra-OTS: Early Apoptotic Cells for Immune Homeostasis in Human Stem Cell Transplantation (HSCT) and for the Prevention of Graft Versus Host Disease (GvHD), and (ii) Apoptotic Cells Reprogram Resident Macrophages to Support Chimeric Antigen Receptor (CAR) T Cell Therapy Against Peritoneal Solid Tumor, at the Transplantation & Cellular Therapy Meetings Conference of the ASTCT and CIBMTR (TCT), held on February 19-23, 2020, in Orlando, Florida.

Allocetra-OTS: Early Apoptotic Cells for Immune Homeostasis in Human Stem Cell Transplantation (HSCT) and for the Prevention of Graft Versus Host Disease (GvHD)

Results from preclinical and clinical studiesy suggested that a single infusion of donor early apoptotic cells (Allocetra) as prophylaxis for GvHD in myeloablative HSCT is safe and potentially effective and led to 0% (0/6) of acute high grade II-IV GvHD in the two higher dosages compared to 52% in matched historical control. Enlivex is planning to initiate a Phase 2/3 multi-center, open-label, 2-arm study (ENX-CL-01-002), in Israel and Germany, that will evaluate the efficacy and safety of Allocetra-OTS (140x106cells/kg) with or without anti-thymocyte globulin (ATG) for the prevention of GvHD in subjects undergoing HLA-matched HSCT from an unrelated donor.

Apoptotic Cells Reprogram Resident Macrophages to Support Chimeric Antigen Receptor (CAR) T Cell Therapy Against Peritoneal Solid Tumor

Preclinical studies showed significantly increased duration of survival and overall survival for study subjects who were treated with the combination therapy, as compared to stand-alone solid tumor CAR-T therapy. The results of these preclinical studies showed that the mechanism of action significantly increased the anti-tumor macrophage population surrounding the human solid tumor microenvironment in the subjects who were treated with the combination therapy.

ALLOCETRATMby Enlivex was designed toprovide a novel immunotherapy mechanism of actionthat targets life-threatening clinical indications that are defined as unmet medical needs, includingprevention or treatment of complications associated with bone marrow transplantations (BMT) and/or hematopoietic stem cell transplantations (HSCT); organ dysfunction and acute multiple organ failure associated with sepsis; and enablement of an effective treatment of solid tumors via immune checkpoint rebalancing.

ABOUT ENLIVEXEnlivex is a clinical stage immunotherapy company, developing an allogeneic drug pipeline for immune system rebalancing. Immune system rebalancing is critical for the treatment of life-threatening immune and inflammatory conditions which involve an out of control immune system (e.g. Cytokine Release Syndrome) and for which there are no approved treatments (unmet medical needs), as well as solid tumors immune-checkpoint rebalancing. For more information, visit http://www.enlivex.com.

ABOUT EUROPEAN MOLECULAR BIOLOGY ORGANIZATIONThe TCT | Transplantation & Cellular Therapy Meetings of ASTCT and CIBMTR (TCT Meetings) are the combined annual meetings of the American Society for Transplantation and Cellular Therapy (ASTCT) and the Center for International Blood & Marrow Transplant Research (CIBMTR).

Safe Harbor Statement: This press release contains forward-looking statements, which may be identified by words such as expects, plans, projects, will, may, anticipates, believes, should, would, intends, estimates, suggests, has the potential to and other words of similar meaning, including statements regarding expected cash balances, market opportunitiesfor the results of current clinical studies and preclinical experiments, the effectiveness of, and market opportunitiesfor, ALLOCETRATMprograms, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Investors are cautioned that forward-looking statements involve risks and uncertainties that may affect Enlivexs business and prospects, including the risks that Enlivex may not succeed in generating any revenues or developing any commercial products; that the products in development may fail, may not achieve the expected results or effectiveness and/or may not generate data that would support the approval or marketing of these products for the indications being studied or for other indications; that ongoing studies may not continue to show substantial or any activity; and other risks and uncertainties that may cause results to differ materially from those set forth in the forward-looking statements. The results of clinical trials in humans may produce results that differ significantly from the results of clinical and other trials in animals. The results of early-stage trials may differ significantly from the results of more developed, later-stage trials. The development of any products using the ALLOCETRATMproduct line could also be affected by a number of other factors, including unexpected safety, efficacy or manufacturing issues, additional time requirements for data analyses and decision making, the impact of pharmaceutical industry regulation, the impact of competitive products and pricing and the impact of patents and other proprietary rights held by competitors and other third parties. In addition to the risk factors described above, investors should consider the economic, competitive, governmental, technological and other factors discussed in Enlivexs filings with the Securities and Exchange Commission, including under the heading Risk Factors contained in Enlivexs most recently filed Annual Report on Form 20-F. The forward-looking statements contained in this press release speak only as of the date the statements were made, and we do not undertake any obligation to update forward-looking statements, except as required under applicable law.

ENLIVEX CONTACT: Shachar Shlosberger, CFO Enlivex Therapeutics, Ltd.shachar@enlivex-pharm.com

Go here to see the original:
Data On Enlivex's Allocetra-OTS Immunotherapy for Peritoneal Solid Tumors and for Prevention of GvHD Selected for Presentation at the Transplantation...

Posted in Florida Stem Cells | Comments Off on Data On Enlivex’s Allocetra-OTS Immunotherapy for Peritoneal Solid Tumors and for Prevention of GvHD Selected for Presentation at the Transplantation…

Consistent Outcomes Using Ryoncil as First-Line Treatment or Salvage Therapy in 309 Children With Steroid-Refractory Acute GVHD – BioSpace

Posted: February 24, 2020 at 10:51 am

NEW YORK, Feb. 24, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited (Nasdaq:MESO; ASX:MSB) today announced that aggregated results from 309 children treated with Ryoncil (remestemcel-L) were presented atthe American Society for Transplantation Cellular Therapy and the Center for International Blood & Bone Marrow Transplant Research (TCT) meeting in Orlando, Florida on February 22. The data showed that treatment with RYONCIL across three separate trials resulted inconsistent treatment responses and survival outcomesinchildren with steroid-refractory acute graft versus host disease (SR-aGVHD).

Key findings and conclusions were:

Mesoblast Chief Medical Officer Dr Fred Grossman said: These aggregated data from three studies demonstrate consistent efficacy and safety of RYONCIL in children suffering from steroid refractory acute graft versus host disease. If approved, RYONCIL has the potential to be an effective and safe therapy to improve survival outcomes in the most vulnerable population of children with severe forms of this disease who can have mortality rates as high as 90 percent.

In January, Mesoblast filed a Biologics License Application (BLA) to the United States Food and Drug Administration (FDA) for RYONCIL for the treatment of children with steroid-refractory aGVHD. The Company has requested Priority Review of the BLA by the FDA under the product candidates existing Fast Track designation. If approved, RYONCIL is expected to be launched in the US in 2020.

About Acute GVHDAcute GVHD occurs in approximately 50% of patients who receive an allogeneic bone marrow transplant (BMT). Over 30,000 patients worldwide undergo an allogeneic BMT annually, primarily during treatment for blood cancers, and these numbers are increasing.1 In patients with the most severe form of acute GVHD (Grade C/D or III/IV) mortality is as high as 90% despite optimal institutional standard of care.2,3. There are currently no FDA-approved treatments in the US for children under 12 with SR-aGVHD.

About Ryoncil Mesoblasts lead product candidate, RYONCIL, is an investigational therapy comprising culture- expanded mesenchymal stem cells derived from the bone marrow of an unrelated donor. It is administered to patients in a series of intravenous infusions. RYONCIL is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in SR- aGVHD by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.

References1. Niederwieser D, Baldomero H, Szer J. (2016) Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.2. Westin, J., Saliba, RM., Lima, M. (2011) Steroid-refractory acute GVHD: predictors and outcomes. Advances in Hematology.3. Axt L, Naumann A, Toennies J (2019) Retrospective single center analysis of outcome, risk factors and therapy in steroid refractory graft-versus-host disease after allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation.

About MesoblastMesoblast Limited (Nasdaq: MESO; ASX: MSB) is a world leader in developing allogeneic (off-the-shelf) cellular medicines. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platforms to establish a broad portfolio of commercial products and late-stage product candidates. Mesoblasts proprietary manufacturing process yields industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblast has filed a Biologics License Application to the United States Food and Drug Administration (FDA) to seek approval of its product candidate Ryoncil (remestemcel-L) for steroid-refractory acute graft versus host disease (acute GvHD). Remestemcel-L is also being developed for other rare diseases. Mesoblast is completing Phase 3 trials for its rexlemestrocel product candidates for advanced heart failure and chronic low back pain. If approved, RYONCIL is expected to be launched in the United States in 2020 for pediatric steroid-refractory acute GVHD. Two products have been commercialized in Japan and Europe by Mesoblasts licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see http://www.mesoblast.com, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

Mesoblasts Forward-Looking StatementsThis announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements should not be read as a guarantee of future performance or results, and actual results may differ from the results anticipated in these forward-looking statements, and the differences may be material and adverse. Forward-looking statements include, but are not limited to, statements about the timing, progress and results of Mesoblasts preclinical and clinical studies; Mesoblasts ability to advance product candidates into, enroll and successfully complete, clinical studies; the timing or likelihood of regulatory filings and approvals; and the pricing and reimbursement of Mesoblasts product candidates, if approved. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblasts actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

See original here:
Consistent Outcomes Using Ryoncil as First-Line Treatment or Salvage Therapy in 309 Children With Steroid-Refractory Acute GVHD - BioSpace

Posted in Florida Stem Cells | Comments Off on Consistent Outcomes Using Ryoncil as First-Line Treatment or Salvage Therapy in 309 Children With Steroid-Refractory Acute GVHD – BioSpace

NASA to send equipment to International Space Station to research Improving Shoes, Showers, 3D Printing – Clarksville Online

Posted: February 24, 2020 at 10:51 am

Houston, TX A variety of science investigations, along with supplies and equipment, launch to the International Space Station on the 20th SpaceX commercial resupply services mission.

The Dragon cargo spacecraft is scheduled to leave Earth March 2nd from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Its cargo includes research on particle foam manufacturing, water droplet formation, the human intestine and other cutting-edge investigations.

Airbus workers unpack the Bartolomeo platform at NASAs Kennedy Space Center in Florida in preparation for its launch to the International Space Station. The platform, manufactured by Airbus Defence and Space, hosts multiple external payloads in low-Earth orbit. (NASA)

The space station, now in its 20th year of continuous human presence, provides opportunities for research by government agencies, private industry, and academic and research institutions.

Such research supports Artemis, NASAs missions to the Moon and Mars, and leads to new technologies, medical treatments and products that improve life on Earth.

Particle foam molding is a manufacturing process that blows thousands of pellets into a mold where they fuse together. The shoe company Adidas uses this process to make performance midsoles, the layer between the sole of a shoe and the insole under your foot, for its products.

The BOOST Orbital Operations on Spheroid Tesellation (Adidas BOOST) investigation looks at how multiple types of pellets behave in this molding process. Using one type of pellet creates a foam with the same properties throughout the sole component. Using multiple pellet types can allow engineers to change mechanical properties and optimize shoe performance and comfort. Removing gravity from the process enables a closer look at pellet motion and location during the process.

Results of this investigation could demonstrate the benefits of microgravity research for manufacturing methods, contributing to increased commercial use of the space station. New processes for particle foam molding could benefit a variety of other industries, including packaging and cushioning materials.

The Bartolomeo facility, created by ESA (European Space Agency) and Airbus, attaches to the exterior of the European Columbus Module. Designed to provide new scientific opportunities on the outside of the space station for commercial and institutional users, the facility offers unobstructed views both toward Earth and into space.

Airbus is collaborating with the United Nations Office of Outer Space Affairs to offer UN Member States the opportunity to fly a payload on Bartolomeo. Developing countries are particularly encouraged to participate, and the mission is devoted to addressing the UNs Sustainable Development Goals. Bartolomeo is named for the younger brother of Christopher Columbus.

Droplet Formation Studies in Microgravity (Droplet Formation Study) evaluates water droplet formation and water flow of Delta Faucets H2Okinetic showerhead technology. Reduced flow rates in shower devices conserve water, but also can reduce their effectiveness.

That can cause people to take longer showers, undermining the goal of using less water. Gravitys full effects on the formation of water droplets are unknown, and research in microgravity could help improve the technology, creating better performance and improved user experience while conserving water and energy.

Insight gained from this investigation also has potential applications in various uses of fluids on spacecraft, from human consumption of liquids to waste management and use of fluids for cooling and as propellants.

Human intestine cells forming microvilli inside Emulates Intestine-Chip. (Emulate)

Organ-Chips as a Platform for Studying Effects of Space on Human Enteric Physiology (Gut on Chip) examines the effect of microgravity and other space-related stress factors on biotechnology company Emulates human innervated Intestine-Chip (hiIC). This Organ-Chip device enables the study of organ physiology and diseases in a laboratory setting. It allows for automated maintenance, including imaging, sampling, and storage on orbit and data downlink for molecular analysis on Earth.

A better understanding of how microgravity and other potential space travel stressors affect intestine immune cells and susceptibility to infection could help protect astronaut health on future long-term missions. It also could help identify the mechanisms that underlie development of intestinal diseases and possible targets for therapies to treat them on Earth.

Self-assembly and self-replication of materials and devices could enable 3D printing of replacement parts and repair facilities on future long-duration space voyages. Better design and assembly of structures in microgravity also could benefit a variety of fields on Earth, from medicine to electronics.

Called self-assembled colloidal structures, these are vital to the design of advanced optical materials, but control of particle density and behavior is especially important for their use in 3D printing. Microgravity provides insight into the relationships among particle shape, crystal symmetry, density and other characteristics.

Functional structures based on colloids could lead to new devices for chemical energy, communication, and photonics.

The Multi-use Variable-g Platform (MVP) used for the MVP Cell-03 experiment, shown with the MVP door removed and two carousels inside. (Techshot Inc.)

Generation of Cardiomyocytes From Human Induced Pluripotent Stem Cell-derived Cardiac Progenitors Expanded in Microgravity (MVP Cell-03) examines whether microgravity increases the production of heart cells from human-induced pluripotent stem cells (hiPSCs).

HiPSCs are adult cells genetically reprogrammed back into an embryonic-like pluripotent state, which means they can give rise to several different types of cells. This makes them capable of providing an unlimited source of human cells for research or therapeutic purposes.

For MVP Cell-03, scientists induce the stem cells to generate heart precursor cells, then culture those cells on the space station for analysis and comparison with cultures grown on Earth.

These heart cells or cardiomyocytes (CMs) could help treat cardiac abnormalities caused by spaceflight. In addition, scientists could use them to replenish cells damaged or lost due to cardiac disease on Earth and for cell therapy, disease modeling and drug development. Human cardiac tissues damaged by disease cannot repair themselves, and loss of CMs contributes to eventual heart failure and death.

These are just a few of the hundreds of investigations currently aboard the orbiting laboratory. For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. Follow the ISS National Lab for information on its sponsored investigations. For opportunities to see the space station pass over your town, check out Spot the Station.

Related Stories

Read this article:
NASA to send equipment to International Space Station to research Improving Shoes, Showers, 3D Printing - Clarksville Online

Posted in Florida Stem Cells | Comments Off on NASA to send equipment to International Space Station to research Improving Shoes, Showers, 3D Printing – Clarksville Online

34 years with a new heart and counting – MDJOnline.com

Posted: February 24, 2020 at 10:51 am

Whenever Harry Wuest has a doctors appointment in northern Atlantas hospital cluster dubbed Pill Hill, he makes sure to stop by the office of Dr. Douglas Doug Murphy for a quick chat.

And Murphy, unless hes tied up in the operating room, always takes a few minutes to say hello to his former patient. Remember when ... ? is how the conversation typically starts, and its always tinged with laughter, often joyful, sometimes bittersweet.

Its a reunion of two men who shaped a piece of Georgias medical history.

Almost 35 years ago, Murphy opened the chest of Wuest and sewed in a new heart, giving him a second shot at life. Wuest was the third heart transplant patient at Emory University Hospital.

Tall, lanky, with short curly hair and a quiet demeanor, Wuest is the longest-surviving heart transplant recipient in Georgia and one of the longest-surviving in the world. The 75-year-old accountant still plays golf twice a week and only recently went from working full-time to part-time. My heart is doing just fine, he says.

Murphy is now the chief of cardiothoracic surgery at Emory Saint Josephs Hospital and still in the operating room almost every day. He has moved on to become the worlds leading expert in robotically assisted heart surgery.

Harry Wuest is originally from Long Island, New York. After a stint in the Air Force, he moved to Florida to work and go to school. He wanted to become a physical education teacher. Then, in 1973, he fell ill. It started with some pain on his left side. He didnt think much of it, but when he got increasingly winded and fatigued, he went to see a doctor.

Several months and numerous specialists later, he received the diagnosis: Cardiomyopathy, a disease of the heart muscle that can make the heart become enlarged, thick and rigid, preventing it from pumping enough blood through the body.

They didnt know how I got it, says Wuest, sitting back in a brown leather armchair in the dark, wood-paneled living room of his Stone Mountain home. Maybe it was a virus. And back then, there wasnt much they could do to treat it, except bed rest.

For the next 12 years, Wuest lived life as best as he could. He got a degree in accounting from the University of Central Florida and worked for a real estate developer. There were good days, but there were more bad days. He was often too weak to do anything, and his heart was getting bigger and bigger.

Emorys first transplant surgeon

The first successful human-to-human heart transplant was performed in Cape Town, South Africa, in 1967 a medical breakthrough that catapulted the surgeon, Dr. Christiaan Barnard, onto the cover of Life magazine and to overnight celebrity status.

This highly publicized event was followed by a brief surge in the procedure around the world, but overall, heart transplants had a rocky start. Most patients died shortly after the surgery, mainly due to organ rejection. Back then, immunosuppressive drugs, which can counteract rejection, were still in their infancy. Many hospitals stopped doing heart transplants in the 1970s.

That changed with the discovery of a highly effective immunosuppressive agent. Cyclosporine got FDA approval in 1983 and altered the world of organ transplants.

It was shortly thereafter when Emory University Hospital decided to launch a heart transplant program, but none of the senior surgeons wanted to do it. Even with the new drug, it was a risky surgery, and mortality was still high.

Its an all-or-nothing operation, Murphy says, as he sits down in his small office overlooking the grayish hospital compound. Hes wearing light blue scrubs from an early morning surgery. At 70, he still has boyish looks, with a lean build and an air of laid-back confidence. If you have a number of bad outcomes initially, it can be detrimental to your career as a surgeon, he says.

But Murphy didnt really have a choice. He remembers that during a meeting of Emorys cardiac surgeons in 1984, he was paged to check on a patient. When he returned, the physicians congratulated him on being appointed the head of the new heart transplant program. He was the youngest in the group and had been recruited from Harvards Massachusetts General Hospital just three years before.

Yeah, thats how I became Emorys first transplant surgeon, says Murphy.

He flew to California to shadow his colleagues at Stanford University Hospital, where most heart transplants were performed at the time. Back home at Emory, he put together a team and rigorously rehearsed the operation. The first transplant patient arrived in April 1985. The surgery was successful, as was the second operation less than a month later.

Around the same time, Harry Wuest wound up in a hospital in Orlando. He needed a transplant, but none of the medical centers in Florida offered the procedure. One of his doctors recommended Emory, and Wuest agreed. I knew I was dying. I could feel it. He was flown to Atlanta by air ambulance and spent several weeks in Emorys cardiac care unit until the evening of May 23, when Murphy walked into his room and said, Weve got a heart.

I could finally breathe again

The heart, as the patient later learned, came from a 19-year-old sophomore at Georgia Tech who had been killed in a car crash.

Organ transplants are a meticulously choreographed endeavor, where timing, coordination and logistics are key. While Murphy and his eight-member team were preparing for the surgery, Wuest was getting ready to say farewell to his family his wife and three teenage sons, and to thank the staff in the cardiac ward.

I was afraid, he recalls, especially of the anesthesia. It scared the heck out of me. He pauses during the reminiscence, choking briefly. I didnt know if I was going to wake up again.

The surgery took six hours. Transplants usually happen at night because the procurement team, the surgeons who retrieve different organs from the donor, only start working when regularly scheduled patients are out of the operating room.

Despite the cultural mystique surrounding the heart as the seat of life, Murphy says that during a transplant surgery, its not like the big spirit comes down to the operating room. Its very technical. As the team follows a precise routine, emotions are kept outside the door. We dont have time for that. Emotions come later.

Waking up from the anesthesia, Wuests first coherent memory was of Murphy entering the room and saying to a nurse, Lets turn on the TV, so Harry can watch some sports.

Wuest spent the next nine days in the ICU, and three more weeks in the hospital ward. In the beginning, he could barely stand up or walk, because he had been bedridden weeks before the surgery and had lost a lot of muscle. But his strength came back quickly. I could finally breathe again, he says. Before the surgery, he felt like he was sucking in air through a tiny straw. I cannot tell you what an amazing feeling that was to suddenly breathe so easily.

Joane Goodroe was the head nurse at Emorys cardiovascular post-op floor back then. When she first met Wuest before the surgery, she recalls him lying in bed and being very, very sick. When she and the other nurses finally saw him stand up and move around, he was a whole different person.

In the early days of Emorys heart transplant program, physicians, nurses and patients were a particularly close-knit group, remembers Goodroe, whos been a nurse for 42 years and now runs a health care consulting firm. There were a lot of firsts for all of us, and we all learned from each other, she said.

Wuest developed friendships with four other early transplant patients at Emory, and he has outlived them all.

When he left the hospital, equipped with a new heart and a fresh hunger for life, Wuest made some radical changes. He decided not to return to Florida but stay in Atlanta. Thats where he felt he got the best care, and where he had found a personal support network. And he got a divorce. Four months after the operation, he went back to working full-time: first in temporary jobs and eventually for a property management company.

After having been sick for 12 years, I was just so excited to be able to work for eight hours a day, he recalls. That was a big, big deal for me.

At 50, he went back to school to get his CPA license. He also found new love.

Martha was a head nurse in the open-heart unit and later ran the cardiac registry at Saint Josephs Hospital. Thats where Wuest received his follow-up care and where they met in 1987. Wuest says for him it was love at first sight, but it took another five years until she finally agreed to go out with him. Six months later, they were married.

Harry Wuest and his wife, Martha. She was a head nurse in the open-heart unit and later ran the cardiac registry at Saint Josephs Hospital. Thats where Wuest received his follow-up care and where they met in 1987. Wuest says for him it was love at first sight, but it took another five years until she finally agreed to go out with him. Six months later, they were married.

Having worked in the transplant office, I saw the good and the bad, Martha Wuest says. A petite woman with short, perfectly groomed silver hair, she sits up very straight on the couch, her small hands folded in her lap. Not every transplant patient did as well as Harry. And I had a lot of fear in the beginning. Now he may well outlive her, she says with a smile and a wink.

Wuests surgeon, meanwhile, went on to fight his own battles. Two and a half years into the program, Murphy was still the only transplant surgeon at Emory and on call to operate whenever a heart became available. Frustrated and exhausted, he quit his position at Emory and signed up with Saint Josephs (which at the time was not part of the Emory system) and started a heart transplant program there.

At St. Josephs, Murphy continued transplanting hearts until 2005. In total, he did more than 200 such surgeries.

Being a heart transplant surgeon is a grueling profession, he says, and very much a younger surgeons subspecialty.

He then shifted his focus and became a pioneer in robotically assisted heart surgery. He has done more than 3,000 operations with the robot, mostly mitral valve repairs and replacements more than any other cardiac surgeon in the world.

Heart transplants "remain the gold standard"

Since Murphy sewed a new heart into Wuest 35 years ago, there has been major progress in the field of heart transplants, but it has been uneven.

There is improved medication to prevent rejection of the donor heart, as well as new methods of preserving and transporting donor hearts.

Yet patients requiring late-stage heart failure therapy, including transplantation, still exceed the number of donor hearts available. In 2019, 3,551 hearts were transplanted in the United States, according to the national Organ Procurement and Transplantation Network. But 700,000 people suffer from advanced heart failure, says the American Heart Association.

New technologies and continued research are providing hope to many of these patients. There has been significant progress in the development of partial artificial hearts, known as Left Ventricular Assist Devices, or LVADs. They can be used as bridge devices, to keep patients alive until donor hearts are available, or as destination therapy, maintaining patients for the remainder of their lives.

Also, total artificial hearts have come a long way since the first artificial pump was implanted in a patient in 1969. The technology is promising, says Dr. Mani Daneshmand, the director of Emorys Heart & Lung Transplantation Program. But its not perfect.

Long-term research continues into xenotransplantation, which involves transplanting animal cells, tissues and organs into human recipients.

Regenerative stem cell therapy is an experimental concept where stem cell injections stimulate the heart to replace the rigid scar tissue with tissue that resumes contraction, allowing for the damaged heart to heal itself after a heart attack or other cardiac disease. Certain stem cell therapies have shown to reverse the damage to the heart by 30 to 50 percent, says Dr. Joshua Hare, a heart transplant surgeon and the director of the Interdisciplinary Stem Cell Institute at the University of Miamis Miller School of Medicine.

All of these ideas have potential, says Daneshmand. But none of them are ready to replace a human donor heart. A heart transplant remains the gold standard, because you cant accommodate the same success with a machine right now, he says.

Efforts around expanding the donor pool are really the best way to address this problem, while we wait for technology to catch up, he adds.

Besides Emory, other health care systems in Georgia that currently have a heart transplant program are Piedmont Healthcare, Childrens Healthcare of Atlanta and Augusta University Health.

Organ rejection remains a major issue, and long-term survival rates have not improved dramatically over the past 35 years. The 10-year survival is currently around 55 percent of patients, which makes long-term survivors like Harry Wuest rare in the world of heart transplants.

The United Network of Organ Sharing, or UNOS, which allocates donor hearts in the United States, doesnt have comprehensive data prior to 1987. An informal survey of the 20 highest-volume hospitals for heart transplants in the 1980s found only a scattering of long-term survivors.

In for the long haul

Being one of the longest-living heart transplant recipients is something that Wuest sees as a responsibility to other transplant patients, but also to the donors family, which hes never met. If you as a transplant recipient reject that heart, thats like a second loss for that family.

Part of this responsibility is living a full and active life. Both he and Martha have three children from their previous marriages and combined they have 15 grandchildren. Most of their families live in Florida, so they travel back and forth frequently. Wuest still works as a CPA during tax season, and he does advocacy for the Georgia Transplant Foundation. In addition to golf, he enjoys lifting weights and riding his bike.

Hes had some health scares over the years. In 2013, he was diagnosed with stage 1 kidney cancer, which is in remission. Also, he crossed paths with his former surgeon, and not just socially. In 2014, Murphy replaced a damaged tricuspid valve in Wuests new heart. That operation went well, too.

Murphy says there are several reasons why Wuest has survived so long. Obviously, his new heart was a very good match. But a patient can have the best heart and the best care and the best medicines and still die a few months or years after the transplantation, the surgeon says. Attitude plays a key role.

Wuest was psychologically stable and never suffered from depression or anxiety, Murphy says. Hes a numbers guy. He knew the transplant was his only chance, and he was set to pursue it.

Wuest attributes his longevity to a good strong heart from his donor; good genetics; great doctors and nurses; and a life that he loves. Im just happy to be here, he says.

Quoting his former surgeon and friend, he adds: Doug always said, Having a transplant is like running a marathon. And Im in for the long haul.

View original post here:
34 years with a new heart and counting - MDJOnline.com

Posted in Florida Stem Cells | Comments Off on 34 years with a new heart and counting – MDJOnline.com

Here are all the science projects that SpaceX will deliver to the ISS – Digital Trends

Posted: February 24, 2020 at 10:51 am

In a couple of weeks, SpaceX will be launching a Dragon cargo spacecraft bound for the International Space Station (ISS), carrying not only supplies for the astronauts but also a range of scientific equipment and research technology. The cargo includes tools for researching everything from growing human heart cells to making more comfortable sneakers.

One of the largest additions to the ISS will be the Bartolomeo facility, a European Space Agency project to provide more room for scientific experiments by attaching to the outside of the space station. Potential uses for the extended space include Earth observation, robotics, material science, and astrophysics, according to NASA.

Other projects include one by Adidas to test out its molding process in which thousands of pellets are blown together until they fuse, creating a midsole for shoes to make them more cushioned for high-performance athletes. Theres also a study into how water droplets form in low gravity which could help reduce the amount of water used by showers here on Earth, assisting the important project of water conservation. And theres a project to test improvements in 3D printing which could be used to print spare parts and repair tools for future space voyages.

Finally, there are also two biomedical experiments being taken to the ISS. One will look at how microgravity affects biotechnology like the Organ Chip which simulates the responses of human tissue on a small chip. And the other will investigate whether it is possible to grow human heart cells from stem cells in microgravity. The researchers believe the development of these heart cells could eventually be used to treat cardiac problems here on Earth, especially among children as their cardiac issues are particularly hard to treat.

The mission is scheduled to launch at 10:45 p.m. PT on Sunday, March 1, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. This will be the 20th mission as part of NASAs Commercial Resupply Services contract, in which private companies like SpaceX and Boeing take over some duties for delivering supplies to the ISS.

In the future, SpaceX will be taking a larger part in ISS operations as well. It will be delivering astronauts to and from the space station as part of NASAs Commercial Crew program, using its Crew Dragon capsule. The first manned Crew Dragon mission is targeted for May 7.

Visit link:
Here are all the science projects that SpaceX will deliver to the ISS - Digital Trends

Posted in Florida Stem Cells | Comments Off on Here are all the science projects that SpaceX will deliver to the ISS – Digital Trends

Harvard and the Guangzhou Institute of Respiratory Health Team to Fight SARS-CoV – Harvard Magazine

Posted: February 24, 2020 at 10:49 am

Ever since the earliest reports of a pneumonia-like illness spreading within Hubei province in China, the resemblance to the SARS outbreak of 2002-2003 has been uncanny: probable origins in the wild-animal markets of China; an illness that in some people resembles the common cold or a flu, but in others leads to pneumonia-like symptoms that can cause respiratory failure; community transmission that often occurs undetected; super-spreader events; and reported vertical transmission in high-rises or other living spaces where the waste systems are improperly engineered or drain catch-basins are dry, allowing aerosolized particles to pass from one floor of a building to another (see The SARS Scare for an in-depth description of the epidemiology and virology of the SARS outbreaks of 2002-2003 and 2003-2004).

At first, this latest outbreak was referred to as a novel coronavirus, then in the media as COVID-19 (formally, the name for the disease in an infected person who has become sick, a distinction analogous to that between a person who is HIV positive and one who has developed AIDS). Now that the virus has been characterized and its relationship to SARS firmly established, its designation is SARS-CoV-2severe acute respiratory syndrome coronavirus 2.

Will public-health measures be sufficient to contain its spread? How infectious is it? What is the incubation period? Is this a pandemic? What role does the immune-system response play in the progression of the disease? Which populations are most at risk? Can scientists develop a vaccine, and how quickly? These are some of the questions that scientists worldwide are asking, and that a collaboration among Harvard University and Chinese researchers will address as part of a $115-million research initiative funded by China Evergrande Group, which has previously supported Universitygreen-buildings research at the Graduate School of Design, research onimmunologic diseases, and work inmathematics. (See below for the University press release describing the initiative.)

Harvard Magazinespoke with some of the researchers involved in fighting the first SARS outbreak, and those who will be collaborating with Chinese colleagues, in what is already a worldwide effort to control SARS-CoV-2.

Michael Farzan 82, Ph.D. 97, who in 2002 was an assistant professor of microbiology and molecular genetics at Harvard Medical School (HMS) studying the mechanism that viruses use to enter cells, was the first person to identify the receptor that SARS used to bind and infect human cells. SARS-CoV-2 is a close cousin to SARS, and uses the same human receptor, ACE2, reports Farzan, who is now co-chair of the department of immunology and microbiology at Scripps Research. The ACE2 receptor is expressed almost exclusively in the lungs, gastrointestinal tract, and the kidneys, which explains why the disease is so effectively transmitted via both the respiratory and fecal-oral routes.

But there are subtle differences in the new virus behind the current outbreak, he explained in an interview. The viruss receptor binding domainthe part that attaches to the human receptorhas undergone a lot of what we call positive selection, meaning there has been a good deal of evolutionary pressure on that region from natural antibodies, probably in bats or some other animal host that is a reservoir for this disease. So while the virus retains its ability to bind ACE2, Farzan explains, it no longer binds the same antibodies. That is unfortunate, because as the first SARS epidemic wound down, HMS professor of medicine Wayne Marasco had identified a single antibodyfrom what was then a 27-billion antibody librarythat blocked the virus from entering human cells. (Marasco is actively testing new antibodies, hoping to find one that will have the same effect on SARS-CoV-2.) Still, we are not starting from square one, says Farzan.

In animal studies,Remdesivir [a new and experimental antiviral drug] has seemed to work against SARS-like viruses, he says. Its effectiveness will probably hinge on getting it early enough, in the same way that the antiviral drug Tamifluis most effective against the seasonal flu when given to patients early in the course of infection.

And there is a reasonable hope that a vaccine canbe developed, Farzan adds, because the part of the virus that binds the human receptor is exposed and accessible, making it vulnerable to the immune systems antibodies. In addition, the viral genome is relatively stable. That means SARS CoV-2 wont evolve much over the course of an epidemic, so a vaccine that is relatively protective at the beginning of an epidemic will remain effective until its end.

Another reason for optimismdespite the long road to deploying any vaccine in humansis that the science that allows researchers to understand the viruss structure, life cycle, and vulnerabilities is progressing far more rapidly today than during the first SARS outbreak 17 years ago. So, too, is the understanding of the human immune response to the virus, and of the most effective public-health strategies based on the epidemiology of the disease.

When epidemiologists assess the severity of an epidemic, they want to know how effectively the disease can propagate in a population. The first measure they attempt to calculate is the reproductive number (R0)the number of people that an infected individual will in turn infect in an unexposed population, in the absence of interventions. When the reproductive number is greater than 1 (meaning each infected person in turn infects more than one other person), more and more people become infected, and an epidemic begins. Public-health interventions are therefore designed to lower the rate of transmission below 1, which eventually causes the epidemic to wind down. The second number epidemiologists focus on is the serial intervalhow long it takes one infected person at a particular stage of the disease to infect another person to the point of the same stage of the disease. The serial interval thus suggests how rapidly the disease can spread, which in turn determines whether public-health officials can identify and quarantine all known contacts of an infected individual to prevent their retransmitting the disease to others.

Marc Lipsitch, a professor of epidemiology at the Harvard Chan School of Public Health (HSPH), and director of the schoolsCenter for Communicable Disease Dynamics, helped lead one of the two teams that first calculated the reproductive number of SARS in the 2002-2003 outbreak. SARS had an R0 of 3, he recalls: each case led to three others. In that outbreak, about 10 percent of those who became sick died. The good news is that SARS CoV-2 appears to have a much lower R0 than SARS, ranging from the high ones to low twos, and only 1 percent to 2 percent of those who become sick have died. On the other hand, the serial intervalstill being worked outappears to be shorter, meaning the new virus has the potential to spread faster.

In the current epidemic, Lipsitch notes a further concern: the fact that the incubation-period distribution and the serial-interval distribution are almost identical. Thats a mathematical way of saying that people can start transmitting the virus even when they are pre-symptomatic, or just beginning to exhibit symptoms. That makes tracing and quarantining contacts of infected individualsa classic, frontline public-health measurenearly impossible.

Tracing, quarantining, and other public-health interventions, such as distancing measures (closing workplaces or asking employees to work from home, for example) proved sufficient to defeat SARS in the early 2000s. But with SARS-CoV-2, public-health measures alone may prove inadequate. Controlling this version of SARS may require antivirals, stopgap antibody therapies, and ultimately, vaccines, deployedtogetherwith robust public-health containment strategies.

Unfortunately, SARS-CoV-2 is almost certainly already a pandemic, Lipsitch continues: demonstrating sustained transmission in multiple locations that will eventually reach most, if not all places on the globe. The disease appears to be transmitting pretty effectively, probably in Korea, probably in Japan, and probably in Iran. He has estimated that 40 to 70 percent of the adult global population will eventually become infected.

That said, Infected is different from sick, he is careful to point out. Only some of those people who become infected will become sick. As noted above, only about 1 percent to 2 percent of those who have becomesickthus far have died, he says. But the number of people who areinfectedmay be far greater than the number of those who are sick. In a way, he says, thats really good news. Because if every person who had the disease was also sick, then that would imply gigantic numbers of deaths from the disease.

I'm very gratified, Lipsitch continues, to see that both China and Harvard recognize the complementarity between public health and epidemiology on the one hand, and countermeasure-development on the other hand. We can help target the use of scarce countermeasures [such as antivirals or experimental vaccines] better if we understand the epidemiology; and we will understand the epidemiology better if we have good diagnostics, which is one of the things being developed in this proposal. These approaches are truly complementary.

In the short term, Lipsitchwho has sought to expand the modeling activities of the Center for Communicable Disease Dynamics to better understand the current outbreaks epidemiologysays, It would be great toexpand collaborations with Chinese experts. Longer term, I see a really good opportunity for developing new methods for analyzing data better, as we have in previous epidemics. After the first SARS outbreak, for example, epidemiologists developed software for calculating the reproductive number of novel diseases; that software now runs on the desktop computers of epidemiologists around the world. And in 2009, during an outbreak of swine flu in Mexico, Lipsitch and others developed a method for using the incidence of the disease among awell-documented cohort of travelerswho had left Mexico, to estimate the extent of the disease among amuch larger and less well surveyedpopulation of Mexican residents.

What they found then was that the estimated number of cases in Mexican residents likely exceeded the number of confirmed cases by two to three orders of magnitude. The same method is being used to assess the extent of SARS-CoV-2 in China right nowso far without any hiccups. In the Mexican case, Lipsitchreports, the estimates suggested that severe cases of the disease were uncommon, since thetotal numberof cases was likely much larger than the number ofconfirmedcases. So I think we have learned from each epidemic how to do more things. And in between them, you solidify that less visible, less high-profile research that builds the foundation for doing better the next time. His group, for example, has been developing ways to make vaccine trials faster and better once a vaccine candidate exists.

A vaccine is the best long-term hope for controlling a disease like SARS-CoV-2. Higgins professor of microbiology and molecular genetics David Knipe, who like Lipsitch will participate in the newly announced collaboration, works on vaccine delivery from a molecular perspective. Knipe has developed methods to use the herpes simplex virus (HSV) as a vaccine vector and has even made HSV recombinants that express the SARS spike proteinthe part of the virus that binds the human ACE2 receptor. He now seeks to make HSV recombinants that express the new coronavirus spike protein as a potential vaccine vector.

But Knipe also studies the initial host-cell response to virus infection, which is sometimes called the innate immune response. And he has used HSV vectors that expressed the first SARS spike protein to study how it activates innate immune signaling. That is important because inSARS 1, initial symptoms lasted about a week, but it was the second phasecharacterized by a massive immune-system response that began to damage lung tissuethat led to low levels of oxygen saturation in the blood, and even death.The inflammation in the lungs is basically a cytokine storm, an overwhelming and destructive immune response thats the result of innate signaling, Knipe explains. So were going to look at that with the new coronavirus spike protein, as well. This could help to determine the actual mechanism of inflammation, and then we can screen for inhibitors of that that might be able to alleviate the disease symptoms.

The idea, he says, is to stop theinflammatoryresponse now killing people in the respiratory phase of the disease by targeting the specific molecular interaction between the virus and the host cell. This, he explains, aligns with one of the principal initial goals of the collaboration, which is to support research both in China and at Harvard to address the acute medical needs of infected individuals during the current crisis.

In the last days of 2019 and the first days after the New Year, we started hearing about a pneumonia-like illness in China, says Dan Barouch, an HMS professor of medicine and of immunology known for his anti-HIV work, whose lab has developed a platform for rapid vaccine development. (During the Zika virus outbreak of 2016, for example, his group was the first to report, within a month, a vaccine protective in animal models.) When the genome of the virus was released on Friday, January 10, we started reviewing the sequence that same evening, working through the weekend. By Monday morning, we were ready to grow it.

His concern about this latest outbreak was that the rate of spread seemed to be very rapid. In addition, the outbreak had the clinical features of an epidemic. We reasoned that this might make it difficult to control solely by public-health measures, he says, particularly because the virus can be transmitted by asymptomatic individuals. Thus, if the epidemic is still spreading toward the end of this year or early 2021, by which point a vaccine might be available, Barouch explains, such a remedy could prove essential. Historically, when viral epidemics don't self-attenuate, the best method of control is a vaccine.

Although Barouchs lab is working on DNA and RNA vaccines, a new technology that has the potential to cut vaccine development times in half, large-scale manufacturing using so-called nucleotide vaccines is unproven. That's why I think there needs to be multiple parallel vaccine efforts, he emphasizes. Ultimately, we don't know which one will be the fastest and most protective. At the moment, he reports, there are at least a half dozen scientifically distinct vaccine platforms that are being developed and he believes that vaccine development for this pathogen will probably go faster than for any other vaccine target in human history.

Ever since I graduated from medical school, he points out, there have been new emerging or re-emerging infectious disease outbreaks of global significance with a surprising and disturbing sense of regularity. There is Ebola. There was Zika. There were SARS, MERS; the list keeps growing. With climate change, increasing globalization, increasing travel, and population shifts, the expectation is that epidemics will not go away, and might even become more frequent.

In this global context, Barouch emphasizes the importance of a collaborative response that involves governments, physicians, scientists in academiaandin industry, and public-health officials. It has to be a coordinated approach, he says. No one group can do everything. But I do think that the world has a greater sense of readiness this time to develop knowledge, drugs, and therapeutics very rapidly. The scientific knowledge that will be gained from the vaccine efforts [will] be hugely valuable in the biomedical research field, against future outbreaks, and in the development of a vaccine to terminate this epidemic.

University provost Alan Garber, a physician himself, adds that Global crises of such magnitude demand scientific and humanitarian collaborations across borders. Harvard and other institutions in the Boston area conduct research on diagnostics, virology, vaccine and therapeutics development, immunology, epidemiology, and many other areas.With its tremendous range of expertise and experience, our community can be an important resource for any effort to address a major global infectious disease outbreak. Our scientists and clinicians feel an obligation to be part of a promising collaboration to overcome the worldwide humanitarian crisis posed by this novel virus.

The official Harvard press release follows:

Harvard University Scientists to Collaborate with Chinese Researcherson Development of Novel Coronavirus Therapies, Improved Diagnostics

At a glance:

Since its identification in December, the novel coronavirus has quickly evolved into a global threat, taking a toll on human health, overwhelming vulnerable health care systems and destabilizing economies worldwide.

To address these challenges, Harvard University scientists will join forces with colleagues from China on a quest to develop therapies that would prevent new infections and design treatments that would alleviate existing ones.

The U.S. efforts will be spearheaded by scientists at Harvard Medical School, led by DeanGeorge Q. Daley, working alongside colleagues from the Harvard T.H. Chan School of Public Health. Harvard Medical School will serve as the hub that brings together the expertise of basic scientists, translational investigators and clinical researchers working throughout the medical school and its affiliated hospitals and institutes, along with other regional institutions and biotech companies.

The Chinese efforts will be led by Guangzhou Institute of Respiratory Health and Zhong Nanshan, a renowned pulmonologist and epidemiologist. Zhong is also head of the Chinese 2019n-CoV Expert Taskforce and a member of the Chinese Academy of Engineering.

Through a five-year collaborative research initiative, Harvard University and Guangzhou Institute for Respiratory Health will share $115 million in research funding provided by China Evergrande Group, aFortuneGlobal 500 company in China.

We are confident that the collaboration of Harvard and Guangzhou Institute of Respiratory Health will contribute valuable discoveries to this worldwide effort, said Harvard University President Lawrence Bacow. We are grateful for Evergrandes leadership and generosity in facilitating this collaboration and for all the scientists and clinicians rising to the call of action in combating this emerging threat to global well-being.

Evergrande is honored to have the opportunity to contribute to the fight against this global public health threat, said Hui Ka Yan, chair of the China Evergrande Group. We thank all the scientists who responded so swiftly and enthusiastically from the Harvard community and are deeply moved by Harvard and Dr. Zhongs teams dedication and commitment to this humanitarian cause. We have the utmost confidence in this global collaborative team to reach impactful discoveries against the outbreak soon.

While formal details of the collaboration are being finalized, the overarching goal of the effort is to elucidate the basic biology of the virus and its behavior and to inform disease detection and therapeutic design. The main areas of investigation will include:

With the extraordinary scale and depth of relevant clinical and scientific capabilities in our community, Harvard Medical School is uniquely positioned to convene experts in virology, infectious disease, structural biology, pathology, vaccine development, epidemiology and public health to confront this rapidly evolving crisis, Daley said. Harnessing our science to tackle global health challenges is at the very heart of our mission as an institution dedicated to improving human health and well-being worldwide.

We are extremely encouraged by the generous gesture from Evergrande to coordinate and supportthe collaboration and by the overwhelmingly positive response from our Harvard colleagues, said Zhong, who in 2003 identified another novel pathogen, the severe acute respiratory syndrome (SARS) coronavirus and described the clinical course of the infection.

We look forward to leveraging each of our respective strengths to address the immediate and longer-term challenges and a fruitful collaboration to advance the global well-being of all people, Zhong added.

Harvard University ProvostAlan M. Garbersaid outbreaks of novel infections can move quickly, with a deadly effect.

This means the response needs to be global, rapid and driven by the best science. We believe that the partnershipwhich includes Harvard and its affiliated institutions, other regional and U.S.-based organizations and Chinese researchers and clinicians at the front linesoffers the hope that we will soon be able to contain the threat of this novel virus, Garber said. The lessons we learn from this outbreak should enable us to respond to infectious disease emergencies more quickly and effectively in the future.

Excerpt from:
Harvard and the Guangzhou Institute of Respiratory Health Team to Fight SARS-CoV - Harvard Magazine

Posted in Molecular Genetics | Comments Off on Harvard and the Guangzhou Institute of Respiratory Health Team to Fight SARS-CoV – Harvard Magazine

Tackling Alzheimer’s and dementia in New Mexico – KUNM

Posted: February 24, 2020 at 10:49 am

University Showcase 2/21 8a: Alzheimers and dementia represent a growing crisis around the world and New Mexico faces many challenges in addressing these illnesses.

On this episode we highlight a conference organized by the Alzheimer's Foundation of America coming to the University of New Mexico on February 25.

It is open to the public and no tickets are required, but participants can register here.

We also talk with Dr. Gary Rosenberg, founder of the UNM Memory & Aging Center.

The center opened in 2016 and focuses on advancing research on dementia and helping expand care around the state.

And we check in one with Nicole Maphis, Ph.D candidate in UNMs Biomedical Sciences Graduate Program, who is working on a vaccine for Alzheimers with Kiran Bhaskar, an associate professor in UNMs Department of Molecular Genetics & Microbiology, and Bryce Chackerian, Professor and Vice Chair, Molecular Genetics and Microbiology. Find the previous interview we did with these researchers here.

Guests:

View original post here:
Tackling Alzheimer's and dementia in New Mexico - KUNM

Posted in Molecular Genetics | Comments Off on Tackling Alzheimer’s and dementia in New Mexico – KUNM

Page 1,118«..1020..1,1171,1181,1191,120..1,1301,140..»