Page 1,129«..1020..1,1281,1291,1301,131..1,1401,150..»

Study tests whether stem cells heal arthritis in large dogs – Los Angeles Times

Posted: February 21, 2020 at 3:44 pm

About a year ago, Cheryl Timmons was worried her dog Baxter would soon need to retire from being a therapy dog due to arthritis in his hips.

The 99-pound German shepherds physical health was wearing down after years of bringing joy to childrens hospitals, senior homes and courtrooms, where he served as the first and only service dog providing comfort to child trafficking victims in Orange County.

Timmons, who rescued Baxter from the streets of San Bernardino, worried that she may even have to put him down.

To combat the worsening arthritis, Timmons took him to therapy sessions. A GoFundMe campaign to help pay for the therapy reached a goal of $4,500.

But the arthritis was still taking hold, affecting how Baxter functioned during long workdays.

Then in late August, he was given stem cell injections as part of a new study at the Anaheim Hills Pet Clinic. The effort, headed by San Diego-based Animal Cell Therapies, is testing whether stem cells can help alleviate arthritis in dogs weighing 70 pounds or more.

Baxter, now 11 years old, has been feeling better since he received his injection.

His arthritis is greatly improved, Timmons said. I swear by the stem cell treatment. It has made such a huge difference.

Everybody in the court would notice that he wasnt having a good day. Now hes looking great again. Hes running through the courtroom. He is one happy boy.

Baxter was one of about 10 dogs that was tested at the Anaheim clinic. Animal Cell Therapies is conducting the testing at a dozen clinics throughout the country.

There are about 35 dogs currently enrolled in the study. Researchers are hoping to test between 60 and 80 dogs.

Kathy Petrucci, chief executive of Animal Cell Therapies, said its too early to tell whether the treatment is successful in treating arthritis in large dogs, but the early results are promising.

The company conducted a similar study a year ago, which showed benefits for arthritis in dogs under 70 pounds. However, the results were mixed for bigger dogs.

Petrucci said they increased the dosage for the current study.

We dont know every single mechanism that is involved ... it helps decrease inflammation in the joints, Petrucci said of the treatment. We think that the cells secrete a lot of positive beneficial growth factors that help decrease inflammation, help make the environment a better, more friendly place for more normal cells to come in and help repair the joints.

Whatever the cause, Timmons just hopes the treatment allows Baxter to keep doing what he does best.

With the stem cells, he acts like hes invincible, Timmons said, laughing. I really hope he is.

To enroll in the study, visit dogstemcellstudy.com.

Support our coverage by becoming a digital subscriber.

Read more:
Study tests whether stem cells heal arthritis in large dogs - Los Angeles Times

Posted in Stem Cells | Comments Off on Study tests whether stem cells heal arthritis in large dogs – Los Angeles Times

Locking in and preserving your healthy stem cells has never been easier and more accessible as Acorn Biolabs partners with Coverdale Clinics. – Yahoo…

Posted: February 21, 2020 at 3:44 pm

Appointments for stem cell & DNA collection now available.

TORONTO , Feb. 20, 2020 /CNW/ - With the rapid emergence of regenerative medicine therapies and genetic analysis testing reaching mainstream medicine, consumers are demanding increased opportunities to prepare for their future healthcare needs, including banking a viable source of cells to preserve their current health.

Acorn Biolabs (CNW Group/Acorn Biolabs)

To meet this growing demand, Acorn Biolabs, the leading non-invasive stem cell collection, cryopreservation and analysis company, today announced its partnership with Coverdale Clinics Inc., a premium network of specialty care clinics in Canada . Together, Acorn and Coverdale will help make stem cell collection more accessible and affordable in the West Greater Toronto Area .

Through their partnership, Coverdale Clinics' Oakville location be offering Acorn's non-invasive stem cell collection services. The simple process involves plucking a few hair follicles from a client's head, which are then analyzed and cryopreserved for future use.

Acorn's innovative solution for live cell collection enables the collection of stem cells without the need for surgery or other painful and invasive procedures, making stem cell collection for life-long storage significantly more affordable and accessible for everyone.

"Our partnership with Acorn Biolabs opens up a great opportunity for us to expand Coverdale Clinics service offering into the emerging regenerative medicine and geneticsmarket. We're pleased to be able to leverage our specialty clinic in Oakville to offer a service that improves access to exciting and novel health care technologies," said Chris Dalseg , BioScript Solutions' Vice President of Strategic Growth and Marketing. "We have always been at the forefront of providing innovative health care services to Canadians, and adding stem cell collection services from Acorn exemplifies our ongoing commitment."

Once stem cells are collected, Acorn uses its proprietary capabilities to keep cells alive during transportation before going into long term cryogenic storage. The process turns collected hair follicles into a highly valuable and accessible resource for further regenerative medicine and genetics. Not only are these stem cells securely stored for future use, but the company's scientists will also be able to extract critical genetic information through DNA tests, for clients that want it, that will unlock valuable data about a person's health over their lifetime.

"We are excited to bring Acorn's preventative, personalized healthcare services to more people through this partnership with Coverdale Clinics. The cells collected are a life-long resource for these clients, not only in regenerative medicine, but also for advanced analytics, helping to identify diseases even before the first symptom," said Dr. Drew Taylor , Co-founder and CEO at Acorn Biolabs Inc. "The partnership is an important extension for Acorn to serve health-minded individuals in more geographies, freezing the clock on their stem cells so they can use them later in life, when they will need them most."

Clients can book their non-invasive stem cell collection appointment in Oakville, Ontario through Acorn's website today at http://www.acorn.me

About Acorn Biolabs, Inc.

Story continues

Acorn helps you live a longer, healthier tomorrow by freezing the clock on your cells today. Founded in 2017 by Steven ten Holder, Patrick Pumputis and Dr. Drew Taylor and borne out of years of research, Acorn is a healthcare technology company based at Johnson & Johnson INNOVATION JLABS in Toronto . Acorn is focused on giving everyone the best chance to experience more healthy years with its easy, affordable and non-invasive stem cell collection, analysis and cryopreservation service. For more information, visit acorn.me.

About Coverdale Clinics

Coverdale Clinics is a premium network of specialty care clinics, providing patients with a safe, comfortable environment to receive specialty medications by infusion or injection. With more than 100 clinics nationwide, our nurses take a personalized approach to patient care that includes education and counselling to better support medication adherence.

About BioScript Solutions

BioScript Solutions is committed to helping patients with chronic illnesses achieve the best possible health outcomes. With our total care approach, we simplify access to complex, specialty drug therapies and deliver full-service specialty care solutions at every stage of the patient's treatment journey. Through our specialty pharmaceutical distribution, pharmacies, patient support programs and clinical services, BioScript has the capability to manage the needs of manufacturers, payors, prescribers and health care practitioners across Canada today, and tomorrow. To learn more, please visit bioscript.ca.

SOURCE Acorn Biolabs

View original content to download multimedia: http://www.newswire.ca/en/releases/archive/February2020/20/c2552.html

Originally posted here:
Locking in and preserving your healthy stem cells has never been easier and more accessible as Acorn Biolabs partners with Coverdale Clinics. - Yahoo...

Posted in Stem Cells | Comments Off on Locking in and preserving your healthy stem cells has never been easier and more accessible as Acorn Biolabs partners with Coverdale Clinics. – Yahoo…

Missouri S&T researchers create organ tissue with bioactive glass, stem cells and 3D printer – Missouri S&T News and Research

Posted: February 21, 2020 at 3:44 pm

An interdisciplinary team of Missouri S&T researchers is creating organ tissue samples using bioactive glass, stem cells and a 3D printer. The project could advance pharmaceutical testing and lead to a better understanding of how diseases affect human cells.

The researchers grow stem cells and add them to hydrogelsmade of alginate, gelatin or similar substances. Then, in a step unique toMissouri S&T, the researchers add bioactive glass to supply needed calciumions to the hydrogel/cell mixture and load the mixture as bioink into a 3Dprinter. They test the samples after bioprinting to determine the stem cellfunction, the materials tensile strength, degradation and the best glass typeto add.

Different cells prefer different gels, so we work to findwhich gel combination suits our research, says Dr. Krishna Kolan, apostdoctoral researcher at S&T. The challenge is that dissolved glass addscalcium, but it changes the pH, and cells need neutral pH to survive. Wefigured out which glass and how much to add to maintain neutral pH.

Kolan says researchers are several years away from making afunctioning organ, such as a liver or kidney, and the challenge is the vascularsystem and multiple types of cells in those organs. S&T researchers areworking on ways to develop vascular systems within the bioprinted tissue. Kolansays they can imbed a channel into engineered tissue during printing, then linethe channel with endothelial cells, which are the primary cells in bloodvessels. He is working on the experiments with two undergraduate students: AugustBindbeutel (mechanical engineering) and Lesa Steen (materials science andengineering).

Endothelial cells form networks in environments they like,such as glass-infused hydrogel, Kolan says. As the network grows, itvascularizes the tissue.

As researchers work toward someday repairing or replacingorgans with engineered organs, they are creating tissue models that can be usedfor pharmaceutical testing, Kolan says. Companies can scale down thecomposition of a drug to be appropriate for a tissue sample, he says. S&Tresearchers are also currently working on 3D-printed bone models. Biologygraduate student Bradley Bromet is comparing diseased cells with healthy stemcells to see in 3D how a disease diabetes, for instance affects cells.

Kolan isworking on the project with Dr. Ming Leu, the Bailey Professor in S&Tsmechanical and aerospace engineering department; Dr. Richard Brow, interimdeputy provost in the materials science and engineering department; Dr. DelbertDay, Curators Professor Emeritus of ceramic engineering, and Dr. Julie Semon, assistant professor ofbiology and director of S&Ts Laboratory of Regenerative Medicine.

Theresearch project showcases the types of research that complement the Universityof Missouri Systems NextGen Precision Health Initiative. NextGen is expectedto accelerate medical breakthroughs and improve lives by harnessing theresearch being done at the systems four universities and training a newgeneration of health scientists and practitioners.

Link:
Missouri S&T researchers create organ tissue with bioactive glass, stem cells and 3D printer - Missouri S&T News and Research

Posted in Stem Cells | Comments Off on Missouri S&T researchers create organ tissue with bioactive glass, stem cells and 3D printer – Missouri S&T News and Research

High-throughput screening reveals new compound to maintain lung health – Drug Target Review

Posted: February 21, 2020 at 3:44 pm

Researchers have screened 20,000 molecules to discover a potent compound with low toxicity that restores the balance of healthy stem cells in the lungs of mice.

A molecule identified by researchers through screening helps maintain a healthy balance of cells in airway and lung tissue. According to the scientists, if the compound, so far only studied in isolated human and mouse cells, has the same effect in people, it may lead to new drugs to treat or prevent lung cancer.

We think this could help us develop a new therapy that promotes airway health, said Dr Brigitte Gomperts, lead author of the study and professor of paediatrics and pulmonary medicine at the University of California LA (UCLA), US, where the stiudy was conducted. This could not only inform the treatment of lung cancer, but help prevent its progression in the first place.

The human respiratory system is regularly replenished with healthy cells. That process is driven by airway basal stem cells, which divide to produce both more stem cells and the mucociliary cells that line the airways and lungs.

Mucociliary cells include:

In healthy lungs, airway basal stem cells stay balanced between producing mucociliary cells and self-renewing to maintain a population of stem cells.In pre-cancerous cells in the lungs, basal stem cells divide more often than usual, generating a large number of stem cells but too few mucociliary cells. The resulting imbalance of cells in the airway leaves it unable to properly clear debris and creates a greater risk that the pre-cancerous cells will develop into a tumour.

In the new study, the researchers analysed airway cells from equal numbers of biopsies of healthy people, patients with pre-malignant lung cancer lesions and patients with squamous lung cancer. They discovered that one group of molecules collectively called the Wnt/beta-catenin signaling pathway was present at different levels in the basal stem cells of the patient samples versus the cells from healthy people.

Normal airway tissue, left and lung cancer tissue, right, with an overabundance of basal stem cells (green). The activated form of beta-catenin (red) in the lung cancer can be targeted by the Wnt Inhibitor Compound 1 (credit: Broad Stem Cell Research Center).

Altering the levels of these molecules in healthy airway cells from mice, the team found the balance between stem cells and mucociliary cells shifted, mimicking the imbalance seen in lung pre-cancers.

When you activate the Wnt/beta-catenin signaling pathway, these stem cells just divide and divide, said Gomperts.

Finally, the researchers screened more than 20,000 chemical compounds using high-throughput methods. They investigated their ability to reverse this effect in human cells, lowering levels of Wnt and restoring the balance of stem cells and mature airway cells.

One compound, named as Wnt Inhibitor Compound 1 (WIC1), was particularly effective at limiting the proliferation of basal stem cells and restoring the balance of the stem cells and mucociliary cells to regular levels. The researchers also noted that the compound was less toxic to airway cells than previously discovered molecules that block Wnt/beta-catenin signalling.

The identification of this new drug is a nice tool to tease apart the biology of the Wnt/beta-catenin signalling pathway and its effects on lung health, said Cody Aros, the first author of the new paper and a UCLA graduate student. Its also very exciting that it may act in a new way than other existing Wnt/beta-catenin signalling pathway inhibitors and has such low toxicity.

As WIC1 was identified through a random drug screen, the researchers do not yet know exactly how it works, but they are planning future studies on its mechanism and safety.

The study was published in Cell Reports.

Originally posted here:
High-throughput screening reveals new compound to maintain lung health - Drug Target Review

Posted in Stem Cells | Comments Off on High-throughput screening reveals new compound to maintain lung health – Drug Target Review

From Germany with love: Alfie, four, meets his stem cell saviour – Express

Posted: February 21, 2020 at 3:44 pm

Alfie Commons and mum Lorna, 40, met Christin Bouvier, 34, for the first time on Wednesday after spending more than two years communicating via anonymous letters due to donation laws.

Alfie, from Toton, Notts, was diagnosed with acute lymphoblastic leukaemia (ALL) at seven months after he had a cold for six weeks.

After chemotherapy failed, Alfie was put on a trial immunotherapy drug which helped him to recover to be eligible for a stem cell transplant.

Unable to find a family match, his family found Christin on a worldwide register operated by blood cancer charity DKMS. She donated her cells in a one-hour op and they were flown to the UK and slowly passed into Alfies body in August 2016.

When the teacher, from Schwerin, Germany, was finally allowed to meet the family at Chiswick Town Hall in west London, the little boy gave a gift of Lacoste Pink perfume.

Mum-of-two Lorna, who works in HR, said: The meet-up was just amazing, it was everything we could have possibly dreamed of there were lots of hugs and tears.

It didnt feel like I was meeting her for the first time because wed been chatting for so long before.

As a family, we owe so much to Christin, words of thanks will never feel enough.

Christin just cried when she heard the recipient was a baby. She said: After I donated my bone marrow and the anaesthetic wore off, I called DKMS.

They told me that Alfie was a small baby and living in the UK but couldnt tell me any more due to the laws. When I found out Alfie was responding to treatment, so many tears of joy ran down my face. I still cant describe that moment.

Its a moment that is always with me. Whenever I feel a bit down, I think back to it as it always brings me so much happiness! She added that the meeting was so amazing. I was very nervous and shaking at first and when we finally met we cried a lot and hugged.

Alfie was shy at first but after a bit of time he became more comfortable and we played with some balloons and had a slice of cake.

After the transplant, Alfie developed a deadly immune condition, but this was controlled by medication. He was given the cancer all-clear in 2017 and has started school.

Lorna added: I just want more people to sign up to become donors theres a match for everyone.

Originally posted here:
From Germany with love: Alfie, four, meets his stem cell saviour - Express

Posted in Stem Cells | Comments Off on From Germany with love: Alfie, four, meets his stem cell saviour – Express

Argentinian cultured meat supplier on its ‘all-in-one’ cell line: ‘We offer cells that can grow fast and reduce costs’ – FoodNavigator-Latam

Posted: February 21, 2020 at 3:44 pm

Rather than developing a consumer-facing prototype, Cell Farm Food will supply the raw material to cultured meat companies and sell the stem cell lines through a royalty model.

The company has already taken part in several incubator and accelerator programs with Pro Veg (Berlin), Brinc (Hong Kong) and Grid Exponential (Buenos Aires) and will open a seed round to raise further funds in the coming months.

Cell Farm Food Tech, which counts a team of four women and has a presence in Buenos Aires, London, and Hong Kong, takes biopsies from Hereford and

Angus beef that form the main gene pool of Argentinian cattle and isolates the mesenchymal stem cells.

With these specific cells we can have an all-in-one cell line since they can differentiate into the main tissues present in the meat: muscle, adipocyte, bone, and cartilage, said Sofia Giampaoli, CEO and founder of the company. Mesenchymal stem cellsseem promising for scaling up cultured meat because they are, in simple terms, easy to grow. However, we are also working with induced pluripotent stem cells (iPS).

We are tackling a major opportunity the cultured meat industry has by offering immortalized lines that can grow faster and reduce manufacturing costs by using less cultured media.

Cell Farm Food Tech is also working on a method it says will allow the cells to grow between two and three times faster than the standard procedure but is not ready to disclose details yet.

It anticipates being able to offer stem cell lines to cultured meat companies within a matter of months, rather than years, so they can begin developing their own consumer-facing products,

Argentinas reputation as a premium beef producer and, vven if increasing numbers are fattened in feedlots before being slaughtered - anestimated 40% in 2012- the image of gauchos herding grass-fed cattle on the pampa is a selling point, particularly for consumers in countries like China.

Our idea is to leverage the countrys brand traditional meat production and its high-quality standards and to [expand] that to cultured meat, said Giampaoli, who is a chemical engineer by training and previously worked at PepsiCo.

Initial demand will come from international markets such as China, Europe, and the US, rather than within Latin America.

Latin Americans are not early adopters in terms of food. We are very traditional and the reality is we have high-quality meat in Argentina.

I am working so that Latin Americas politicians can see, as Chinas already did, the huge potential this technology has, she added. Latin America has to see cell ag technology as an opportunity and not a threat to the traditional industries.

Giampaoli intends to keep Cell Farm Food Techs R&D and production in Argentina - as long as it remains advantageous for the company. Although the country offers many benefits such as low operating costs, Argentinas notoriously volatile economy and complex red tape could force the company to relocate, she said.

Due to the extremely high costs of producing cultured meat at the minute, the products that will be available in the next three to four years are in fact cultured cells on a plant-based scaffold, Giampaoli said.

Giuseppe Scionti is CEO and co-founder of plant-based startup NovaMeat, which provides this scaffolding technology required by cultured meat start-ups. It is working on developing a plant-based scaffold that is functional in terms of its texture, taste, appearance and nutritional properties.

The plant-based scaffold provides a preliminary skeleton structure for the cells to live in, explained Scionti, who sits on Cell Farm Food Techs board of advisors.

Normally, you don't just grow the cells on a petri dish, instead you seed them or grow them within a scaffold, also called biomaterial or extracellular matrix, he told us.

Cell-based meat needs more than just the cells from the biopsies: in the last 30 years of tissue engineering, the most common strategy is to combine the cells with the scaffold and the signaling molecules, or growth factors, such as the cell-growth media and serum.

Follow this link:
Argentinian cultured meat supplier on its 'all-in-one' cell line: 'We offer cells that can grow fast and reduce costs' - FoodNavigator-Latam

Posted in Stem Cells | Comments Off on Argentinian cultured meat supplier on its ‘all-in-one’ cell line: ‘We offer cells that can grow fast and reduce costs’ – FoodNavigator-Latam

Anatomy of a grant: Ashley Kramer’s yearlong journey to finding her doctoral thesis – The South End

Posted: February 21, 2020 at 3:44 pm

He asked her for a list of dream projects she would love to investigate. What followed was a year of challenges, stresses and the ultimate reward guided intellectual freedom toward scientific discovery.

Ashley Kramer, a student at the Wayne State University School of Medicine, is enrolled in the schools M.D.-Ph.D. program, an eight-year commitment broken down into three parts the first two years of medical school, four years of graduate school, then the final two years of medical school. Like all M.D./Ph.D. students at the medical school, Kramer had to complete research rotations with faculty she thought would make good dissertation advisors.

Because I have always loved stem cell biology and had experience working with zebrafish in the past, I decided to do an eight-week rotation in Dr. Thummels lab between my medical year one and medical year two, and made the decision that this was absolutely the perfect lab for me, she said.

Ryan Thummel, Ph.D., is an associate professor of Ophthalmology, Visual and Anatomical Sciences. His lab focuses on retinal development and regeneration in zebrafish, an attractive model to study neurodegenerative diseases because of its ability to regenerate neuronal tissues. Zebrafish fully regenerate their retinas in just a matter of weeks, an ability mammals lack.

Zebrafish and mammals both have a cell called Mller glia that supports retinal neurons. In zebrafish, however, these cells convert to stem cells and are responsible for retinal regeneration.

At the end of the rotation, Dr. Thummel floated the crazy idea of starting to work on this grant, a 70-plus page monster undertaking, during my M2 year, and I immediately jumped at the opportunity. I was excited at the idea of having a four-year research project completely planned out by the time I started my Ph.D. after M2 so I could hit the ground running after the dreaded STEP 1, Kramer said.

I came to him two days later with a nine-page document of project ideas. We sat down for three hours discussing projects and came up with a top-two list of cohesive projects for me to move forward with as a grant and thesis, she said. From there, it was a nearly yearlong process of writing, meeting, revising and repeating for each of the many sections of the grant.

The effort was worth it. Kramer secured a five-year, $294,102 grant from the National Eye Institute of the National Institutes of Health last year to study the molecular mechanisms of retinal regeneration in zebrafish, an organism that exhibits a remarkable capacity for regeneration.

"Ashley is a dedicated young scientist and worked very hard on this grant application," Dr. Thummel said.

The grant is one of the NIHs Ruth L. Kirschstein National Research Service awards, also known as an F30. The project, Elucidating the role of DNA methyltransferases in epigenetic regulation of retinal regeneration in the zebrafish, started last month. She is the principal investigator.

This was an incredibly challenging experience that allowed me to grow immensely as a scientist. Grant writing, planning effective and novel longitudinal scientific investigations, and time management will all be critical skills for me moving forward in my career as a physician scientist, she said. I cannot thank Dr. Thummel and my past advisors enough for all of their mentoring and support in the last ten years who have gotten me to where I am today, and I am looking forward to the rest of my training here at Wayne State and beyond.

Kramer earned her bachelors degree in Genetics, Cell Biology and Development from the University of Minnesota in 2014. Her love of research and stem cell biology started when she was an undergraduate research assistant there.

Nearly a decade later, she is studying how epigenetic marks are added to, and removed from, genes in zebrafish retinal stem cells during the process of retinal regeneration. The role of epigenetics in the body is akin to traffic signs on the road.

If roads had no traffic lights, stop signs or barricades, it would be complete chaos. The same is true for your cells. If you used every single gene encoded in your DNA 100% of the time, your cells would be chaos. Epigenetics is what is responsible for telling your skin cell to be a skin cell and your liver cell to be a liver cell, while they both have the exact same underlying DNA sequence, Kramer said. There are various different epigenetic marks that decorate the DNA without actually changing the sequence. These marks come in many forms and can act to either start, stop or change the amount that a particular gene is used, similar to how a green light, road block or stop sign direct traffic rules.

The process is critical for normal embryonic development and everyday cell processes.

If we can gain a deeper understanding of how species like the zebrafish are able to regenerate tissues when mammals cannot, despite having the same cell types, we may be able to start working to translate those mechanisms to mammals, she said. It is possible that certain regeneration pathways have been epigenetically silenced through evolution and we may be able to use modern advances in gene therapy techniques to unlock regenerative capacity in mammals.

See original here:
Anatomy of a grant: Ashley Kramer's yearlong journey to finding her doctoral thesis - The South End

Posted in Stem Cells | Comments Off on Anatomy of a grant: Ashley Kramer’s yearlong journey to finding her doctoral thesis – The South End

Cord Stem Cell Banking Market 2020 to Witness Great Growth || Key Players Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord,…

Posted: February 21, 2020 at 3:44 pm

By keeping an eye on the market conditions and market trends, market research study is initiated depending on clients requirements to form this business document. This Cord Stem Cell Banking market report gives the details about market definition, market drivers, market restraints, market segmentation with respect to product usage and geographical conditions, key developments taking place in the market, competitor analysis, and the research methodology. One of the most noteworthy parts of this Cord Stem Cell Banking Market report is competitor analysis with which businesses can estimate or analyse the strengths and weaknesses of the competitors to gain benefits.

Global Cord stem cell banking market is estimated to reach USD 13.8 billion by 2026 registering a healthy CAGR of 22.4%. The increasing number of parents storing their childs cord blood, acceptance of stem cell therapeutics, high applicability of stem cells are key driver to the market.

Request for sample copy or PDF Here https://www.databridgemarketresearch.com/request-a-sample?dbmr=global-cord-stem-cell-banking-market&raksh

Few of the major market competitors currently working in the globalcord stem cell banking marketareCBR Systems, Inc., Cordlife, Cells4Life Group LLP, Cryo-Cell International, Inc., Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord, SMART CELLS PLUS., Cryoviva India, Global Cord Blood Corporation, National Cord Blood Program, Vita 34, ReeLabs Pvt. Ltd., Regrow Biosciences Pvt. Ltd. , ACROBiosystems., Americord Registry LLC., New York Blood Center, Maze Cord Blood, GoodCell., AABB, Stem Cell Cryobank, New England Cryogenic Center, Inc. among others

Market Definition: Global Cord Stem Cell Banking Market

Cord stem cells banking is nothing but the storing of the cord blood cell contained in the umbilical cord and placenta of a newborn child. This cord blood contains the stem cells which can be used in future to treat disease such as leukemia, thalassemia, autoimmune diseases, and inherited metabolic disorders, and few others.

Segmentation: Global Cord Stem Cell Banking Market

Cord Stem Cell banking Market : By Storage Type

Cord Stem Cell banking Market : By Product Type

Cord Stem Cell banking Market : By Service Type

Cord Stem Cell banking Market : By Indication

Cord Stem Cell banking Market : By Source

Cord Stem Cell banking Market : By Geography

Browse Detailed TOC, Tables, Figures, Charts and Companies @https://www.databridgemarketresearch.com/toc?dbmr=global-cord-stem-cell-banking-market&raksh

Key Developments in the Cord Stem Cell banking Market:

Cord Stem Cell banking Market : Drivers

Cord Stem Cell banking Market : Restraint

Competitive Analysis: Global Cord Stem Cell Banking Market

Global cord stem cell banking market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions and others to increase their footprints in this market. The report includes market shares of cord stem cell banking market for Global, Europe, North America, Asia Pacific, South America and Middle East & Africa.

Scope of the Cord Stem Cell banking Market Report :

The report shields the development activities in the Cord Stem Cell banking Market which includes the status of marketing channels available, and an analysis of the regional export and import. It helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments. This will benefit the reports users, that evaluates their position in Cord Stem Cell banking market as well as create effective strategies in the near future.

Want Full Report? Enquire Here @https://www.databridgemarketresearch.com/inquire-before-buying?dbmr=global-cord-stem-cell-banking-market&raksh

About Data Bridge Market Research:

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475Mail:[emailprotected]

See more here:
Cord Stem Cell Banking Market 2020 to Witness Great Growth || Key Players Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord,...

Posted in Stem Cells | Comments Off on Cord Stem Cell Banking Market 2020 to Witness Great Growth || Key Players Cryo-Save AG, Lifecell, StemCyte India Therapeutics Pvt. Ltd, Viacord,…

Single-cell Analysis Market Worth $5.6 Billion by 2025 – Exclusive Report by MarketsandMarkets – Yahoo Finance

Posted: February 21, 2020 at 3:44 pm

CHICAGO, Feb. 21, 2020 /PRNewswire/ -- According to the new market research report "Single-cell Analysis Marketby Cell Type (Human, Animal, Microbial), Product (Consumables, Instruments), Technique (Flow Cytometry, NGS, PCR, Mass Spectrometry, Microscopy), Application (Research, Medical Application), End User - Global Forecasts to 2025", published by MarketsandMarkets, the Single-cell Analysis Marketis projected to reach USD 5.6 billion by 2025 from USD 2.1 billion in 2019, at a CAGR of 17.8% during the forecast period.

MarketsandMarkets Logo

Download PDF Brochure: https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=171955254

The growth in this market is driven by technological advancements in single-cell analysis products, increasing government funding for cell-based research, growing biotechnology and biopharmaceutical industries, wide applications of single-cell analysis in cancer research, growing focus on personalized medicine, and the increasing incidence and prevalence of chronic and infectious diseases. However, the high cost of single-cell analysis products is expected to restrain the growth of this market to a certain extent during the forecast period.

The research applications segment accounted for the largest share of the market, by application, in 2018

Based on application, the Single-cell Analysis Market is segmented into research (cancer, immunology, neurology, stem cell, and other research applications) and medical applications (noninvasive prenatal diagnosis, in vitro fertilization, and circulating tumor cell detection). The research applications segment accounted for the largest share of the market in 2018. Increasing government initiatives in stem cell research and the wide usage of single-cell analysis in cancer research are the major factors driving the growth of the research applications segment.

Browsein-depth TOC on"Single-cell Analysis Market"

225 Tables 50 Figures252 Pages

The flow cytometry segment accounted for the largest market share in 2018

Based on technique, the market is segmented into flow cytometry, NGS, PCR, microscopy, mass spectrometry, and other techniques. The flow cytometry segment accounted for the largest market share in 2018. The large share of this segment is attributed to the wide usage of flow cytometry in detecting and measuring the physical and chemical characteristics of a population of cells or particles. However, the NGS segment is projected to register the highest growth rate during the forecast period. The high growth of the NGS segment is driven by the increasing application of single-cell analysis products in drug discovery for cancer and other chronic diseases.

Get 10% Customization on this Research Report: https://www.marketsandmarkets.com/requestCustomizationNew.asp?id=171955254

North America dominates the Single-cell Analysis Market

The global market is segmented into five major regions, namely, North America, Europe, Asia Pacific, Latin America, and the Middle East & Africa. In 2018, North America accounted for the largest share of the market. The growth in this market can be attributed to the increasing drug development activities in the pharmaceutical and biotechnology industries, rising prevalence of chronic and infectious diseases, and an increase in stem cell research activities.

Story continues

Prominent players in the Single-cell Analysis Market include Becton, Dickinson and Company (US), Danaher Corporation (US), Merck Millipore (US), QIAGEN (Netherlands), Thermo Fisher Scientific (US), General Electric Company (US), 10x Genomics (US), Promega Corporation (US), Illumina (US), Bio-Rad Laboratories (US), Fluidigm Corporation (US), Agilent Technologies (US), NanoString Technologies (US), Tecan Group (Switzerland), Sartorius AG (Germany), Luminex Corporation (US), Takara Bio (Japan), Fluxion Biosciences (US), Menarini Silicon Biosystems (Italy), and LumaCyte (US).

Browse Adjacent Markets: Biotechnology Market ResearchReports & Consulting Get Special Pricing on Bundle Reports:

https://www.marketsandmarkets.com/RequestBundleReport.asp?id=171955254

Browse Related Reports:

Cell Counting Marketby Product (Instruments (Spectrophotometer, Cell Counter, Hemocytometer, Flow Cytometer, Hematology Analyzer), Consumables (Reagent, Assay Kits, Microplate)), End User (Pharmaceutical, Hospital, Research) - Global Forecast to 2023

Cell Isolation/Cell Separation Marketby Product (Reagents, Beads, Centrifuge), Cell Type (Human, Animal), Cell Source (Bone Marrow, Adipose), Technique (Filtration), Application (Cancer), End User (Hospitals, Biotechnology) - Global Forecast to 2024

About MarketsandMarkets

MarketsandMarkets provides quantified B2B research on 30,000 high growth niche opportunities/threats which will impact 70% to 80% of worldwide companies' revenues. Currently servicing 7500 customers worldwide including 80% of global Fortune 1000 companies as clients. Almost 75,000 top officers across eight industries worldwide approach MarketsandMarkets for their painpoints around revenues decisions.

Our 850 fulltime analyst and SMEs at MarketsandMarkets are tracking global high growth markets following the "Growth Engagement Model GEM". The GEM aims at proactive collaboration with the clients to identify new opportunities, identify most important customers, write "Attack, avoid and defend" strategies, identify sources of incremental revenues for both the company and its competitors. MarketsandMarkets now coming up with 1,500 MicroQuadrants (Positioning top players across leaders, emerging companies, innovators, strategic players) annually in high growth emerging segments. MarketsandMarkets is determined to benefit more than 10,000 companies this year for their revenue planning and help them take their innovations/disruptions early to the market by providing them research ahead of the curve.

MarketsandMarkets's flagship competitive intelligence and market research platform, "Knowledge Store" connects over 200,000 markets and entire value chains for deeper understanding of the unmet insights along with market sizing and forecasts of niche markets.

Contact:Mr. Sanjay GuptaMarketsandMarkets INC.630 Dundee RoadSuite 430Northbrook, IL 60062USA: +1-888-600-6441Email: sales@marketsandmarkets.com Research Insight: https://www.marketsandmarkets.com/ResearchInsight/single-cell-analysis-market.asp Visit Our Website:https://www.marketsandmarkets.com Content Source:https://www.marketsandmarkets.com/PressReleases/single-cell-analysis.asp

View original content:http://www.prnewswire.com/news-releases/single-cell-analysis-market-worth-5-6-billion-by-2025--exclusive-report-by-marketsandmarkets-301008363.html

SOURCE MarketsandMarkets

View original post here:
Single-cell Analysis Market Worth $5.6 Billion by 2025 - Exclusive Report by MarketsandMarkets - Yahoo Finance

Posted in Stem Cells | Comments Off on Single-cell Analysis Market Worth $5.6 Billion by 2025 – Exclusive Report by MarketsandMarkets – Yahoo Finance

Magenta Therapeutics Announces Updated Phase 2 Data on MGTA-456 Cell Therapy, Demonstrating Continued Durability in Inherited Metabolic Disorders -…

Posted: February 21, 2020 at 3:44 pm

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics (NASDAQ: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of immune reset to more patients, today announced updated clinical data from Phase 2 trials of its cell therapy, MGTA-456, at the Transplant and Cellular Therapy (TCT) Annual Meeting in Orlando, Florida. New results from Magentas MGTA-117 conditioning program and MGTA-145 stem cell mobilization program will be presented at TCT later this week.

MGTA-456 is a cell therapy designed to provide a high dose of hematopoietic stem cells (HSCs) that are well matched to the patient to enable safe immune and blood system rebuild in IMD patients and remission in patients with blood cancers. Magenta is currently developing MGTA-456 in an ongoing Phase 2 study in patients with inherited metabolic disorders (IMD), including cerebral adrenoleukodystrophy (cALD), mucopolysaccharidosis type IH (MPS I, or Hurler syndrome), metachromatic leukodystrophy (MLD) or globoid cell leukodystrophy (GLD, or Krabbe disease). These are rare, rapidly progressive neurologic disorders that are fatal when left untreated. Investigators at the University of Minnesota are also studying the cryopreserved formulation of MGTA-456 in a Phase 2 clinical trial in patients with high-risk blood cancers.

The clinical demonstration of rapid and durable resolution of disease in patients with inherited metabolic disorders is very compelling; its particularly encouraging as these results are not seen with currently available treatments, nor with gene therapies under investigation, said John Davis, MD, MPH, Chief Medical Officer, Magenta Therapeutics. Data from the University of Minnesota study in blood cancers add to the body of safety and engraftment data for MGTA-456, and, importantly, validate the introduction of cryopreserved 456 product into the Phase 2 study of inherited metabolic disorders, crucial for the establishment of multi-center trials, as well as eventual global patient access.

Magenta intends to complete enrollment in the Phase 2 in 2020 and continue dialogue with the FDA under the RMAT designation on design of a registration-enabling study, and to have discussions with the European Medicines Agency for development in Europe.

Updated Results from Ongoing MGTA-456 Phase 2 Study in Inherited Metabolic Disease

Title: MGTA-456 Cell Therapy in Inherited Metabolic Disease Yields Rapid and Durable Long-Term Improvement of Disease-Specific Outcomes in a Phase 2 Trial (Abstract #20)

Presenter: Paul J. Orchard, MD, University of Minnesota Medical Center

Results:

Key results in patients with cALD:

Key results in patients with MPS I / Hurler Syndrome:

In a separate presentation today, John Wagner, M.D., University of Minnesota, presented results from a Phase 2 trial of MGTA-456 in patients with high-risk hematologic malignancies. All patients treated to date in this Phase 2 trial successfully engrafted, with rapid neutrophil recovery.

Additionally, Kevin Goncalves, Ph.D., Magenta Therapeutics, presented preclinical data demonstrating rapid and durable resolution of CNS, peripheral and skeletal abnormalities associated with IMDs in a Hurler mouse model following a high dose of CD34+ stem cells. This supports the hypothesis that a higher dose of CD34+ cells, such as MGTA-456, is linked to earlier engraftment and disease impact, and suggests that MGTA-456 may have impact on the disease in the periphery and skeleton.

About Magenta TherapeuticsHeadquartered in Cambridge, Mass., Magenta Therapeutics is a clinical-stage biotechnology company developing novel medicines for patients with autoimmune diseases, blood cancers and genetic diseases. By creating a platform focused on critical areas of unmet need, Magenta Therapeutics is pioneering an integrated approach to allow more patients to receive one-time, curative therapies by making the process more effective, safer and easier.

Forward-Looking StatementThis press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation risks set forth under the caption Risk Factors in Magentas Registration Statement on Form S-1, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

Go here to see the original:
Magenta Therapeutics Announces Updated Phase 2 Data on MGTA-456 Cell Therapy, Demonstrating Continued Durability in Inherited Metabolic Disorders -...

Posted in Stem Cells | Comments Off on Magenta Therapeutics Announces Updated Phase 2 Data on MGTA-456 Cell Therapy, Demonstrating Continued Durability in Inherited Metabolic Disorders -…

Page 1,129«..1020..1,1281,1291,1301,131..1,1401,150..»