Page 1,209«..1020..1,2081,2091,2101,211..1,2201,230..»

What You Need To Know About Female-to-Male Surgery – Science Times

Posted: January 2, 2020 at 7:45 pm

(Photo : pixabay)

Female-to-male surgery or FTM surgery is a type of sex reassignment surgery, which is also called gender-affirming surgery or gender affirmation surgery. This can take different forms, including a mastectomy, the removal of breasts and the altering of the genital region, also known as bottom surgery.

Examples of bottom surgery include the removal of the uterus known as hysterectomy, removal of the vagina known as vaginectomy, construction of a penis through phalloplasty or metoidioplasty.

Surgery

Before having FTM gender-affirming surgery, a person will receive testosterone replacement therapy. They may then undergo one or more of the following types of procedure.

Chest restructuring

Someone undergoing surgery to transition from female to male usually has a subcutaneous mastectomy to remove breast tissue. The surgeon will also make alterations to the appearance and position of the nipples. Meanwhile, testosterone therapy will stimulate the growth of chest hair.

Removal of the uterus, ovaries, and fallopian tubes

A person may wish to undergo this type of surgery if they are uncomfortable having ovaries, a uterus, or fallopian tubes, or if hormone therapy does not stop menstruation. In a partial hysterectomy, a surgeon will remove only the uterus. In a total hysterectomy, they will also remove the cervix. A bilateral salpingo-oophorectomy or BSO involves the removal of the right and left fallopian tubes and ovaries.

Metoidioplasty

A metoidioplasty is a method of constructing a new penis, also known as neopenis. It involves changing the clitoris into a penis. A person will receive hormone therapy before the surgery in order to enlarge the clitoris for this purpose. During the procedure, the surgeon will also remove the vagina, called a vaginectomy.

Also, they lengthen the urethra and position it through the neopenis. To get the exact length, the surgeon uses tissues from the labia minora, the cheek or other parts of the vagina. The aim of this is to allow the person to urinate while standing.

Another option is a Centurion procedure, which involves repositioning round ligaments under the clitoris in order to increase the girth of the penis.

A metoidioplasty usually takes 2 to 5 hours. After the initial surgery, additional procedures may be needed. A Centurion procedure takes around 2.5 hours and removing the female reproductive organs will add to this time. An advantage of a metoidioplasty is that the neopenis may become erect, because of the erectile abilities of clitoral tissue. However, neopenis resulting from metoidioplasty is usually to small for penetrative sex.

Phalloplasty

A phalloplasty uses grafted skin that is usually from the thigh, arm, abdomen or back, in order to form a neopenis. Doctors consider taking skin from the forearm to be the best option in penile construction. Compared with metoidioplasty, a phalloplasty results in a larger penis. However, this neopenis can't become erect on its own.

After a period of recovery, a person can have a penile implant. This can allow them to get and to maintain erections and have penetrative sex. During a phalloplasty, the surgeon performs a vaginectomy and lengthens the urethra to allow urination through the penis.

The disadvantages of a phalloplasty include the number of surgical visits and revisions that may be needed, as well as the cost, which is usually higher than that of a metoidioplasty.

Scrotoplasty

A person may decide to have a scrotoplasty, which is the creation of a scrotum, alongside a metoidioplasty or phalloplasty. In a scrotoplasty, a surgeon hollows out and repositions the labia majora to form a scrotum and inserts silicone testicular implants.

ALSO READ: In Oregon, Teenagers Can Now Undergo Sex Change

See more here:
What You Need To Know About Female-to-Male Surgery - Science Times

Posted in Testosterone Replacement Therapy | Comments Off on What You Need To Know About Female-to-Male Surgery – Science Times

Watch: It looks like TRT Vitor is back and he skipped leg day. – Pro MMA Now

Posted: January 2, 2020 at 7:45 pm

TRT Vitor Belfort was the scariest fighter Ive seen and that is including former UFC heavyweight champ, Andrei Arlovski in his first title run. It looks like that version of Belfort is back.

He shared a video of himself and his coach boxing and he looks jacked. it also looks like he skipped leg day. Never skip leg day Vitor

The former UFC light heavyweight champion is now signed to the Singapore based ONE organization. This means he is not subject to rigorous USADA testing and TRT could very well be pumping through his veins making the 42 year old move like a man in his early 30s. We are not confirming that he is back on testosterone replacement therapy but he does look better than he did at the end of his last UFC run.

What do you think?

Original post:
Watch: It looks like TRT Vitor is back and he skipped leg day. - Pro MMA Now

Posted in Testosterone Replacement Therapy | Comments Off on Watch: It looks like TRT Vitor is back and he skipped leg day. – Pro MMA Now

Testosterone Replacement Therapy Sales Market In-Depth Analysis on Forthcoming Development And Forecast By 2026 – Market Reports Observer

Posted: January 2, 2020 at 7:45 pm

Latest release from SMI with title Testosterone Replacement Therapy Sales Market Research Report 2019-2026 (by Product Type, End-User / Application and Regions / Countries) provides an in-depth assessment of the Testosterone Replacement Therapy Sales including key market trends, upcoming technologies, industry drivers, challenges, regulatory policies, key players company profiles and strategies. Global Testosterone Replacement Therapy Sales Market study with 100+ market data Tables, Pie Chat, Graphs & Figures is now released BY SMI. The report presents a complete assessment of the Market covering future trends, current growth factors, attentive opinions, facts, and industry-validated market data forecast until 2026.

Global Testosterone Replacement Therapy Sales Market Segmentations

The segmentation chapter allows readers to understand aspects of the Global Testosterone Replacement Therapy Sales Market such as products/services, available technologies, and applications. These chapters are written in a way that describes years of development and the process that will take place in the next few years. The research report also provides insightful information on new trends that are likely to define the progress of these segments over the next few years.

Download Free Sample Report with Latest Industry Trends 2019 @ https://www.stratagemmarketinsights.com/sample/8711(**Note: Free Sample with TOC, Graph, Charts)

Global Testosterone Replacement Therapy Sales Market and Competitive Analysis

Know your current market situation! Not only an important element for new products but also for current products given the ever-changing market dynamics. The study allows marketers to stay in touch with current consumer trends and segments where they can face a rapid market share drop. Discover who you really compete against in the marketplace, with Market Share Analysis know market position, % market Share and Segmented Revenue of Testosterone Replacement Therapy Sales Market

Segmentation and Targeting

Essential demographic, geographic, psychographic and behavioral information about business segments in the Testosterone Replacement Therapy Sales market is targeted to aid in determining the features company should encompass in order to fit into the business requirements. For the Consumer-based market the study is also classified with Market Maker information in order to better understand who the clients are, their buying behavior and patterns.

*** For the global version, a list of below countries by region can be added as part of customization at minimum cost.North America (United States, Canada & Mexico)Asia-Pacific (Japan, China, India, Australia, etc)Europe (Germany, UK, France, etc)Central & South America (Brazil, Argentina, etc)Middle East & Africa (United Arab Emirates, Saudi Arabia, South Africa, etc)

Testosterone Replacement Therapy Sales Product/Service Development

Knowing how the product/services fit the needs of clients and what changes would require to make the product more attractive is the need of an hour. Useful approaches to focus group by utilizing User Testing and User Experience Research. Demand-side analysis always helps to correlate consumer preferences with innovation.

Marketing Communication and Sales Channel

Understanding marketing effectiveness on a continual basis help determine the potential of advertising and marketing communications and allow us to use best practices to utilize an untapped audience. In order to make marketers make effective strategies and identify why the target market is not giving attention, we ensure the Study is Segmented with appropriate marketing & sales channels to identify potential market size by Revenue and Volume* (if Applicable).

Pricing and Forecast

Pricing/subscription always plays an important role in buying decisions; so we have analyzed pricing to determine how customers or businesses evaluate it not just in relation to other product offerings by competitors but also with immediate substitute products. In addition to future sales Separate Chapters on Cost Analysis, Labor*, production* and Capacity are Covered.

How geography and sales fit together

This study is helpful to all operators who want to identify the exact size of their target audience at a specific geographic location. Testosterone Replacement Therapy Sales Market allows entrepreneurs to determine local markets for business expansion. This study answers the questions below:

1. Where do the requirements come from?2. Where do non-potential customers reside?3. What is the buying behavior of customers in a specific region?4. What is the spending power of the customers in a particular region?

** Enquire for customization in Report @ https://www.stratagemmarketinsights.com/quiry/8711

Having our reviews and subscribing our report will help you solve the subsequent issues:

*Uncertainty about the future: Our research and insights help our customers predict the upcoming revenue pockets and growth areas. This will guide customers to invest their resources.

*Understanding market sentiments: It is very important to have a fair understanding of market sentiment for your strategy. Our insights will help you see every single eye on market sentiment. We maintain this analysis by working with key opinion leaders on the value chain of each industry we track.

*Understanding the most reliable investment center: Our research evaluates investment centers in the market, taking into account future demand, profits, and returns. Clients can focus on the most prestigious investment centers through market research.

*Evaluating potential business partners: Our research and insights help our clients in identifying compatible business partners.

Furthermore, the years considered for the study are as follows:

Historical year 2013-2018Base year 2018Forecast period** 2019 to 2026 [** unless otherwise stated]

More Related Reports Click Here

This post was originally published on Market Reports Observer

Read the original post:
Testosterone Replacement Therapy Sales Market In-Depth Analysis on Forthcoming Development And Forecast By 2026 - Market Reports Observer

Posted in Testosterone Replacement Therapy | Comments Off on Testosterone Replacement Therapy Sales Market In-Depth Analysis on Forthcoming Development And Forecast By 2026 – Market Reports Observer

An ESPN reporter was diagnosed with HLH just before he died at age 34. What is it? – ABC15 Arizona

Posted: January 2, 2020 at 7:43 pm

When ESPN reporter Edward Aschoff died, he had been diagnosed with multifocal pneumonia and a rare disease known as HLH, his fianc tweeted.

Aschoff was first admitted to the hospital and diagnosed with pneumonia in many parts of his lungs but was brought back to the emergency room when antibiotic treatment failed and he got worse, Katy Berteau said.

"After many tests - bone marrow and lung biopsies - treatment was started for a presumed diagnosis of HLH," she tweeted. "Within 3 days of being moved into the ICU, he passed."

HLH, hemophagocytic lymphohistiocytosis, is a rare disease that affects the immune system.

She did not provide any further details about the manner of Aschoff's death, which occurred on his 34th birthday.

Other people, including Aschoff himself, expressed surprise about the seriousness of the illness in a young man in apparently good health.

"Anyone ever had multifocal (bilateral) pneumonia in their early 30s as some who never gets sick and has a very good immune system? Asking for two friends ... my lungs," he tweeted on December 5.

More questions have come up about his second diagnosis, HLH. It is unclear if Aschoff had HLH or pneumonia first, if one came from the other, and exactly how he died so quickly.

Here is what we know about the diseases Aschoff's had:

Is pneumonia dangerous?

Pneumonia is when air sacs in the lungs fill with fluid or pus. It can be caused by a virus, bacteria or a fungus, causing a fever and respiratory problems.

It can occur in one or both lungs, and multifocal means the pneumonia occurs in multiple places.

Thousands of people die around the world each year of pneumonia, but most healthy people can fight it off, especially with antibiotics and antiviral medications. The people most at risk are the young, elderly, frail or immune-compromised.

What is HLH?

HLH is a rare disease that affects the immune system, making certain white blood cells attack other blood cells and enlarging the spleen and liver, according to Johns Hopkins Medicine.

It can be inherited or acquired, Johns Hopkins said. About a quarter of cases are passed down through families, and the rest come from infections, a weakened immune system and cancer.

Symptoms can include coughing, difficulty breathing, fever, headaches, rashes, swollen lymph nodes, jaundice and digestive problems, according to Johns Hopkins.

Is it dangerous?

There is treatment for HLH, and acquired forms may clear when properly treated, Johns Hopkins said. If familial HLH goes untreated, it is usually fatal.

Treatments include chemotherapy, immunotherapy, steroids, antibiotic drugs and antiviral drugs. Stem cell transplants can cure HLH in most cases if drug treatments don't work, Johns Hopkins said.

There is no way to prevent HLH, the medical center said.

See the rest here:
An ESPN reporter was diagnosed with HLH just before he died at age 34. What is it? - ABC15 Arizona

Posted in Arizona Stem Cells | Comments Off on An ESPN reporter was diagnosed with HLH just before he died at age 34. What is it? – ABC15 Arizona

What is the Role of Nanomedicine in Treating Melanoma? – Medical Tech Outlook

Posted: January 2, 2020 at 7:42 pm

Nanomedicine involves smaller particles, yet their capabilities are tremendous, playing a more significant part in the diagnosis and treatment of cancer.

Fremont, CA: Nanomedicine uses particles and technology that is one-billionth of a meter in medicine for diagnosis and treatment of disease. Irrespective of their smaller size, these nanoparticles play a significant role in the medical field. According to cancer.net, nearly 96,480 cases of invasive melanoma of the skin will be diagnosed in 2019 in the US. Even though it is not the most common type of skin cancer, an estimation of 7,230 deaths will occur this year. In recent research, nanomedicine has been employed to help with improving detection, prevention and treatment of a severe form of skin cancer, melanoma.

The disease begins in the melanocytes, which are the cells responsible for the synthesis of a dark pigment called melanin. And when the skin is exposed to the sun for a long time, melanocytes start producing more pigment as a protective response causing the skin to darken more. When these cells grow out of control, it can result in melanoma.

Tel Aviv researchers have developed a nano-vaccine for melanoma. The vaccine was tested in mice, and it turned out to be useful as it prevents the development of melanoma. It also treats both primary tumors and disease that has spread throughout the body. It was observed by administering with immunotherapy that activates the immune system to fight against the foreign cells. Meanwhile, these cells learn to identify the melanoma cells and will start attacking cells of this specific cancer.

The researchers also examined the vaccine in different conditions. They injected the vaccine into healthy mice and then placed the melanoma cells in the mice where the vaccine halted the development of the disease. In another scenario, the vaccine and immunotherapy together were used to treat the mice already infected by melanoma. Here a significant delay in the progression of the disease was observed. Also, peptides which are the short amino acid chains used in the vaccine were present in the samples of melanoma tissue from different sites in the mice's body other than the one where melanoma had been injected initially. This proves that the vaccine is also suitable for patients affected severely for whom melanoma has spread beyond the primary site.

Read more:
What is the Role of Nanomedicine in Treating Melanoma? - Medical Tech Outlook

Posted in Nano medicine | Comments Off on What is the Role of Nanomedicine in Treating Melanoma? – Medical Tech Outlook

The Chinese Scientist Who Made The First Genetically Engineered Babies Is Going To Prison – BuzzFeed News

Posted: January 2, 2020 at 12:54 am

A Chinese court sentenced biomedical scientist He Jiankui and two accomplices to prison on Monday for illegal medical practice for genetically engineering three babies.

In November 2018, He announced the birth of the first two children, twin girls named Lulu and Nana, as well as the pregnancy of a second woman carrying a genetically engineered fetus. The news created a scientific firestorm, with human genetic engineering experiments widely viewed as dangerous and unethical by scientific organizations worldwide. The third baby has now been born, according to reporting from Chinas state news agency.

The genetic engineering team fabricated an ethics review of their experiment, according to the Nanshan District People's Court of Shenzhen City ruling. They used the faked permissions to recruit couples living with HIV in hopes of helping them to conceive children genetically engineered to receive a mutation giving them immunity to some forms of the disease.

He, formerly a biomedical scientist at the Southern University of Science and Technology in Shenzen, received a prison sentence of three years and a fine equivalent to $480,000. His associates, Zhang Renli and Qin Jinzhou, received jail terms of two years and 18 months with a two-year reprieve, according to the ruling, for practicing medicine without a license and violating Chinese regulations governing assisted reproduction.

The prison sentence and stiff financial penalty sends a message to other Chinese scientists that unsanctioned efforts at human germline editing will not be tolerated, University of Pennsylvania Perelman School of Medicine researcher Kiran Musunuru told BuzzFeed News, by email. I expect that it will have a deterrent effect, certainly in China and possibly elsewhere.

At an October conference, Musunuru had reported that a draft study submitted to a scientific journal about the twins by Hes team suggested that the genetic engineering attempt had badly misfired, targeting the wrong location for the mutation and potentially seeding other mutations throughout the DNA of the children.

Science academies worldwide formed an oversight commission in March, following widespread condemnation of the experiments.

The court ruling found the three sentenced scientists acted "in the pursuit of personal fame and gain" and have seriously "disrupted medical order, according to Chinese state media.

See the original post:
The Chinese Scientist Who Made The First Genetically Engineered Babies Is Going To Prison - BuzzFeed News

Posted in Genetic Engineering | Comments Off on The Chinese Scientist Who Made The First Genetically Engineered Babies Is Going To Prison – BuzzFeed News

Factory-in-a-Box Startup Hopes to Be Microsoft of Cell Therapy – Genetic Engineering & Biotechnology News

Posted: January 2, 2020 at 12:54 am

A start-up based in Cambridge, U.K., is hoping to become the Microsoft of cell therapy, thanks to an innovative approach to 3D printing. BiologIC Technologies, founded earlier in 2019, hopes to democratize the manufacture of therapies like CAR-T with a factory-in-a-box able to run multiple cell therapy workflows and small enough to sit on a laboratory bench.

Were hoping to develop an ecosystema standardized platform on every bench and in every lab, explained BiologICs co-founder Nick Rollings. If you look at the computing revolution, the PC enabled that, but theres nothing like that in life sciences.

The company, which is currently self-funded, already has a virtual prototype of their factory-in-a-box. They also showed GEN a prototype of one of the cartridges that will fit inside the box.

The cartridges, said Rollings, combine milli-fluidic and micro-fluidic circuits that can run multiple cell therapy programs. Unlike typical lab-on-a-chip devices, they dont intend to use mass production techniques to create the cartridges, but rather novel 3D printing techniques.

Our differentiator is using 3D printing to fabricate systems in a brand-new way, noted Rollings. To give a parallel, life science automation today is analogous to the electronics industry in 1958 when systems were made up of multiple separate components such as valves and transistors. Bob Noyce created the first integrated circuit by integrating and miniaturizing these in a new way.

He described their platform as being similar to a PC, butrather than running software like Excel or Wordit will run customized physical firmware. This differs, Rollings claimed, from existing companies who are using 3D printing to improve the production of existing equipment, such as chromatography columns.

To our knowledge, we dont think theres anyone else thinking about this, in this way, said Rollings, an engineer by background. He hopes their technology can help democratize and decentralize the production of cell therapies, such as CAR-T, allowing them to reach a wider range of patients.

The fledgling company is currently talking to angel investors and venture capitalists around Cambridge. They hope to launch a first round of seed funding in the first half of next year.

Read this article:
Factory-in-a-Box Startup Hopes to Be Microsoft of Cell Therapy - Genetic Engineering & Biotechnology News

Posted in Genetic Engineering | Comments Off on Factory-in-a-Box Startup Hopes to Be Microsoft of Cell Therapy – Genetic Engineering & Biotechnology News

The Top Ten Scientific Discoveries of the Decade – Smithsonian

Posted: January 2, 2020 at 12:53 am

Millions of new scientific research papers are published every year, shedding light on everything from the evolution of stars to the ongoing impacts of climate change to the health benefits (or determents) of coffee to the tendency of your cat to ignore you. With so much research coming out every year, it can be difficult to know what is significant, what is interesting but largely insignificant, and what is just plain bad science. But over the course of a decade, we can look back at some of the most important and awe-inspiring areas of research, often expressed in multiple findings and research papers that lead to a true proliferation of knowledge. Here are ten of the biggest strides made by scientists in the last ten years.

The human family tree expanded significantly in the past decade, with fossils of new hominin species discovered in Africa and the Philippines. The decade began with the discovery and identification of Australopithecus sediba, a hominin species that lived nearly two million years ago in present-day South Africa. Matthew Berger, the son of paleoanthropologist Lee Berger, stumbled upon the first fossil of the species, a right clavicle, in 2008, when he was only 9 years old. A team then unearthed more fossils from the individual, a young boy, including a well-preserved skull, and A. sediba was described by Lee Berger and colleagues in 2010. The species represents a transitionary phase between the genus Australopithecus and the genus Homo, with some traits of the older primate group but a style of walking that resembled modern humans.

Also discovered in South Africa by a team led by Berger, Homo naledi lived much more recently, some 335,000 to 236,000 years ago, meaning it may have overlapped with our own species, Homo sapiens. The species, first discovered in the Rising Star Cave system in 2013 and described in 2015, also had a mix of primitive and modern features, such as a small brain case (about one-third the size of Homo sapiens) and a large body for the time, weighing approximately 100 pounds and standing up to five feet tall. The smaller Homo luzonensis (three to four feet tall) lived in the Philippines some 50,000 to 67,000 years ago, overlapping with several species of hominin. The first H. luzonensis fossils were originally identified as Homo sapiens, but a 2019 analysis determined that the bones belonged to an entirely unknown species.

These three major finds in the last ten years suggest that the bones of more species of ancient human relatives are likely hidden in the caves and sediment deposits of the world, waiting to be discovered.

When Albert Einstein first published the general theory of relativity in 1915, he likely couldnt have imagined that 100 years later, astronomers would test the theorys predictions with some of the most sophisticated instruments ever builtand the theory would pass each test. General relativity describes the universe as a fabric of space-time that is warped by large masses. Its this warping that causes gravity, rather than an internal property of mass as Isaac Newton thought.

One prediction of this model is that the acceleration of masses can cause ripples in space-time, or the propagation of gravitational waves. With a large enough mass, such as a black hole or a neutron star, these ripples may even be detected by astronomers on Earth. In September 2015, the LIGO and Virgo collaboration detected gravitational waves for the first time, propagating from a pair of merging black holes some 1.3 billion light-years away. Since then, the two instruments have detected several additional gravitational waves, including one from a two merging neutron stars.

Another prediction of general relativityone that Einstein himself famously doubtedis the existence of black holes at all, or points of gravitational collapse in space with infinite density and infinitesimal volume. These objects consume all matter and light that strays too close, creating a disk of superheated material falling into the black hole. In 2017, the Event Horizon Telescope collaborationa network of linked radio telescopes around the worldtook observations that would later result in the first image of the environment around a black hole, released in April 2019.

Scientists have been predicating the effects of burning coal and fossil fuels on the temperature of the planet for over 100 years. A 1912 issue of Popular Mechanics contains an article titled Remarkable Weather of 1911: The Effect of the Combustion of Coal on the ClimateWhat Scientists Predict for the Future, which has a caption that reads: The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned, uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable in a few centuries.

Just one century later, and the effect is considerable indeed. Increased greenhouse gases in the atmosphere have produced hotter global temperatures, with the last five years (2014 to 2018) being the hottest years on record. 2016 was the hottest year since the National Oceanic and Atmospheric Administration (NOAA) started recording global temperature 139 years ago. The effects of this global change include more frequent and destructive wildfires, more common droughts, accelerating polar ice melt and increased storm surges. California is burning, Venice is flooding, urban heat deaths are on the rise, and countless coastal and island communities face an existential crisisnot to mention the ecological havoc wreaked by climate change, stifling the planets ability to pull carbon back out of the atmosphere.

In 2015, the United Nations Framework Convention on Climate Change (UNFCCC) reached a consensus on climate action, known as the Paris Agreement. The primary goal of the Paris Agreement is to limit global temperature increases to 1.5 degrees Celsius over pre-industrial levels. To achieve this goal, major societal transformations will be required, including replacing fossil fuels with clean energy such as wind, solar and nuclear; reforming agricultural practices to limit emissions and protect forested areas; and perhaps even building artificial means of pulling carbon dioxide out of the atmosphere.

Ever since the double-helix structure of DNA was revealed in the early 1950s, scientists have hypothesized about the possibility of artificially modifying DNA to change the functions of an organism. The first approved gene therapy trial occurred in 1990, when a four-year-old girl had her own white blood cells removed, augmented with the genes that produce an enzyme called adenosine deaminase (ADA), and then reinjected into her body to treat ADA deficiency, a genetic condition that hampers the immune systems ability to fight disease. The patients body began producing the ADA enzyme, but new white blood cells with the corrected gene were not produced, and she had to continue receiving injections.

Now, genetic engineering is more precise and available than ever before, thanks in large part to a new tool first used to modify eukaryotic cells (complex cells with a nucleus) in 2013: CRISPR-Cas9. The gene editing tool works by locating a targeted section of DNA and cutting out that section with the Cas9 enzyme. An optional third step involves replacing the deleted section of DNA with new genetic material. The technique can be used for a wide range of applications, from increasing the muscle mass of livestock, to producing resistant and fruitful crops, to treating diseases like cancer by removing a patients immune system cells, modifying them to better fight a disease, and reinjecting them into the patients body.

In late 2018, Chinese researchers led by He Jiankui announced that they had used CRISPR-Cas9 to genetically modify human embryos, which were then transferred to a womans uterus and resulted in the birth of twin girlsthe first gene-edited babies. The twins genomes were modified to make the girls more resistant to HIV, although the genetic alterations may have also resulted in unintended changes. The work was widely condemned by the scientific community as unethical and dangerous, revealing a need for stricter regulations for how these powerful new tools are used, particularly when it comes to changing the DNA of embryos and using those embryos to birth live children.

Spacecraft and telescopes have revealed a wealth of information about worlds beyond our own in the last decade. In 2015, the New Horizons probe made a close pass of Pluto, taking the first nearby observations of the dwarf planet and its moons. The spacecraft revealed a surprisingly dynamic and active world, with icy mountains reaching up to nearly 20,000 feet and shifting plains that are no more than 10 million years oldmeaning the geology is constantly changing. The fact that Plutowhich is an average of 3.7 billion miles from the sun, about 40 times the distance of Earthis so geologically active suggests that even cold, distant worlds could get enough energy to heat their interiors, possibly harboring subsurface liquid water or even life.

A bit closer to home, the Cassini spacecraft orbited Saturn for 13 years, ending its mission in September 2017 when NASA intentionally plunged the spacecraft into the atmosphere of Saturn so it would burn up rather than continue orbiting the planet once it had exhausted its fuel. During its mission, Cassini discovered the processes that feed Saturns rings, observed a global storm encircle the gas giant, mapped the large moon Titan and found some of the ingredients for life in the plumes of icy material erupting from the watery moon Enceladus. In 2016, a year before the end of the Cassini mission, the Juno spacecraft arrived at Jupiter, where it has been measuring the magnetic field and atmospheric dynamics of the largest planet in the solar system to help scientists understand how Jupiterand everything else around the sunoriginally formed.

In 2012, the Curiosity rover landed on Mars, where it has made several significant discoveries, including new evidence of past water on the red planet, the presence of organic molecules that could be related to life, and mysterious seasonal cycles of methane and oxygen that hint at a dynamic world beneath the surface. In 2018, the European Space Agency announced that ground-penetrating radar data from the Mars Express spacecraft provided strong evidence that a liquid reservoir of water exists underground near the Martian south pole.

Meanwhile, two space telescopes, Kepler and TESS, have discovered thousands of planets orbiting other stars. Kepler launched in 2009 and ended its mission in 2018, revealing mysterious and distant planets by measuring the decrease in light when they pass in front of their stars. These planets include hot Jupiters, which orbit close to their stars in just days or hours; mini Neptunes, which are between the size of Earth and Neptune and may be gas, liquid, solid or some combination; and super Earths, which are large rocky planets that astronomers hope to study for signs of life. TESS, which launched in 2018, continues the search as Keplers successor. The space telescope has already discovered hundreds of worlds, and it could find 10,000 or even 20,000 before the end of the mission.

The decade began with a revolution in paleontology as scientists got their first look at the true colors of dinosaurs. First, in January 2010, an analysis of melanosomesorganelles that contain pigmentsin the fossilized feathers of Sinosauropteryx, a dinosaur that lived in China some 120 to 125 million years ago, revealed that the prehistoric creature had reddish-brown tones and stripes along its tail. Shortly after, a full-body reconstruction revealed the colors of a small feathered dinosaur that lived some 160 million years ago, Anchiornis, which had black and white feathers on its body and a striking plume of red feathers on its head.

The study of fossilized pigments has continued to expose new information about prehistoric life, hinting at potential animal survival strategies by showing evidence of countershading and camouflage. In 2017, a remarkably well-preserved armored dinosaur which lived about 110 million years ago, Borealopelta, was found to have reddish-brown tones to help blend into the environment. This new ability to identify and study the colors of dinosaurs will continue to play an important role in paleontological research as scientists study the evolution of past life.

In November 2018, measurement scientists around the world voted to officially changed the definition of a kilogram, the fundamental unit of mass. Rather than basing the kilogram off of an objecta platinum-iridium alloy cylinder about the size of a golf ballthe new definition uses a constant of nature to set the unit of mass. The change replaced the last physical artifact used to define a unit of measure. (The meter bar was replaced in 1960 by a specific number of wavelengths of radiation from krypton, for example, and later updated to define a meter according to the distance light travels in a tiny fraction of a second.)

By using a sophisticated weighing machine known as a Kibble balance, scientists were able to precisely measure a kilogram according to the electromagnetic force required to hold it up. This electric measurement could then be expressed in terms of Plancks constant, a number originally used by Max Planck to calculate bundles of energy coming from stars.

The kilogram was not the only unit of measure that was recently redefined. The changes to the International System of Units, which officially went into effect in May 2019, also changed the definition for the ampere, the standard unit of electric current; the kelvin unit of temperature; and the mole, a unit of amount of substance used in chemistry. The changes to the kilogram and other units will allow more precise measurements for small amounts of material, such as pharmaceuticals, as well as give scientists around the world access to the fundamental units, rather than defining them according to objects that must be replicated and calibrated by a small number of labs.

In 2010, scientists gained a new tool to study the ancient past and the people who inhabited it. Researchers used a hair preserved in permafrost to sequence the genome of a man who lived some 4,000 years ago in what is now Greenland, revealing the physical traits and even the blood type of a member of one of the first cultures to settle in that part of the world. The first nearly complete reconstruction of a genome from ancient DNA opened the door for anthropologists and geneticists to learn more about the cultures of the distant past than ever before.

Extracting ancient DNA is a major challenge. Even if genetic material such as hair or skin is preserved, it is often contaminated with the DNA of microbes from the environment, so sophisticated sequencing techniques must be used to isolate the ancient humans DNA. More recently, scientists have used the petrous bone of the skull, a highly dense bone near the ear, to extract ancient DNA.

Thousands of ancient human genomes have been sequenced since the first success in 2010, revealing new details about the rise and fall of lost civilizations and the migrations of people around the globe. Studying ancient genomes has identified multiple waves of migration back and forth across the frozen Bering land bridge between Siberia and Alaska between 5,000 and 15,000 years ago. Recently, the genome of a young girl in modern Denmark was sequenced from a 5,700-year-old piece of birch tar used as chewing gum, which also contained her mouth microbes and bits of food from one of her last meals.

This decade included the worst outbreak of Ebola virus diseases in history. The epidemic is believed to have begun with a single case of an 18-month-old-boy in Guinea infected by bats in December 2013. The disease quickly spread to neighboring countries, reaching the capitals of Liberia and Sierra Leone by July 2014, providing an unprecedented opportunity for the transmission of the disease to a large number of people. Ebola virus compromises the immune system and can cause massive hemorrhaging and multiple organ failure. Two and a half years after the initial case, more than 28,600 people had been infected, resulting in at least 11,325 deaths, according to the CDC.

The epidemic prompted health officials to redouble their efforts to find an effective vaccine to fight Ebola. A vaccine known as Ervebo, made by the pharmaceutical company Merck, was tested in a clinical trial in Guinea performed toward the end of the outbreak in 2016 that proved the vaccine effective. Another Ebola outbreak was declared in the Democratic Republic of the Congo in August 2018, and the ongoing epidemic has spread to become the deadliest since the West Africa outbreak, with 3,366 reported cases and 2,227 deaths as of December 2019. Ervebo has been used in the DRC to fight the outbreak on an expanded access or compassionate use basis. In November 2019, Ervebo was approved by the European Medicines Agency (EMA), and a month later it was approved in the U.S. by the FDA.

In addition to a preventative vaccine, researchers have been seeking a cure for Ebola in patients who have already been infected by the disease. Two treatments, which involve a one-time delivery of antibodies to prevent Ebola from infecting a patients cells, have recently shown promise in a clinical trial in the DRC. With a combination of vaccines and therapeutic treatments, healthcare officials hope to one day eradicate the viral infection for good.

Over the past several decades, physicists have worked tirelessly to model the workings of the universe, developing what is known as the Standard Model. This model describes four basic interactions of matter, known as the fundamental forces. Two are familiar in everyday life: the gravitational force and the electromagnetic force. The other two, however, only exert their influence inside the nuclei of atoms: the strong nuclear force and the weak nuclear force.

Part of the Standard Model says that there is a universal quantum field that interacts with particles, giving them their masses. In the 1960s, theoretical physicists including Franois Englert and Peter Higgs described this field and its role in the Standard Model. It became known as the Higgs field, and according to the laws of quantum mechanics, all such fundamental fields should have an associated particle, which came to be known as the Higgs boson.

Decades later, in 2012, two teams using the Large Hadron Collider at CERN to conduct particle collisions reported the detection of a particle with the predicted mass of the Higgs boson, providing substantial evidence for the existence of the Higgs field and Higgs boson. In 2013, the Nobel Prize in Physics was awarded to Englert and Higgs for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle. As physicists continue to refine the Standard Model, the function and discovery of the Higgs boson will remain a fundamental part of how all matter gets its mass, and therefore, how any matter exists at all.

Go here to see the original:
The Top Ten Scientific Discoveries of the Decade - Smithsonian

Posted in Genetic Engineering | Comments Off on The Top Ten Scientific Discoveries of the Decade – Smithsonian

How innovation works: ‘A perfect human being is the danger that genetic manipulation poses’ – Innovation Origins

Posted: January 2, 2020 at 12:53 am

The days when an inventor sat behind closed doors tinkering with groundbreaking technology are over. Nowadays, scientists from a variety of backgrounds work together to come up with an invention or a product. They also dare to bring it to the market at an ever-increasing rate. By no means are all innovations a success, but one invention is enough to change the world.

Innovation Origins regularly speaks to innovation leaders, trendsetters who are high on the innovation ladder. Steef Blok has the floor today. The director of TU/e Innovation Lab is responsible at Eindhoven University of Technology for valorization. That entails bringing knowledge from the university back to society. He has to deal on a daily basis with technologies that the rest of the world might not become acquainted with until ten years from now. Technology forms the foundation for the growth of prosperity in the Netherlands. Our daily lives are wholly influenced by it, Blok states.

He talks about the impact of technology in the past and its importance for the future: Our ancestors used to spend all day collecting and preparing food. Technology made it possible for food to be produced on a greater scale. As a result, not everyone had to deal with food and people started providing services. This is how the economy as we know it today came into being. Later on, machines began to take over more and more of the heavy work that people had to do, for example on farms. As a result, the economy grew and so did prosperity.

Sticking with that example for a moment, the advent of machines meant that the farms had to continue to grow as well. You cant put a large machine on one hectare of land. More space is needed for that. Besides that, farmers have to produce more in order to recoup the cost of those machines. Thats how mass production came about.

Although Blok believes that this type of mass production is now going to be phased out again with the advent of intelligent systems. We can connect machines through these intelligent systems. This allows us to remotely switch on the heating at home, but it also enables ASMLs machines to communicate with each other. The possibilities are unimaginable. Even for the aforementioned farmers. For example, a Brabant potato farmer flies drones over his land in order to measure the amount of manure and water thats on the land. He only fertilizes the soil that actually needs it. That saves time and money and is also better for the environment. The harvest will be better as a result too.

A potato is still a potato, but this farmer takes care of his land in a tailor-made way. Thanks to smart technologies, the more of the same mentality is a thing of the past. This can have several meanings. As an example, in the future, a machine could make a different product for one customer than for another.

Universities are indispensable when it comes to these kinds of developments. This is where such systems are conceived. Universities are about ten years ahead of the market. But not everything that is designed at a university will survive on the market. Some projects dont even get further developed into a product. If that does happen, it sometimes doesnt yield the results you envisage. Weve come up with inventions that I thought would make the world a better place. And nobody on the market cared.

I heard, for example, that early menopause is one of the main reasons why some women cant have children. Women are already really reduced in their reproductive ability ten years before the onset of menopause. For example, if someone starts menopause prematurely, at around 40 years of age, they would have already had low fertility from the age of 30. The average age at which a woman has a child in The Netherlands is now over 29 years of age. Technology might offer a solution to this problem.

At the university, we designed a diagnostic chip that allows us to detect the gene that can predict a womans early onset of menopause. As a result, women know at an early age whether they will start menopause early, and they can tailor the time when they can begin to have children. The chip costs about 6 million. So it seemed like the ideal solution. Expensive and often unpleasant treatments with hormones and IVF would be used less as a result. But in the end nobody wanted it. Women didnt want to know at all when they were going to go through menopause. Oh well. The world is full of surprises.

Consumers will ultimately use a product. Naturally, they have to want to do that. This is not only true in the field of healthcare, but also in the field of sustainability and circularity. Things are already improving in those areas. For example, we are already using more and more refurbished computers instead of immediately throwing away all our electronics. We are also handling food more carefully. If we dont want to burn waste anymore, but want to re-use everything instead, that should already be taken into account during the production process. In order to achieve this, entire production processes need to change.

Genetic engineering is also one of the topics that we do a lot of research on at the university, but on which public opinion is really divided. Bananas grow in a greenhouse under controlled conditions at the University of Wageningen. This way the plants are no longer affected by disease. This allows for a constant supply of bananas. These plants are genetically manipulated. I wouldnt hesitate for a second to use that on a large scale.

Genetic engineering in humans is also being explored more extensively. Ive worked in the hospital sector. Here Ive seen people suffer from diseases like cancer and Ive seen people die. Suppose theres a child on its way who has a disease or disability. But when you remove one gene, its completely healthy. Id do it. Although genetic manipulation does pose a risk to people. Imagine, for example, that over time youve designed a perfect human being. But thats true for other technologies: Atomic energy isnt bad, but an atomic bomb is. I admit that the engineered human being is a bit scary. But we can t stop technological progress.

Link:
How innovation works: 'A perfect human being is the danger that genetic manipulation poses' - Innovation Origins

Posted in Genetic Engineering | Comments Off on How innovation works: ‘A perfect human being is the danger that genetic manipulation poses’ – Innovation Origins

The 5 most dystopian technologies of 2020 and beyond – Fast Company

Posted: January 2, 2020 at 12:53 am

Tech is always both good and bad. But we live in a time when everything gets weaponizedideas, images, ancient texts, biases, and even people. And technology provides the tools to do it easier, faster, and with less resources.

Older threats like atomic warheads are still a serious danger, but theyre hard to deliver and take time and money to build. Delivering toxic images or malware to millions or billions of people, or even badly edited genes to future generations, is easy by comparison. Other technologies like artificial intelligence could have gradual, long-term effects that we do not or can not understand at present.

Were living in a period of technological wonderment, but many of the shiniest new technologies come with their own built-in potential for harm. These are five of the most dystopian technologies of 2020and beyond.

This summer, the Cybersecurity and Infrastructure Security Agency (CISA) called ransomware the most visible cybersecurity risk playing out across our nations networks. CISA says that many attacksin which a cybercriminal seizes and encrypts a persons or organizations data and then extorts the victim for cashare never reported because the victim organization pays off the cybercriminals and doesnt want to publicize its insecure systems.

Cybercriminals often target older people who have trouble differentiating honest from dishonest content online through malware embedded in an email attachment, or a pop-up at an infected website. But the scale of attacks on large corporations, hospitals, and state governments and agencies has been growing. Governments in particular have become prime targets because of the sensitive data they hold and their ability to pay high ransoms, with 70 state and local governments hit with ransomware attacks in 2019.

Some data, like health information, is far more valuable to the owner and can yield a bigger payoff if held for ransom. Thieves can capture or quarantine large blocks of clinical information thats critical for patient care, like test results or medication data. When lives are at stake, a hospital is in a poor position to negotiate. One hospital actually shut down permanently in November after a ransomware attack in August.

It will probably get worse. The Department of Homeland Security said in 2017 that ransomware attacks could be aimed a critical infrastructure like water utilities. And the tools needed to carry out ransomware attacks are becoming more available to smaller operators, with criminal organizations like Cerber and Petya selling ransomware toolkits as a service and taking a cut of the ransom in successful attacks.

Today, scientists use software tools like CRISPR to edit genes, and some of this work has been controversial. Chinese scientist He Jiankui was widely criticized for editing the genes in human embryos to make them resistant to the AIDS virus, because the changes he made could be passed down through generations with unpredictable consequences.

Its these long-term generational impacts that make the young science of gene editing so dangerous. One of the scarier examples of this is something called a gene drive. In the natural world, a gene has a 50% chance of passing on to the next generation. But a gene drive is passed on to the next generation 100% of the time, and increases the trait it carries every time until the whole population of an organism carries the gene and the trait. Scientists have suggested that gene drives could carry a trait found in an invasive species of weeds that would eradicate the plants resistance to pesticides.

Introducing an immunity to the AIDS virus in humans might sound like a good idea. But things can go wrong, and the implications could range from harmful to horrific, according to Stanford synthetic biologist Christina Smolkes comments during a panel on genetic engineering in 2016. A gene drive could mutate as it makes its way down through the generations and begin to allow genetic disorders like hemophilia or sickle cell anemiato ride along to affect future generations.

Even if the gene drive works as planned in one population of an organism, the same inherited trait could be harmful if its somehow introduced into another population of the same species, according to a paper published in Nature Reviews by University of California Riverside researchers Jackson Champer, Anna Buchman, and Omar Akbari. According to Akbari, the danger is scientists creating gene drives behind closed doors and without peer review. If someone intentionally or unintentionally introduced a harmful gene drive into humans, perhaps one that destroyed our resistance to the flu, it could mean the end of the species.

In the political realm, misinformation is nothing new. Earlier in our history it was called dirty tricks, and later, ratfuckingand referred to publishing a libelous story about an opponent or hammering up a closed sign outside a polling place in enemy territory.

Technology has turned this type of thing into a far darker art. Algorithms that can identify and analyze images have developed to a point where its possible to create convincing video or audio footage depicting a person doing or saying something they really didnt. Such deepfake content, skillfully created and deployed with the right subject matter at the right time, could cause serious harm to individuals, or even calamitous damage to whole nations. Imagine a deepfaked President Trump taking to Facebook to declare war on North Korea. Or a deepfake of Trumps 2020 opponent saying something disparaging about black voters.

The anxiety over high-tech interference in the 2020 presidential election is already high. It could come in many forms, from hacks on voting systems to social media ads specifically designed to keep target groups from voting. Due to the threats that deepfakes pose, Facebook and other tech companies are trying to develop detection tools that quickly find these videos on social networks before they spread.

Deepfakes are partially so dangerous because social networks naturally propagate the most dramatic political messages. This model creates more page views, engagement, and ad revenue, while amplifying and legitimizing the opinions of people and groups that earlier in history would have been considered fringe. Combine this with political advertisers ability to narrowly target political messages at audiences that are already inclined to believe them. The advertisements arent meant to persuade so much as they are to inflame voters to take some action, like organize a rally, vote, or just click share.

These factors have helped make social media platforms powerful political polarization machines where confirmation bias is the primary operator. Theyre far from the public square for free speech, meaningful political discourse, and debate that Facebook CEO Mark Zuckerberg likes to talk about. Facebook is a place to trade news and memes you agree with, and to become more entrenched in the political worldview you already keep.

If politics in a democracy is the process of guiding a society through discourse and compromise, tech companies like Facebook are hurting more than helping. Worse still, Facebook refusing to ensure the truthfulness of its political ads signals that conspiracy theories and alternative facts are legitimate and normal. When the basic facts of the world are constantly in dispute, theres no baseline for discussion.

When you talk about artificial intelligence, theres almost always someone there to offer calming words about how AI will work with humans and not against them. That may be perfectly true now, but the scale and complexity of neural networks is growing quickly. Elon Musk has said that AI is the biggest danger facing humankind.

Why? The creation and training of deep neural networks is a bit of a dark art, with secrets hidden within a black box thats too complex for most people to understand. Neural networks are designed in a long and convoluted process to create a desired result. The choices made during that process owe more to the experience and instinct of the designer than to established standards and principles, consolidating the power of creating AI within the hands of a relatively small number of people.

Human biases have already been trained into neural networks, but that might seem trivial compared to what could happen. A computer scientist with bad intentions could introduce dangerous possibilities. According to data scientist and Snips.ai founder Rand Hindi, it might be possible for a bad actor to insert images into the training data used for autonomous driving systemswhich could lead, for instance, to the AI deciding a crowded sidewalk is a good place to drive.

The bigger fear is that neural networks, given enough compute power, can learn from data far faster than humans can. Not only can they make inferences faster than the human brain, but theyre far more scalable. Hundreds of machines can work together on the same complex problem. By comparison, the way humans share information with each other is woefully slow and bandwidth-constrained. Big tech companies are already working on generative neural networks that process mountains of data to create completely new and novel outputs, like chatbots that can carry on conversations with humans, or original musical compositions.

Where this is all leading, and whether humans can keep up, is a subject for debate. Musk believes that as AIs begin to learn and reason at larger and larger scale, an intelligence may develop somewhere deep within the layers of the network. The thing that is the most dangerousand it is the hardest to . . . get your arms around because it is not a physical thingis a deep intelligence in the network, Musk said during a July speech to the National Governors Association.

The kind of sentience that Musk describes does not presently exist, and were probably decades away from it. But most experts believe its coming in this century. According to the aggregate response of 352 AI researchers in a 2016 survey, AI is projected to have a 50% chance of exceeding human capability in all tasks in 45 years.

These examples are just the most sensational of the tech threats facing us today and in the future. There are many other near-term threats to worry about. In many ways, our technology, and our technology companies, are still a threat to the environment. Some of our biggest tech companies, like Seagate, Intel, and the Chinese company Hikvision, the worlds largest surveillance camera vendor, are enabling a growing tide of surveillance around the world. The ad-tech industry has normalized the destruction of personal privacy online. The U.S. government is sitting on its hands when it comes to securing the voting technology that will be used in the 2020 election.

Its going to take a much improved partnership between the tech community and government regulators to ensure we stay on the good side of our most promising technology.

See the original post here:
The 5 most dystopian technologies of 2020 and beyond - Fast Company

Posted in Genetic Engineering | Comments Off on The 5 most dystopian technologies of 2020 and beyond – Fast Company

Page 1,209«..1020..1,2081,2091,2101,211..1,2201,230..»