Wang S, Sun J, Chen K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 2021;19(1):140.
Article Google Scholar
Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21(3):e16878. https://doi.org/10.1016/S1470-2045(19)30823-X.
Article CAS PubMed Google Scholar
Newick K, O'Brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:13952. https://doi.org/10.1146/annurev-med-062315-120245.
Article CAS PubMed Google Scholar
Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res. 2017;5:22. https://doi.org/10.1186/s40364-017-0102-y.
Article PubMed PubMed Central Google Scholar
Sadelain M, Brentjens R, Rivire I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):38898. https://doi.org/10.1158/2159-8290.CD-12-0548.
Article CAS PubMed PubMed Central Google Scholar
van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499509. https://doi.org/10.1038/nrd4597.
Article CAS PubMed PubMed Central Google Scholar
Marin V, Pizzitola I, Agostoni V, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica. 2010;95(12):214452. https://doi.org/10.3324/haematol.2010.026310.
Article CAS PubMed PubMed Central Google Scholar
Roselli E, Boucher JC, Li G, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer. 2021;9(10). https://doi.org/10.1136/jitc-2021-003354.
Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86. https://doi.org/10.1186/s13045-020-00910-5.
Article CAS PubMed PubMed Central Google Scholar
Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):114554. https://doi.org/10.1517/14712598.2015.1046430.
Article CAS PubMed Google Scholar
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):14261438.e11. https://doi.org/10.1016/j.cell.2018.03.038.
Article CAS PubMed PubMed Central Google Scholar
Urbanska K, Lanitis E, Poussin M, et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 2012;72(7):184452. https://doi.org/10.1158/0008-5472.CAN-11-3890.
Article CAS PubMed PubMed Central Google Scholar
Ma JS, Kim JY, Kazane SA, et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci U S A. 2016;113(4):E4508. https://doi.org/10.1073/pnas.1524193113.
Article CAS PubMed PubMed Central Google Scholar
Xie YJ, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci U S A. 2019;116(16):762431. https://doi.org/10.1073/pnas.1817147116.
Article CAS PubMed PubMed Central Google Scholar
Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):58190. https://doi.org/10.1038/nm.3838.
Article CAS PubMed PubMed Central Google Scholar
Weatherill EE, Cain KL, Heywood SP, et al. Towards a universal disulphide stabilised single chain Fv format: importance of interchain disulphide bond location and vL-vH orientation. Protein Eng Des Sel. 2012;25(7):3219. https://doi.org/10.1093/protein/gzs021.
Article CAS PubMed Google Scholar
Zhylko A, Winiarska M, Graczyk-Jarzynka A. The great war of today: modifications of CAR-T cells to effectively combat malignancies. Cancers (Basel). 2020;12(8). https://doi.org/10.3390/cancers12082030.
Wei J, Han X, Bo J, et al. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):62. https://doi.org/10.1186/s13045-019-0758-x.
Article PubMed PubMed Central Google Scholar
Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):18008. https://doi.org/10.1182/blood-2017-03-769620.
Article CAS PubMed PubMed Central Google Scholar
Mounier N, Canals C, Gisselbrecht C, et al. High-dose therapy and autologous stem cell transplantation in first relapse for diffuse large B cell lymphoma in the rituximab era: an analysis based on data from the European blood and marrow transplantation registry. Biol Blood Marrow Transplant. 2012;18(5):78893. https://doi.org/10.1016/j.bbmt.2011.10.010.
Article PubMed Google Scholar
Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18(5-6):38597. https://doi.org/10.3109/10428199509059636.
Article CAS PubMed Google Scholar
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):4556.
Article CAS Google Scholar
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet (London, England). 2020;396(10254):83952.
Article Google Scholar
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):253144.
Article CAS Google Scholar
Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386(7):64054. https://doi.org/10.1056/NEJMoa2116133.
Article CAS PubMed Google Scholar
Neelapu SS, Dickinson M, Munoz J, et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med. 2022;28(4):73542. https://doi.org/10.1038/s41591-022-01731-4.
Article CAS PubMed PubMed Central Google Scholar
Ghione P, Palomba ML, Patel A, et al. Comparative effectiveness of ZUMA-5 (axi-cel) vs SCHOLAR-5 external control in relapsed/refractory follicular lymphoma. Blood. 2022. https://doi.org/10.1182/blood.2021014375.
Jacobson CA, Chavez JC, Sehgal AR, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23(1):91103. https://doi.org/10.1016/S1470-2045(21)00591-X.
Article CAS PubMed Google Scholar
Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):24108. https://doi.org/10.1200/JCO.2017.72.7602.
Article CAS PubMed PubMed Central Google Scholar
Frigault MJ, Dietrich J, Gallagher K, et al. Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial. Blood. 2022;139(15):230615. https://doi.org/10.1182/blood.2021014738.
Article CAS PubMed Google Scholar
Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):133142. https://doi.org/10.1056/NEJMoa1914347.
Article CAS PubMed PubMed Central Google Scholar
Miles RR, Arnold S, Cairo MS. Risk factors and treatment of childhood and adolescent Burkitt lymphoma/leukaemia. Br J Haematol. 2012;156(6):73043. https://doi.org/10.1111/j.1365-2141.2011.09024.x.
Article CAS PubMed Google Scholar
Russo-Carbolante EM, Picano-Castro V, Alves DC, et al. Integration pattern of HIV-1 based lentiviral vector carrying recombinant coagulation factor VIII in Sk-Hep and 293T cells. Biotechnol Lett. 2011;33(1):2331. https://doi.org/10.1007/s10529-010-0387-5.
Article CAS PubMed Google Scholar
Tao J, Zhou X, Jiang Z. cGAS-cGAMP-STING: the three musketeers of cytosolic DNA sensing and signaling. IUBMB Life. 2016;68(11):85870. https://doi.org/10.1002/iub.1566.
Article CAS PubMed Google Scholar
Gndara C, Affleck V, Stoll EA. Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Methods. 2018;29(1):115. https://doi.org/10.1089/hgtb.2017.098.
Article CAS PubMed PubMed Central Google Scholar
Atianand MK, Fitzgerald KA. Molecular basis of DNA recognition in the immune system. J Immunol. 2013;190(5):19118. https://doi.org/10.4049/jimmunol.1203162.
Article CAS PubMed Google Scholar
Michieletto D, Lusic M, Marenduzzo D, et al. Physical principles of retroviral integration in the human genome. Nat Commun. 2019;10(1):575. https://doi.org/10.1038/s41467-019-08333-8.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Hu Y, Yang J, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature. 2022. https://doi.org/10.1038/s41586-022-05140-y.
Doody GM, Justement LB, Delibrias CC, et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science. 1995;269(5221):2424. https://doi.org/10.1126/science.7618087.
Article CAS PubMed Google Scholar
Baird JH, Frank MJ, Craig J, et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood. 2021;137(17):23215. https://doi.org/10.1182/blood.2020009432.
Article CAS PubMed PubMed Central Google Scholar
Zhang WY, Wang Y, Guo YL, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal transduction and targeted. Therapy. 2016;1:16002.
Google Scholar
Till BG, Jensen MC, Wang J, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. BLOOD. 2012;119(17):394050.
Article CAS Google Scholar
Du J, Zhang Y. Sequential anti-CD19, 22, and 20 autologous chimeric antigen receptor T-cell (CAR-T) treatments of a child with relapsed refractory Burkitt lymphoma: a case report and literature review. J Cancer Res Clin Oncol. 2020;146(6):157582. https://doi.org/10.1007/s00432-020-03198-7.
Article CAS PubMed Google Scholar
Ramos CA, Savoldo B, Torrano V, et al. Clinical responses with T lymphocytes targeting malignancy-associated light chains. J Clin Invest. 2016;126(7):258896. https://doi.org/10.1172/JCI86000.
Article PubMed PubMed Central Google Scholar
Ranganathan R, Shou P, Ahn S, et al. CAR T cells targeting human immunoglobulin light chains eradicate mature B-cell malignancies while sparing a subset of Normal B cells. Clin Cancer Res. 2021;27(21):595160. https://doi.org/10.1158/1078-0432.CCR-20-2754.
Article CAS PubMed PubMed Central Google Scholar
Bunse M, Pfeilschifter J, Bluhm J, et al. CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin's lymphoma and tumor-supportive follicular T helper cells. Nat Commun. 2021;12(1):240. https://doi.org/10.1038/s41467-020-20488-3.
Article CAS PubMed PubMed Central Google Scholar
Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27(8):141931. https://doi.org/10.1038/s41591-021-01436-0.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Li J, Lou X, et al. A prospective investigation of bispecific CD19/22 CAR T cell therapy in patients with relapsed or refractory B cell non-Hodgkin lymphoma. Front Oncol. 2021;11:664421. https://doi.org/10.3389/fonc.2021.664421.
Article PubMed PubMed Central Google Scholar
Wei G, Zhang Y, Zhao H, et al. CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study. Cancer Immunol Res. 2021;9(9):106170. https://doi.org/10.1158/2326-6066.CIR-20-0675.
Article CAS PubMed Google Scholar
Tong C, Zhang Y, Liu Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136(14):163244. https://doi.org/10.1182/blood.2020005278.
Article PubMed PubMed Central Google Scholar
Shah NN, Johnson BD, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26(10):156975. https://doi.org/10.1038/s41591-020-1081-3.
Article CAS PubMed Google Scholar
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T cell therapy in T-cell malignancies: is success a low-hanging fruit? Stem Cell Res Ther. 2021;12(1):527. https://doi.org/10.1186/s13287-021-02595-0.
Article CAS PubMed PubMed Central Google Scholar
Read the original post:
Tumor buster - where will the CAR-T cell therapy missile go?