Page 1,261«..1020..1,2601,2611,2621,263..1,2701,280..»

CAR-T therapies should be made by academic medical centers – STAT

Posted: November 23, 2019 at 10:44 am

Draw blood from someone with cancer. Engineer their blood cells to seek and destroy cancer. Reinfuse the cells and watch the cancer melt away. Chimeric antigen receptor T cell therapy (CAR-T) sounds like science fiction. But its the next frontier in cancer therapy.

Were weaponizing individuals immune systems to destroy cancer and add years to their lives. Its incredibly exciting. But at hundreds of thousands of dollars per dose, insurance companies and the U.S. government are struggling to figure out how to pay for these breakthrough treatments.

High prices not only pose a challenge to patient access, but they also raise a fundamental question: Are we creating these therapies the wrong way?

advertisement

CAR-T immunotherapy is being tested for a range of cancers, and now holds the potential to benefit more than 1 million Americans who live with or are in remission from blood cancers. A single dose typically costs around $400,000. What makes the price so high? Having drug corporations make the cells.

Under the current system, a hospital extracts blood cells from a patient and sends them to a drug companys manufacturing plant to be genetically engineered. It takes the company two to six weeks to engineer the cells, increase their number, perform quality and safety tests, and ship them back to the hospital to be reinfused into the patient. Under this system, there have been well-documented problems with the engineering process, as well as with shipping and handling.

Theres a better way, one that will lower the price, enable more precise and individualized targeting for specific patients, and allow for a faster process: Let medical centers do this.

Long before pharmaceutical companies took control of CAR-T, medical centers made these treatments. Cancer centers like the University of Pennsylvania, the National Cancer Institute, Memorial Sloan Kettering Cancer Center, Fred Hutchinson Cancer Center, Baylor University, and others figured out how to engineer CAR-T cells and ran the initial trials to test them. Drug companies were later involved mainly as a means to scale up production.

There are clear advantages to keeping CAR-T treatment in medical centers, closer to patients.

First, academic medical centers are well-equipped to make these therapies. They already safely handle stem cells every day. They also routinely perform autologous stem cell transplants (these use a patients own stem cells), which require in-house doctors and specialists to preserve and protect stored blood cells, wash and radiate them if needed, and sometimes select cell populations for clinical use.

Hospitals and academic medical centers can accomplish the CAR-T process more quickly because they do not need to ship cells to and from a drug company plant. This is a critical issue, because most patients currently treated with CAR-T have not responded to other treatments and their health is seriously compromised; some patients die between the time stem cells are removed from them and the time theyre supposed to come back to the hospital for re-infusion.

Second, there are different regulations around stem cells than there are for drugs. That means CAR-T therapies created at hospitals and academic medical centers would not have to go through the yearslong FDA regulatory process. And the treatments developed would allow hospitals to target more effectively and quickly each individuals specific cancer, which is off the table in the current system. Patients with advanced cancer do not have the luxury of time. Although this paradigm shift would require greater regulatory flexibility from the FDA, it would make CAR-T therapy far more effective.

Experience making CAR-T in leading medical centers show that locally engineered CAR-T cells can be made for less than half of what they are currently priced by pharmaceutical companies. We know this is possible because Switzerland is already doing it this way, and pricing CAR-T therapy between $150,000 and $200,000. Multiply that by the 10,000 individuals in the U.S. with the types of cancer for which CAR-T therapy is currently approved and we would save almost $2 billion a year. Factor in future CAR-T approvals and we will save many times that amount.

Making this change requires bucking the system. It means the FDA must redefine CAR-T from a drug to the autologous blood product it is. Its a move that would save not only money but lives because it can target cancer better and destroy it faster.

We took a fork in the CAR-T road a few years back and went the wrong way. There is still time to change course for the good of the many Americans who need this lifesaving treatment.

David Mitchell, who is living with incurable blood cancer, is the founder of Patients for Affordable Drugs. Saad Kenderian, M.D., is a physician-scientist and assistant professor of medicine and immunology at the Mayo Clinic in Rochester, Minn. S. Vincent Rajkumar, M.D., is a hematologist and professor of medicine at the Mayo Clinic. The views expressed are the authors personal views and do not necessarily reflect the policy or position of the Mayo Clinic.

Read more from the original source:
CAR-T therapies should be made by academic medical centers - STAT

Posted in Stem Cell Treatments | Comments Off on CAR-T therapies should be made by academic medical centers – STAT

Shark Tank Season 11 Episode 8 Everything About Gallant Stem Cell Bank For Dogs As Seen on Shark Tank! Unknown Facts – TheNewsCrunch

Posted: November 23, 2019 at 10:44 am

Gallant Stem Cell Therapy For Dogs is one of the product companies to be featured on Shark Tank Season 11 Episode 8. The story behind the birth of Gallant Stem Cell Therapy For Dogs is pretty interesting. Here are some of the unknown facts about Gallant and its founders, Aaron Hirschhorn.

Aaron Hirschhorn is the founder and former-CEO of the popular dog-sitting marketplace DogVacay. Aaron is a noted entrepreneur with more than 20 years of experience in building companies and investing in them. DogVacay app was launched in 2013 and Aaron managed to raise $47 million from his erstwhile investors.

Aaron was the finalist in the Ernst & Young Entrepreneur of the Year Award 2016. In April 2017, Aarons DogVacay app merged with Rover.com and eventually went on to become a $1 billion pet services marketplace.

Trouble struck Aarons life when he suffered a massive back injury and was forced to undergo stem cell treatment which yielded amazing results to his surprise. Aaron, being an ardent dog lover wondered why this cutting-edge medical technology of stem cell transplants cannot be applied to dogs.

As a result, Gallant was born in the middle of 2018. According to Gallant, Your pups stem cells haveincredible healing power. Extract and store these powerful cells during your pets spay/neuter, so that you can unleash their potential when your best friend needs it most.

Ever since its inception, the mission of Gallant stem cell therapy is to help pets live a healthier life and make use of the epic technology of stem cell therapy in saving the lives of tons of dogs.

Dogs enter their senior years around 7 and begin feeling the effects of aging as early as 4! Traditional methods of treatment for injury and age-related conditions are expensive and can have harmful side effects. Stem cells are incredible natural healers. However, up to 99% of stem cells are lost over time due to aging. This forms the bottomline of Gallants business problem.

Gallant raised $7 million investment in August 2019.

https://gallant.com/

From the moment you entrust Gallant with your dogs stem cells, were actively invested in their long-term health and well-being. Working in tandem with you and your veterinarian, we will collect and store these powerful cells now, so down the road we can help to treat the most common health problems your dog may face. We will also update you on new and potentially life-changing treatments as they become available.

Pick your pups stem cell storage plan you dont have to have a spay/neuter procedure scheduled yet! You can always add that in later. Our proprietary process requires no additional training, so any veterinarian you trust to alter your dog is qualified. Ahead of your dogs spay/neuter, we will connect with your vet and send our collection kit directly to their office.

2. Collect

On the big day, we align with your vet before the procedure and arrange for a courier. During your dogs spay/neuter procedure, your veterinarian will take out the stem cell-rich reproductive tissue they would normally discard into the collection kit.

3. Preserve

Once the tissue is received by our scientists, we send confirmation to both you and your veterinarian. Your dogs tissue is first inspected for quality before isolating the stem cells. The stem cells are then counted and frozen in liquid nitrogen to preserve their potency in our secure, state-of-the-art laboratory. Once this process is complete, you and your veterinarian will be notified that your pets stem cells are safely stored. The cells are then monitored by our team to ensure they stay perfectly preserved.

4. Treat

Your pets stem cells are at the ready to be sent to your veterinarian if/when treatment is needed. Treatments are out-patient procedures and cost about $300. A stem cell procedure is not painful to your pet and does not require anesthesia to administer.

Gallants stem cell therapy is receiving a lot of exciting reviews online. The therapy has been successful in saving scores of dogs with conditions like osteoarthritis, skin conditions, chronic dry eye.

Gallant is offering a $395 off discount for using the code SHARKTANK

How did Gallant fare in Shark Tank Season 11? What did the Sharks have to tell about it? Did Gallant Get a Deal on Shark Tank? More information to be updated soon in this post.

Originally posted here:
Shark Tank Season 11 Episode 8 Everything About Gallant Stem Cell Bank For Dogs As Seen on Shark Tank! Unknown Facts - TheNewsCrunch

Posted in Stem Cell Treatments | Comments Off on Shark Tank Season 11 Episode 8 Everything About Gallant Stem Cell Bank For Dogs As Seen on Shark Tank! Unknown Facts – TheNewsCrunch

Co-creator of CRISPR lectures about future applications of genome editing technology – Daily Bruin

Posted: November 23, 2019 at 10:43 am

This post was updated Nov. 20 at 7:47 p.m.

A University of California professor and co-originator of genome editing technology Clustered Regularly Interspaced Short Palindromic Repeats said researchers plan to expand the technology in order to increase human applications at a campus lecture series Thursday.

Jennifer Doudna, a UC Berkeley biochemistry professor, engaged students and the greater UCLA science community during the quarterly Donald J. Cram Distinguished Lecture series.

The Cram lecture series, a quarterly departmental event, invites prominent academics in the field of chemistry to speak about their research. The series is dedicated to Donald J. Cram, who was a Nobel laureate and a chemistry professor at UCLA for over 50 years.

This fall, the series was hosted by UCLA chemistry professor and Cram Chair Patrick Harran.

Scientists use CRISPR technology, formally known as CRISPR-Cas9, to modify DNA sequences and gene functions. Cas9 is a protein that can act like molecular scissor to cut the strands of DNA.

CRISPR is studied and used by students, scientists and researchers to advance progress in the field of gene editing, in medicine and the life sciences.

The UC holds the largest CRISPR patent portfolio in the nation with 16 total patents, according to a UC Berkeley press release.

The United States Patent and Trademark Office granted the UC, along with the University of Vienna and Emmanuelle Charpentier, the director of the Max Planck Institute for Infection Biology, its 16th patent in October.

Doudnas involvement in CRISPR technology began around 2005, when a professor at UC Berkeley, Jill Banfield, invited Doudna to help her with research into the mechanism. From there, Doudna teamed up with Charpentier, who was working with a CRISPR system and its associated protein, Cas9, in 2011.

Doudna is one of the creators of the CRISPR utility for the permanent excision of harmful genes. Doudna said that she developed the idea for the CRISPR technology in 2011 in collaboration with Charpentier.

During the lecture, Doudna detailed how scientists regulate CRISPR enzymes to modify DNA.

CRISPR is a portion of the bacterial genomic sequence that acts as an adaptive immune system, Doudna said.

Bacteria encode the CRISPR system through viral infections, which allows its genome to recognize foreign DNA insertions. These DNA sequences incorporate themselves into the bacterial genome at the CRISPR locus, a genetic database of past infections.

Doudna said this locus was of unique interest to her.

Those sequences, called CRISPR, are transcribed in RNA molecules that provide the zip codes for Cas proteins, allowing them to recognize foreign DNA and cut it up, Doudna said.

Doudna and Charpentier, with the assistance of their team, were able to realize that CRISPR RNA is a 20-nucleotide sequence, which interacts with DNA in a complementary fashion.

This complementarity allows the protein to form a double-stranded break in DNA, necessitating a second RNA tracrRNA to form this functional unit, Doudna said.

And it was (biochemist) Martin Jinek in our lab who figured out that you could combine these two RNAs into a single guide RNA, Doudna said.

From this experiment, Jinek found that single guide RNAs were used by Cas9 to excise DNA at specific sites in a plasmid, a circular piece of bacterial DNA. The revelation from this was that, upon excision, DNA would repair itself in animals and plants, Doudna said.

Doudna said at the end of her talk that the system is becoming increasingly important in the field of medicine, and is currently being used at UCLA, by Donald Kohn, a professor of microbiology, immunology and molecular genetics.

Were within about five years, maybe less, from being able to make, essentially, any change to any genome in any type of cell, Doudna said.

Doudna stressed that this ability to make changes in the genome comes with bioethical responsibility for genome editing in humans.

Fourth-year biochemistry student Jeremy Shek, who attended the event, said although he had done a project that was an offshoot of CRISPR, he had not heard of the progress Doudna discussed.

It is important to be informed on advancements and progress in the field, he added.

Fourth-year bioengineering student Timothy Yu said he came to the lecture to see Doudna in person and get a more solid grasp on the methodology of CRISPR.

Lexi Omholt, a fourth-year microbiology, immunology and molecular genetics student, said that she came to the talk to understand the basis of CRISPR technology.

Jennifer Doudna was one of the reasons I chose my major, Omholt said. At that time, CRISPR came into popular knowledge, and the knockout tool was just coming into use. I am involved in a cancer lab, the Soragni Lab, that uses CRISPR-Cas9 on a regular basis.

See original here:
Co-creator of CRISPR lectures about future applications of genome editing technology - Daily Bruin

Posted in Molecular Genetics | Comments Off on Co-creator of CRISPR lectures about future applications of genome editing technology – Daily Bruin

Myriad Genetics Announces Regulatory Approval Of The BRACAnalysis Diagnostic System In Japan For Breast Cancer Patients – Laboratory Network

Posted: November 23, 2019 at 10:43 am

Salt Lake City, UT (GLOBE NEWSWIRE) -Myriad Genetics, Inc. (NASDAQ: MYGN), a leader in molecular diagnostics and precision medicine, announced that Japans Ministry of Health, Labour and Welfare (MHLW) has approved the BRACAnalysisDiagnostic System (i.e., BRACAnalysis) to help physicians determine which women with breast cancer have Hereditary Breast and Ovarian Cancer (HBOC) syndrome and qualify for additional medical management. BRACAnalysis is a genetic test that identifies germline mutations in theBRCA1/2genes.

We are excited that the MHLW has approved the BRACAnalysis Diagnostic System for HBOC risk assessment in patients with breast cancer, said Seigo Nakamura, M.D., Ph.D., Professor and Chairman, Department of Surgery, Division of Breast Surgical Oncology and Director, Breast Center of Showa University Hospital in Tokyo and president of the Japanese Organization of Hereditary Breast and Ovarian Cancer (JOHBOC). Our goal is to use the BRACAnalysis test to identify patients withBRCAmutations and determine who will benefit from more advanced medical care.

Under the MHLW decision, physicians may use BRACAnalysis to test forBRCAmutations in women with breast cancer who meet the genetic testing guidelines defined by JOHBOC. Those patients who test positive for a deleteriousBRCAmutation will be eligible to receive advanced medical management, such as prophylactic surgery or targeted therapies.

Myriads BRACAnalysis test is the gold standard forBRCAtesting. The approval of BRACAnalysis for HBOC risk assessment in Japan is further validation of the quality and utility of our pioneering genetic test, said Gary A. King, executive vice president of International Operations, Myriad Genetics. We look forward to working with our commercial partners in Japan to ensure that BRACAnalysis is available to patients.

Myriad has an exclusive partnership with SRL Inc., a subsidiary of Miraca Group, to commercialize the BRACAnalysis Diagnostic System in Japan.

Todays announcement follows two prior regulatory approvals for the BRACAnalysis Diagnostic System in Japan. In February 2019, BRACAnalysis was approved as a companion diagnostic for Lynparza(olaparib) in women with ovarian cancer, and in March 2018, it was approved as a companion diagnostic for Lynparza in patients with metastatic inoperable or recurrent breast cancer.

About the BRACAnalysisDiagnosticSystemBRACAnalysis is a diagnostic system that classifies a patients clinically significant variants (DNA sequence variations) in the germlineBRCA1andBRCA2genes. Variants are classified into one of the five categories; Deleterious, Suspected Deleterious, Variant of Uncertain Significance, Favor Polymorphism, or Polymorphism. Once the classification is completed, the results are sent to medical personnel in Japan for determining the eligibility of patients for treatment with Lynparza.

About SRLSince the establishment in 1970, SRL, Inc., a member of the Miraca Group, Japan-based leading healthcare group, has been providing comprehensive testing services as the largest commercial clinical laboratory in Japan. SRL carries out nearly 400,000,000 tests per year, covering a wide range of testing services including general/emergency testing, esoteric/research testing, companion diagnostics tests, genomic analysis, and etc. For more information, please visithttps://www.srl-group.co.jp/english/.

About Myriad GeneticsMyriad Genetics Inc., is a leading precision medicine company dedicated to being a trusted advisor transforming patient lives worldwide with pioneering molecular diagnostics. Myriad discovers and commercializes molecular diagnostic tests that: determine the risk of developing disease, accurately diagnose disease, assess the risk of disease progression, and guide treatment decisions across six major medical specialties where molecular diagnostics can significantly improve patient care and lower healthcare costs. Myriad is focused on five critical success factors: building upon a solid hereditary cancer foundation, growing new product volume, expanding reimbursement coverage for new products, increasing RNA kit revenue internationally and improving profitability with Elevate 2020. For more information on how Myriad is making a difference, please visit the Company's website:www.myriad.com.

Myriad, the Myriad logo, BART, BRACAnalysis, Colaris, Colaris AP, myPath, myRisk, Myriad myRisk, myRisk Hereditary Cancer, myChoice, myPlan, BRACAnalysis CDx, Tumor BRACAnalysis CDx, myChoice CDx, EndoPredict, Vectra, GeneSight, riskScore, Prolaris, ForeSight and Prequel are trademarks or registered trademarks of Myriad Genetics, Inc. or its wholly owned subsidiaries in the United States and foreign countries. MYGN-F, MYGN-G.

Lynparza is a registered trademark of AstraZeneca.

Safe Harbor StatementThis press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements relating to Japans Ministry of Health, Labour and Welfare (MHLW) marketing approval of the companys BRACAnalysis Diagnostic System to identify patients with breast cancer who would be eligible for additional medical management; the Company working with commercial partners in Japan to ensure that BRACAnalysis is available to patients; and the Company's strategic directives under the caption "About Myriad Genetics." These "forward-looking statements" are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by forward-looking statements. These risks and uncertainties include, but are not limited to: the risk that sales and profit margins of our molecular diagnostic tests and pharmaceutical and clinical services may decline; risks related to our ability to transition from our existing product portfolio to our new tests, including unexpected costs and delays; risks related to decisions or changes in governmental or private insurers reimbursement levels for our tests or our ability to obtain reimbursement for our new tests at comparable levels to our existing tests; risks related to increased competition and the development of new competing tests and services; the risk that we may be unable to develop or achieve commercial success for additional molecular diagnostic tests and pharmaceutical and clinical services in a timely manner, or at all; the risk that we may not successfully develop new markets for our molecular diagnostic tests and pharmaceutical and clinical services, including our ability to successfully generate revenue outside the United States; the risk that licenses to the technology underlying our molecular diagnostic tests and pharmaceutical and clinical services and any future tests and services are terminated or cannot be maintained on satisfactory terms; risks related to delays or other problems with operating our laboratory testing facilities and our healthcare clinic; risks related to public concern over genetic testing in general or our tests in particular; risks related to regulatory requirements or enforcement in the United States and foreign countries and changes in the structure of the healthcare system or healthcare payment systems; risks related to our ability to obtain new corporate collaborations or licenses and acquire new technologies or businesses on satisfactory terms, if at all; risks related to our ability to successfully integrate and derive benefits from any technologies or businesses that we license or acquire; risks related to our projections about our business, results of operations and financial condition; risks related to the potential market opportunity for our products and services; the risk that we or our licensors may be unable to protect or that third parties will infringe the proprietary technologies underlying our tests; the risk of patent-infringement claims or challenges to the validity of our patents or other intellectual property; risks related to changes in intellectual property laws covering our molecular diagnostic tests and pharmaceutical and clinical services and patents or enforcement in the United States and foreign countries, such as the Supreme Court decision in the lawsuit brought against us by the Association for Molecular Pathology et al; risks of new, changing and competitive technologies and regulations in the United States and internationally; the risk that we may be unable to comply with financial operating covenants under our credit or lending agreements; the risk that we will be unable to pay, when due, amounts due under our credit or lending agreements; and other factors discussed under the heading "Risk Factors" contained in Item 1A of our most recent Annual Report on Form 10-K for the fiscal year ended June 30, 2019, which has been filed with the Securities and Exchange Commission, as well as any updates to those risk factors filed from time to time in our Quarterly Reports on Form 10-Q or Current Reports on Form 8-K. All information in this press release is as of the date of the release, and Myriad undertakes no duty to update this information unless required by law.

2019 GlobeNewswire, Inc. All Rights Reserved.

SOURCE: Myriad Genetics, Inc.

Read the original:
Myriad Genetics Announces Regulatory Approval Of The BRACAnalysis Diagnostic System In Japan For Breast Cancer Patients - Laboratory Network

Posted in Molecular Genetics | Comments Off on Myriad Genetics Announces Regulatory Approval Of The BRACAnalysis Diagnostic System In Japan For Breast Cancer Patients – Laboratory Network

An American company will test your embryos for genetic defects. But designer babies aren’t here just yet – The Conversation AU

Posted: November 23, 2019 at 10:43 am

Designer baby, anyone? A New Jersey startup company, Genomic Prediction, might be able to help you.

Genomic Prediction claims to be able to use DNA testing to predict disease risk in an embryo. The idea is to study hundreds or thousands of small variations in DNA, known as genetic markers, and use sophisticated computer algorithms to correlate these with diseases such as type 1 and type 2 diabetes, breast cancer and intellectual disability.

If the companys recent research is any guide, it may move on to predicting other traits such as height and even educational attainment.

But the connections between genetic variations and differences in real human beings are far from straightforward. And even if we can make these connections, should we?

In my own field, forensic genetics, we have a similar goal: to produce a molecular photofit or DNA mugshot of the perpetrator of a crime, using DNA left at a crime scene. At first, there was great optimism.

Only six genetic markers were required to predict blue or brown eye colour with reasonable accuracy. However, prediction of intermediate eye colours (green, hazel, light brown) was less accurate. Testing for hair colour soon followed (24 markers) and, most recently, skin colour (41 markers).

Eye, hair and skin colour are all largely controlled by a small number of genes related to the pigment melanin. There are two types of melanin, a dark and a light form, and between them they give rise to the spectrum of eye, hair and skin colours.

Read more: World's first genetically modified human embryo raises ethical concerns

High doses of the light pigment are found only in individuals with European ancestry, particularly northern European. Prediction systems have really only been developed and tested rigorously on Europeans and North Americans.

This is the case with many large genome-wide association studies (GWAS) and data sets, including some of those used by Genomic Prediction. Individuals without European ancestry are poorly represented, and the associations between genetic markers and traits dont always replicate in populations that dont have European ancestry.

Since these first few pigmentation prediction systems, progress has been slow in forensic genetics. This is because most traits even ones that are strongly influenced by genetics are very polygenic, which means they are influenced by many different genes.

For example, height and educational attainment are both highly heritable. But they are under the influence of hundreds, if not thousands, of genetic markers, each with a very small effect on the trait.

Further, the marker variants with the largest influence are generally the rarest ones. For example, the variants with the largest influence on height each account for only one or two centimetres and are present in no more than 0.2% of the population. More common variants each account for height differences of mere millimetres or even less.

Polygenic scores add up all the tiny effects of these multiple marker variants to give an overall prediction. But there are several caveats.

First, they dont take account of genetic synergies (epistasis). The effects of two (or more) different markers may not add up in any simple way.

Second, they completely ignore environmental effects: the nurture part of nature versus nurture. For example, although both are highly heritable, height is affected by nutrition, and educational attainment is influenced by educational expectations and parental education. So, really, what is being predicted is the genetic potential for a particular trait.

Assuming Genomic Prediction can predict these potentials accurately, will they all be found in one embryo?

Lets say you want a tall, brown-eyed, high educational achiever with a low risk of breast cancer. The odds of finding all of these potentials in one embryo is very low, like throwing dozens of dice and having them all come up with sixes.

Even if you are lucky with your roll of the genetic dice, are you sure your designer baby will thank you when they grow up? Your idea of the perfect trait might not be theirs. You are, in effect, choosing their DNA without their consent.

Read more: 3-parent IVF could prevent illness in many children (but it's really more like 2.002-parent IVF)

Are you ready to see a prediction of what your baby might look like as an adult, or a photo-board from which to choose your future offspring? Companies are already offering to produce molecular photofits of unknown donors of crime-scene DNA. Its not a giant leap to designer babies.

At US$1,000 per case and an additional US$400 per screened embryo for expanded pre-implantation genomic testing (EPGT is Genomic Predictions flagship product), designer babies will inevitably be more available to wealthier parents. There are valid concerns that this could lead to genetic advantage and disadvantage along socio-economic lines.

Genetic screening is already common practice, especially for chromosomal disorders. Like many others, my own daughter received a nuchal fold thickness assessment as a standard ultrasound screen for Down syndrome.

Screening for genetic risks is just one more step along this continuum. But how many steps should we take? Once we start selecting for desirable characteristics, its easy to see the moral slope becoming very slippery.

Continued here:
An American company will test your embryos for genetic defects. But designer babies aren't here just yet - The Conversation AU

Posted in Molecular Genetics | Comments Off on An American company will test your embryos for genetic defects. But designer babies aren’t here just yet – The Conversation AU

115 more arazi centres to be set up – The News International

Posted: November 23, 2019 at 10:43 am

115 more arazi centres to be set up

LAHORE :The Punjab government will set up 115 arazi centres in different districts of the province by the end of the current year to facilitate the general public at their doorstep.

The arazi centres will provide revenue related facilities to the general public in an efficient and transparent manner.

This was stated by Provincial Minister for Revenue Malik Muhammad Anwar while talking to different delegations at his office on Friday.

The minister said that 153 arazi record centres were already providing different facilities to the people in 36 districts of the province.

He said the Board of Revenue was going to procure 20 state-of-the-art mobile vans so that revenue-related facilities could be provided to the people close to their residence.

The BOR has also taken steps to facilitate the rural population and computer technology has been utilised to facilitate the people.

The PTI led government has given special attention to ensuring complete transparency in revenue matters to save public properties from land grabbers, the minister concluded.

Magistrates: A spokesman for the Provincial Industries and Trade Department has the price control magistrates are conducing raids to check the price of essential commodities across the province.

The spokesman stated the price control magistrates conducted raids on 10,350 shops.

As many as 1,952 complaints relating to price-hike were lodged and 189 cases were registered in which 179 persons were arrested and fines amounting to more than Rs3.5 million were also imposed.

PhDs awarded: Punjab University (PU) has awarded PhD degrees to five scholars.

Ambreen Gul, daughter of Mirza Sultan Ahmed, has been awarded PhD in Molecular Biology after approval of her thesis entitled Overexpression of Aspartic Acid in Cotton Against Insects, Ammara Ahad, d/o Abdul Ahad Khan, in Molecular Biology after approval of her thesis entitled Expression of Flavonoid Pigment Related Genes in Cotton (Gossypium hirsutum), Khadija Aaliya, d/o Asif Hussain, Molecular Biology after approval of her thesis entitled Transformation and Expression Studies of Multiple Frost Tolerant Genes in Solanum Tuberosum L, Mehvish Ajaz, d/o Soofi Ajaz Ahmed, in Microbiology and Molecular Genetics after approval of her thesis entitled Azo Dyes Removal by Bacteria Isolated from Industrial Wastewater and Naveed Ahmad Noor, son of Muhammad Nawaz, in the subject of High Energy Physics after approval of his thesis entitled Under Pressure Study of Fundamental Properties of Perovskite Oxides Using Density Functional Theory (DFT).

Go here to see the original:
115 more arazi centres to be set up - The News International

Posted in Molecular Genetics | Comments Off on 115 more arazi centres to be set up – The News International

Eun Ji Chung Named as IEEE New Innovator and BMES Rising Star – USC Viterbi School of Engineering

Posted: November 22, 2019 at 12:45 pm

Dr. Karl Jacob Jr. and Karl Jacob III Early-Career Chair Eun Ji Chung. Photo courtesy of Viterbi Staff.

Eun Ji Chung, USC Viterbis Dr. Karl Jacob Jr. and Karl Jacob III Early-Career Chair and Assistant Professor of Biomedical Engineering, Chemical Engineering and Materials Science, has recently been honored by the Institute of Electrical and Electronics Engineers (IEEE) and the Biomedical Engineering Society (BMES) for her research in nanomedicine and bioengineering.

The IEEE has selected Chung as a NANOMED New Innovator, with the award to be presented at the IEEE International Conference on Nano/Molecular Medicine and Engineering in Gwangju, Korea on 21 24 November. The latest honor recognizes Chungs eminent research activities in the field of nanomedicine and molecular engineering as well as her continuous contribution to the IEEE-NANOMED community.

Meanwhile the BMES will honor Chung with the 2020 Rising Star Junior Faculty Award, to be presented at the BMES Cell and Molecular Bioengineering conference on January 2 6 in Puerto Rico. Chung will be recognized at the conference gala, and will be invited to present at the event. The BMES describes the Rising Star Award as a leading form of recognition of outstanding research in the field of cell and molecular bioengineering.

Chung and her research groupinvestigate molecular design, nanomedicine and tissue engineering to generate biomaterial strategies for clinical applications. A key focus of Chungs labs research involves the design and application of self-assembling, peptide nanoparticles for targeted cardiovascular and cancer treatments, as well as for the treatment of kidney disease.

A faculty member of theUSC Michelson Center for Convergent Bioscience, Chung received her B.A. in Molecular Biology with honors from Scripps College, Claremont, California, and her Ph.D. from the Interdisciplinary Biological Sciences Program and the Department of Biomedical Engineering from Northwestern University.

She was recently named 2019 Orange County Engineering Council Outstanding Young Engineer and a Journal of Materials Chemistry B Emerging Investigator for 2019.

Last year, Chung was awarded the NIH New Innovator Award to develop a new approach to a type of kidney disease, known as autosomal dominant polycystic kidney disease, the most commonly inherited kidney disorder.

Chung is a recipient of the SQI-Baxter Early Career Award, the American Heart Association Postdoctoral Fellowship, the Postdoctoral Research Grant from the Chicago Biomedical Consortium, and the K99/R00 Pathway to Independence Award from the NIH. She is a member of the Society for Biomaterials, the BMES, and the American Institute for Chemical Engineers.

Here is the original post:
Eun Ji Chung Named as IEEE New Innovator and BMES Rising Star - USC Viterbi School of Engineering

Posted in Molecular Medicine | Comments Off on Eun Ji Chung Named as IEEE New Innovator and BMES Rising Star – USC Viterbi School of Engineering

New Immune-Boosting Pet Supplement May Add Years to the Life of Your Pet – PRNewswire

Posted: November 22, 2019 at 12:45 pm

VENTURA, Calif., Nov. 22, 2019 /PRNewswire/ --A California-based pet wellness company has launched a new natural health supplement formulated to boost your pet's immune system and protect dogs and cats against cancer and other life-threatening diseases.

"Cancer is the number-one killer of dogs and cats," explains VetSmart Formulas founder and CEO, Russ Kamalski. "We wanted to create a product that would help pets stay healthy and active for years to come. That's why we've spent the past few years perfecting the formula and making sure it includes active ingredients that have been proven to promote normal cell growth and support long-term health in pets."

The supplement's main ingredients are four medicinal mushrooms from Asia that have been proven to inhibit the growth of cancerous tumors, strengthen the immune system, lower cholesterol levels and blood pressure, and reduce inflammation. The product also includes a patented white turmeric extract that contains active ingredients that have been shown to protect against neurodegenerative diseases, arthritis, cardiovascular risks, and liver damage.

Kamalski says that the powerful combination of natural ingredients is one of the most effective antioxidant supplements for pets and is designed to strengthen the immune system for both young pets as a preventative measure, and for those dogs and cats struggling with diseases such as cancer, it helps the pet's natural immune defenses in an extraordinary way.

"It is the responsibility of the pet owner to do everything possible to minimize the risk of cancer in their pets. That includes a sensible lifestyle with sufficient exercise, weight management, drinking clean water, healthy food intake, and avoiding toxins," says Doctor of Veterinary Medicine Shawn Messonnier, founder of Paws & Claws Animal Hospital in Plano, Texas. "Giving your pets a high-quality antioxidant supplement is highly recommended to further reduce the risk of cancer."

Kamalski, who has decades of experience in the natural health supplement industry, decided to develop this all-natural supplement when his 12-year-old dog, Sienna, developed bone cancer. The doctors gave her just a few months to live but Kamalski exhaustively researched alternative cancer treatments and developed an early prototype of the Critical Immune Defense formula to aid in her treatment and recovery. With the support of Sienna's veterinarian and oncologist, he succeeded in extending Sienna's life by almost two years.

"The oncologists who were treating her were amazed," Kamalski says. "Her tumors basically stopped growing and started to shrink. Not only did the product help slow the cancer growth, her quality of life dramatically improved. They'd never seen anything like it."

Critical Immune Defense is not available in retail stores and can be found at the Pet Wellness Direct Website: http://getvsf.com/cid-press

About VetSmart Formulas:VetSmart Formulas is a line of high-quality pet supplements sold directly to consumers by Pet Wellness Direct, an online pet wellness company founded in 2015. The company's all-natural products are made in the USA in FDA audited labs, have no artificial ingredients or flavors, are wheat-free, and are based on scientifically superior formulas that pet professionals demand. The company's board of advisors includes a professor of biochemistry and molecular medicine and four veterinarians who are passionate about protecting our pets from disease and increasing pet health and longevity.

Related Links:

Russ KamalskiCEOPet Wellness Direct888-212-8400, ext. 802inquiries@petwellnessdirect.com

This release was issued through WebWire. For more information visit http://www.webwire.com.

SOURCE Pet Wellness Direct

Read the original here:
New Immune-Boosting Pet Supplement May Add Years to the Life of Your Pet - PRNewswire

Posted in Molecular Medicine | Comments Off on New Immune-Boosting Pet Supplement May Add Years to the Life of Your Pet – PRNewswire

Rochester cancer-therapy firm to collaborate with drugmaker on melanoma treatment – Minneapolis Star Tribune

Posted: November 22, 2019 at 12:45 pm

Vyriad, a company in southeastern Minnesota that is designing viruses to selectively kill cancer cells, has signed a major agreement with the biotech drugmaker Regeneron to collaborate on drug therapies to target melanoma and cancers of the lung, liver and uterus.

A Vyriad spokesman said the agreement would lead to a doubling of the 20-person workforce that Vyriad and its sister company, Imanis Life Sciences, share in Rochester. Vyriad is also planning to expand its research and manufacturing space, moving it out of the Mayo Clinic and into a new 25,000-square-foot facility.

Vyriad has a close relationship with Mayo, using intellectual property licensed from the Mayo Clinic and having been co-founded by Mayo researcher Dr. Stephen Russell, who founded the clinics Molecular Medicine Department and built an oncolytic virotherapy program there.

The relationship is a big reason Vyriad remains in Minnesota. Russell said in an interview that Vyriad has heard feedback from private venture-capital firms that have said they would be more likely to invest in Vyriad if the company moved to a traditional biotech hub like Boston or San Francisco. But Vyriads close link with Mayo and the Rochester community is too important for the company to leave town.

The link with Mayo Clinic is enormously valuable to the company. We are built on technology that was developed at Mayo Clinic, and there is a pipeline of related technologies being developed at Mayo. The founding scientists live in Rochester. They work at Mayo Clinic, Russell said. In addition, there is the DMC [Destination Medical Center] effort going on, and there is a definite will in the community to build biotech in Rochester.

Unlike venture-capital firms that were overly concerned about recruiting top executive talent to southeastern Minnesota, Regeneron was more interested in whether the collaboration was scientifically sound, Russell said.

Under the collaboration agreement with Regeneron, the New York-based drugmaker made an equity investment in Vyriads Series B fundraising round. Following a successful closing of a $10 million Series A round in 2017, Vyriads ongoing Series B round has raised $24.4 million toward its goal of $37.8 million, including the Regeneron contribution, according to a filing with the Securities and Exchange Commission.

Regenerons equity investment comes in addition to a cash payment of undisclosed size made to Vyriad as well. The deal gives Regeneron the ability to exclusively license a Vyriad compound called Voyager-V1 and other products developed under the collaboration, while Vyriad will work exclusively with Regeneron to research and develop vesicular stomatitis virus (VSV)-based treatments.

We are thrilled to partner with Regeneron in this far-reaching collaboration to develop novel cancer treatments, Russell said in the company announcement. We are confident that the clinical combination of Voyager-V1 with Libtayo will result in effective anti-cancer activity

Libtayo, developed and commercialized jointly by Regeneron and Sanofi, is a type of human monoclonal antibody known as a PD-1 inhibitor that, when concentrated into a biologic drug, encourages the immune system to release more cancer-killing T cells. Doctors believe Libtayo can be used in combination with Vyriads investigational intravenous drug candidate Voyager-V1, an engineered VSV that attacks specific cancer cells, activates the anti-tumor immune system, and potentially causes further PD-1 inhibition to kill cancer cells.

Correction: A previous version incorrectly reported the size of Vyriads new research and manufacturing facility.

View original post here:
Rochester cancer-therapy firm to collaborate with drugmaker on melanoma treatment - Minneapolis Star Tribune

Posted in Molecular Medicine | Comments Off on Rochester cancer-therapy firm to collaborate with drugmaker on melanoma treatment – Minneapolis Star Tribune

Calculating the Spatial Pattern of Gene Expression for the Entire Genome – Technology Networks

Posted: November 22, 2019 at 12:45 pm

Professor Nikolaus Rajewsky is a visionary: He wants to understand exactly what happens in human cells during disease progression, with the goal of being able to recognize and treat the very first cellular changes. "This requires us not only to decipher the activity of the genome in individual cells, but also to track it spatially within an organ," explains the scientific director of the Berlin Institute for Medical Systems Biology (BIMSB) at the Max Delbrck Center for Molecular Medicine (MDC) in Berlin. For example, the spatial arrangement of immune cells in cancer ("microenvironment") is extremely important in order to diagnose the disease accurately and select the optimal therapy. "In general, we lack a systematic approach to molecularly capture and understand the (patho-)physiology of a tissue."

Maps for very different tissue typesRajewsky has now taken a big step towards his goal with a major new study that has been published in the scientific journal Nature. Together with Professor Nir Friedman from the Hebrew University of Jerusalem, Dr. Mor Nitzan from Harvard University in Cambridge, USA, and Dr. Nikos Karaiskos, a project leader from his own research group on "Systems Biology of Gene Regulatory Elements", the scientists have succeeded in using a special algorithm to create a spatial map of gene expression for individual cells in very different tissue types: in the liver and intestinal epithelium of mammals, as well as in embryos of fruit flies and zebrafish, in parts of the cerebellum, and in the kidney. "Sometimes purely theoretical science is enough to publish in a high-ranking science journal - I think this will happen even more frequently in the future. We need to invest a lot more in machine learning and artificial intelligence," says Nikolaus Rajewsky.

"Using these computer-generated maps, we are now able to precisely track whether a specific gene is active or not in the cells of a tissue part," explains Karaiskos, a theoretical physicist and bioinformatician who developed the algorithm together with Mor Nitzan. "This would not have been possible in this form without our model, which we have named 'novoSpaRc.'"

Spatial information was previously lost

It is only in recent years that researchers have been able to determine - on a large scale and with high precision - which information individual cells in an organ or tissue are retrieving from the genome at any given time. This was thanks to new sequencing methods, for example multiplex RNA sequencing, which enables a large number of RNA molecules to be analyzed simultaneously. RNA is produced in the cell when genes become active and proteins are formed from their blueprints. Rajewsky recognized the potential of single-cell sequencing early on, and established it in his laboratory.

"But for this technology to work, the tissue under investigation must first be broken down into individual cells," explains Rajewsky. This process causes valuable information to be lost: for example, the original location in the tissue of the particular cell whose gene activity has been genetically decoded. Rajewsky and Friedmann were therefore looking for a way to use data from single-cell sequencing to develop a mathematical model that could calculate the spatial pattern of gene expression for the entire genome - even in complex tissues.

The teams led by Rajewsky and Dr. Robert Zinzen, who also works at BIMSB, already achieved a first breakthrough two years ago. In the scientific journal Science, they presented a virtual model of a fruit fly embryo. It showed which genes were active in which cells in a spatial resolution that had never before been achieved. This gene mapping was made possible with the help of 84 marker genes: in situ experiments had determined where in the egg-shaped embryo these genes were active at a certain point in time. The researchers confirmed their model worked with further complex in situexperiments on living fruit fly embryos.

A puzzle with tens of thousands of pieces and colors

"In this model, however, we reconstructed the location of each cell individually," said Karaiskos. He was one of the first authors of both the "Science" study and the current "Nature" study. "This was possible because we had to deal with a considerably smaller number of cells and genes. This time, we wanted to know whether we can reconstruct complex tissue when we have hardly any or no previous information. Can we learn a principle about how gene expression is organized and regulated in complex tissues?" The basic assumption for the algorithm was that when cells are neighbors, their gene activity is more or less alike. They retrieve more similar information from their genome than cells that are further apart.

To test this hypothesis, the researchers used existing data. For liver, kidney and intestinal epithelium there was no additional information. The group had been able to collect only a few marker genes by using reconstructed tissue samples. In one case, there were only two marker genes available.

"It was like putting together a massive puzzle with a huge number of different colors - perhaps 10,000 or so," explains Karaiskos, trying to describe the difficult task he was faced with when calculating the model. "If the puzzle is solved correctly, all these colors result in a specific shape or pattern." Each piece of the puzzle represents a single cell of the tissue under investigation, and each color an active gene that was read by an RNA molecule.

The method works regardless of sequencing technique"We now have a method that enables us to create a virtual model of the tissue under investigation on the basis of the data gained from single-cell sequencing in the computer - regardless of which sequencing method was used," says Karaiskos. "Existing information on the spatial location of individual cells can be fed into the model, thus further refining it." With the help of novoSpaRc, it is then possible to determine for each known gene where in the tissue the genetic material is active and being translated into a protein.

Now, Karaiskos and his colleagues at BIMSB are also focusing on using the model to trace back over and even predict certain developmental processes in tissues or entire organisms. However, the scientist admits there may be some specific tissues that are incompatible with the novoSpaRc algorithm. But this could be a welcome challenge, he says: A chance to try his hand at a new puzzle!

Reference: Nitzan, Karaiskos, Friedman and Nikolaus Rajewsky. 2019. Gene expression cartography. DOI: https://doi.org/10.1038/s41586-019-1773-3.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Go here to see the original:
Calculating the Spatial Pattern of Gene Expression for the Entire Genome - Technology Networks

Posted in Molecular Medicine | Comments Off on Calculating the Spatial Pattern of Gene Expression for the Entire Genome – Technology Networks

Page 1,261«..1020..1,2601,2611,2621,263..1,2701,280..»