Page 1,306«..1020..1,3051,3061,3071,308..1,3201,330..»

New books explore why dogs and humans have such a special bond – Science News

Posted: October 22, 2019 at 2:50 pm

My 65-pound black mutt is feeling playful. She rams her headinto the couch cushions and launches her butt into the air, snuffling andgrowling excitedly. She achieves a partial headstand and her hind legs kickwildly. She is the embodiment of joy, and that joy is infectious.

Dogs have been jubilantly kicking their legs in the air forat least 14,000 years, and during that time they became our devoted companions.Two new books offer different takes on this interspecies bond. The first makesa compelling case that dogs do far more than just obey us they love us. Theother book offers a broader look at all the complexities and contradictions ofthe human-dog relationship.

Clive Wynne, a canine behaviorist and founding director of the Canine Science Collaboratory at Arizona State University in Tempe, has always loved dogs, but it took him many years to become convinced that the feeling is reciprocated. In Dog Is Love, readers accompany Wynne on his scientific journey from skeptic to believer. Not only do dogs love us, he argues, but it is their capacity and desire to connect with humans that makes dogs unique.

Many scientists are loath to talk about the emotional lives of animals, love in particular (SN: 3/2/19, p. 28). The concept seems too soppy and imprecise, Wynne writes, and we risk anthropomorphizing dogs. But acknowledging their capacity for love is the only way to make sense of why dogs are so devoted to us and thrive in our company, he argues. Dog Is Love takes readers all the way from theories about how dogs became domesticated to recent behavioral, biological and genetics research that provides convincing evidence that our canine companions feel affection. Dogs genetic makeup predisposes them to be loving (SN: 8/19/17, p. 8), Wynne argues, and early exposure to humans (or even other animals) solidifies the connection.

Our Dogs, Ourselvesoffers a more comprehensive exploration of the human-dog relationship. AlexandraHorowitz, head of Barnard Colleges Dog Cognition Lab in New York City andauthor of the 2009 New York Timesbestseller Inside of a Dog, gives an overviewof the culture of dogdom the way people acquire, name, train, raise, treat,talk to and see dogs. She explores the lighter side of this culture, includingour fixation with dog accessories everything from dog bathrobes and caninebody sprays to fake testicles.

But Horowitz also tackles the darker side and poses somethought-provoking ethical questions: Should we view dogs as property? Is spayingand neutering dogs the right way to deal with overpopulation? Should dogs beused in research?

Both books address a particularly thorny problem: dog breeds. Initially, dogs were bred for specific purposes hunting or providing comfort, for example. But in the late 1800s, the emphasis became purity, Horowitz writes. Today, purebred dogs are descended from a relatively small pool of founders and inbreeding is rampant. A purebreds family tree might reveal that his father is also his grandfather and his mothers uncle to boot, Wynne writes. Because the gene pool for each breed is closed, genetic defects crop up. Dalmatians are predisposed to deafness and a heritable urinary tract disorder. German shepherds are prone to hip problems.

Headlines and summaries of the latest Science News articles, delivered Tuesdays and Thursdays

Some of the defining physical characteristics of certainbreeds can also present serious health challenges. Bulldogs have such enormousheads that puppies must typically be delivered via cesarean section. Pugs andother flat-faced dogs often have trouble breathing. Breed standards, whichdescribe how a breed should look, glorify disease and deformity, Horowitzwrites. The puzzling thing isnt that these animals are diseased, she adds,its that it is we who made themsick.

Horowitz and Wynne agree that we can do better for dogs. Thatmight mean changing the laws that govern dog ownership and how we treat dogs, rethinkingour devotion to purebreds and finding better ways to control overpopulation anddeal with strays. Wynne argues that no-kill shelters often become little morethan canine warehouses, housing dogs that have no hope of being adopted. He proposes some modest changes that mighthelp improve the lives of shelter dogs and adoption rates.

We also must help our dogs lead richer, more satisfyinglives. Dogs are suited to be companions, but many spend the majority of theirlives alone, awaiting the return of their humans. The cruelest thing you cando to a highly social being is shut him up all day where he cannot interactwith anyone, Wynne writes. Yet that has become the norm in many countries.

If you want a deep dive into the research that suggests dogs are capable of love, how this capability came to be and what dog owners can do to foster it, grab Dog Is Love. For a wide-ranging exploration of the human-dog relationship, including its perils and pitfalls, pick up Our Dogs, Ourselves. Both books will make you see canine companions in new ways. And both are best enjoyed with a dogs head in your lap.

BuyDog Is Love orOur Dogs, Ourselvesfrom Amazon.com. Science Newsis a participant in the Amazon Services LLC Associates Program. Please see ourFAQfor more details.

See the rest here:
New books explore why dogs and humans have such a special bond - Science News

Posted in Human Genetics | Comments Off on New books explore why dogs and humans have such a special bond – Science News

We need to understand the culture of whales so we can save them – Dal News

Posted: October 22, 2019 at 2:50 pm

About the author: Felicia Vachon is a PhD candidate in the Department of Biology at Dalhousie University.

We often think of culture as solely human. We think of our music, our clothes, our food, our languages. However, culture stretches far beyond Homo sapiens. As evidence of the existence of culture in other animal groups emerges (from insects, rats, fish to land mammals, primates and dolphins), humans need to rethink what it means to have culture. We must accept that what we have long considered our own might be shared.

This is especially important because culture can have important implications for conservation. Understanding an animals culture might be the only way to save them.

As a PhD candidate studying culture in a non-human species, the sperm whale, I have had the chance to witness its implications. The more time I spend with whales and learning from them, the more I am convinced that acknowledging their culture is necessary to understand and protect them.

Two sperm whales diving together. Felicia Vachon, Author provided

While most people have a general idea of what culture is, defining it can prove difficult. Culture is pervasive and, at the same time, it can express itself in such small, almost non-perceptible ways. Biology defines culture as shared information (or behaviour) that you acquire socially from your peers.

The importance of culture has long been recognized in humans. It is how we successfully inhabited all the biomes of our planet. Culture dictates our social interactions; the spontaneity of fashion and music; the laws that govern our societies and civilizations; the causes of our wars; the reason why, right now, you are reading this article instead of foraging in the forest.

Sperm whales in Dominica, an island nation in the Caribbean. Shutterstock

Culture shapes every aspect of our lives and has allowed us to become the dominant species we are today. However, although humans might be the most cultural species, they are not the only cultural species.

Instead, culture expressed in small and big ways is found throughout the animal kingdom: chimpanzees in West Africa use tools to crack nuts, capuchin monkeys have group-specific social rituals, dolphins cooperate with fishermen to obtain food, songbirds and humpback whales have ever-changing songs, bighorn sheep follow cultural migratory routes, reef fishes have preferred mating sites, bumblebees learn from each other to solve complex puzzles.

And this is only the very tip of the iceberg. Every year, more evidence emerges on to the presence of culture in animals.

Beyond primates, the animal group for which we have the most evidence of culture are the cetaceans (whales and dolphins). Among them, the sperm whale has received particular attention.

Like us, sperm whales have families, they have strong affiliations with a few individuals and they are extremely social. Such a social environment is the perfect substrate for culture.

Sperm whales are matrilineal, which means that females stay with their mothers, forming groups called social units. These social units are comprised of one or two families and are stable over their entire lives. They travel together, socialize together, forage together and learn from each other. Beyond social units, sperm whale societies are also organized at a higher tier called vocal clans. Vocal clans include thousands of individuals and can be recognized acoustically.

Whales from different vocal clans sound incredibly different!

Sperm whale fluke. Felicia Vachon, Author provided

The most exciting part, however, is that individuals from different vocal clans not only have extremely different repertoires but also do not associate with each other, even if they live in the same environment. For example, in the Eastern Caribbean where I study sperm whales, we know about two vocal clans: EC1 and EC2. These two vocal clans have been identified in the same area (around the island of Dominica) but have never been seen interacting with each other: not even once in the 15 years the Dominica Sperm Whale Project has been studying the population.

In contrast, social units that belong to the same vocal clans are regularly observed foraging and socializing together.

Why is that? They live in the same environment, so surely, these differences are not the result of geographic adaptations. Could it be genetics? The evidence says otherwise: genetics cant explain the variation in vocal repertoire. The only remaining explanation is culture. Perhaps whales actively choose to avoid whales from different vocal clans. They learn a specific vocal repertoire from their mothers and then only associate with individuals that share that same repertoire.

These short audio clips are from the two vocal clans present in the Caribbean: EC1 and EC2. While EC1 whales often make clicks in the pattern click-click-click-click-click, EC2 whales often make clicks in the pattern click-click-click-click-click. These patterns have the same number of clicks, but different tempos.

Culture has important implications for conservation. If a population is subdivided into cultural groups, then conservation efforts targeting only one group will lead to a loss of diversity.

Young sperm whale breaching. Felicia Vachon, Author provided

If cultural knowledge is mostly obtained from older matriarchs, then protecting these individuals at all costs should be our priority. If species are able to learn socially, they might respond differently to anthropogenic stressors. And yet, we seldom hear about it.

Acknowledging the presence of culture in other species would go against our anthropocentric view of the world: a world where humans are at the end of the evolutionary tree, smarter, more advanced and more important than other species.

It would blur the line between us and them. Once this occurs, how could we justify putting these cultural beings in cages, treating them as legal property and destroying their habitats? Perhaps it is time to re-think culture and acknowledge that other species might share what we long considered our own.

This article was first published on The Conversation, which features includes relevant and informed articles written by researchers and academics in their areas of expertise and edited by experienced journalists. Dalhousie University is a founding partner of The Conversation Canada, an online media outlet providing independent, high-quality explanatory journalism. Originally established in Australia in 2011, it has had more than 85 commissioning editors and 30,000-plus academics register as contributors. A full list of articles written by Dalhousie academics can be found onthe Conversation Canada website.

Go here to read the rest:
We need to understand the culture of whales so we can save them - Dal News

Posted in Human Genetics | Comments Off on We need to understand the culture of whales so we can save them – Dal News

Quantum dots that light up TVs could be used for brain research – Stuff Magazines

Posted: October 22, 2019 at 2:49 pm

While many people love colorful photos of landscapes, flowers or rainbows, some biomedical researchers treasure vivid images on a much smaller scale as tiny as one-thousandth the width of a human hair.

To study the micro world and help advance medical knowledge and treatments, these scientists use fluorescent nano-sized particles.

Quantum dots are one type of nanoparticle, more commonly known for their use in TV screens. Theyre super tiny crystals that can transport electrons. When UV light hits these semiconducting particles, they can emit light of various colors.

That fluorescence allows scientists to use them to study hidden or otherwise cryptic parts of cells, organs and other structures.

Im part of a group of nanotechnology and neuroscience researchers at the University of Washington investigatinghow quantum dots behave in the brain.

Common brain diseases are estimated to cost the U.S.nearly US$800 billionannually. These diseases including Alzheimers disease and neurodevelopmental disorders are hard to diagnose or treat.

Nanoscale tools, such as quantum dots, that can capture the nuance in complicated cell activities hold promise as brain-imaging tools or drug delivery carriers for the brain. But because there are many reasons to be concerned about their use in medicine, mainly related to health and safety, its important to figure out more about how they work in biological systems.

Researchers firstdiscovered quantum dots in the 1980s. These tiny particles are different from other crystals in that they can produce different colors depending on their size. They are so small that that they are sometimes called zero-dimensional or artificial atoms.

The most commonly known use of quantum dots nowadays may be TV screens. Samsung launched theirQLED TVs in 2015, and a few other companies followed not long after. But scientists have been eyeing quantum dots for almost a decade. Because of their unique optical properties they can produce thousands of bright, sharp fluorescent colors scientists started using them as optical sensors or imaging probes, particularly in medical research.

Scientists have long used various dyes to tag cells, organs and other tissues to view the inner workings of the body, whether that be for diagnosis or for fundamental research.

The most common dyes have some significant problems. For one, their color often cannot survive very long in cells or tissues.They may fade in a matter of seconds or minutes. For some types of research, such as tracking cell behaviors or delivering drugs in the body, these organic dyes simply do not last long enough.

Quantum dots would solve those problems. They are very bright and fade very slowly.Their color can still stand out after a month. Moreover, they are too small to physically affect the movement of cells or molecules.

Those properties make quantum dots popular in medical research. Nowadays quantum dots are mainly used for high resolution 3D imaging of cells or molecules, or real-time tracking probes inside or outside of animal bodies that can last for an extended period.

But their use is still restricted to animal research, because scientists areconcerned about their use in human beings. Quantum dots commonly contain cadmium, a heavy metal that is highly poisonous and carcinogenic. They mayleak the toxic metalor form an unstable aggregate, causing cell death andinflammation. Some organs may tolerate a small amount of this, but the brain cannot withstand such injury.

My colleagues and I believe an important first step toward wider use of quantum dots in medicine is understanding how they behave in biological environments. That could help scientists design quantum dots suitable for medical research and diagnostics: When theyre injected into the body, they need to stay small particles, be not very toxic and able to target specific types of cells.

We looked at thestability, toxicity and cellular interactions of quantum dots in the developing brains of rats. We wrapped the tiny quantum dots in different chemical coats. Scientists believe these coats, with their various chemical properties, control the way quantum dots interact with the biological environment that surrounds them. Then we evaluated how quantum dots performed in three commonly used brain-related models: cell cultures, rat brain slices and individual live rats.

We found that different chemical coats give quantum dots different behaviors. Quantum dots with a polymer coat of polyethylene glycol (PEG) were the most promising. They are more stable and less toxic in the rat brain, and at a certain dose dont kill cells. It turns out that PEG-coated quantum dots activate a biological pathway that ramps up the production of a molecule that detoxifies metal. Its a protective mechanism embedded in the cells that happens to ward off injury by quantum dots.

Quantum dots are also eaten bymicroglia, the brains inner immune cells. These cells regulate inflammation in the brain and are involved in multiple brain disorders. Quantum dots are then transported to the microglias lysosomes, the cells garbage cans, for degradation.

But we also discovered that the behaviors of quantum dots vary slightly between cell cultures, brain slices and living animals. The simplified models may demonstrate how a part of the brain responds, but they are not a substitute for the entire organ.

For example, cell cultures contain brain cells but lack the connected cellular networks that tissues have. Brain slices have more structure than cell cultures, but they also lack the full organs blood-brain barrier its Great Wall that prevents foreign objects from entering.

Our results offer a warning: Nanomedicine research in the brain makes no sense without carefully considering the organs complexity.

That said, we think our findings can help researchers design quantum dots that are more suitable for use in living brains. For example, our research shows that PEG-coated quantum dots remain stable and relatively nontoxic in living brain tissue while having great imaging performance. We imagine they could be used to track real-time movements of viruses or cells in the brain.

In the future, along with MRI or CT scans, quantum dots may become vital imaging tools. They might also be used as traceable carriers that deliver drugs to specific cells. Ultimately, though, for quantum dots to realize their biomedical potential beyond research, scientists must address health and safety concerns.

Although theres a long way to go, my colleagues and I hope the future for quantum dots may be as bright and colorful as the artificial atoms themselves.

Continue reading here:
Quantum dots that light up TVs could be used for brain research - Stuff Magazines

Posted in Nano medicine | Comments Off on Quantum dots that light up TVs could be used for brain research – Stuff Magazines

Nanorobotic Market 2019 Technological Perspective, Latest Trends and key manufacturers:: Bruker, Jeol, Thermo Fisher Scientific, Ginkgo Bioworks -…

Posted: October 22, 2019 at 2:49 pm

Nanorobotic is a new technology of robot engineering. The development of nano-robot belongs to molecular nanotechnology

Nanorobotic Marketreport offers a comprehensive valuation of the marketplace. It does so via in-depth comprehensions, grateful market growth by pursuing past developments, and studying the present situation and future forecasts based on progressive and likely areas. Each research report supports as a depository of analysis and data for each and every side of the industry, including but not limited to: Regional markets, types, applications, technology developments and the competitive landscape.

The Nanorobotic Market report profiles the following companies, which includes: Bruker, Jeol, Thermo Fisher Scientific, Ginkgo Bioworks, Oxford Instruments, Ev Group, Imina Technologies, Toronto Nano Instrumentation, Klocke Nanotechnik, Kleindiek Nanotechnik, Xidex, Synthace, Park Systems, Smaract, Nanonics Imaging

Get Sample Copy of this Report at @https://www.reportsintellect.com/sample-request/581106

Report Description:-

This report presents a comprehensive overview, market shares and growth opportunities of Nanorobotic market by product type, application, key companies and key regions.

In addition, this report discusses the key drivers influencing market growth, opportunities, the challenges and the risks faced by key players and the market as a whole. It also analyzes key emerging trends and their impact on present and future development.

Product Type Coverage:-Nanomanipulator, Bio-Nanorobotic, Magnetically Guided Robot

Product Application Coverage:-Nanometer Medicine, Biomedical, Machine, Other

Market Segment by Regions, regional analysis coversNorth America (United States, Canada and Mexico)Europe (Germany, France, UK, Russia and Italy)Asia-Pacific (China, Japan, Korea, India and Southeast Asia)South America (Brazil, Argentina, Colombia etc.)Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa)

Get 10% Discount on ThisReport@https://www.reportsintellect.com/discount-request/581106

Table of Content:

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered1.4 Market Analysis by Type1.5 Market by Application1.6 Study Objectives1.7 Years Considered

2 Global Growth Trends2.1 Nanorobotic- Market Size2.2 Nanorobotic- Growth Trends by Regions2.3 Industry Trends

3 Market Share by Key Players3.1 Nanorobotic- Market Size by Manufacturers3.2 Nanorobotic- Key Players Head office and Area Served3.3 Key Players Nanorobotic- Product/Solution/Service3.4 Date of Enter into Nanorobotic- Market3.5 Mergers & Acquisitions, Expansion Plans

4 Breakdown Data by Product4.1 Global Nanorobotic- Sales by Product4.2 Global Nanorobotic- Revenue by Product4.3 Nanorobotic- Price by Product

5 Breakdown Data by End User5.1 Overview5.2 Global Nanorobotic- Breakdown Data by End User

Research objectives

About Us:-Reports Intellect is your one-stop solution for everything related to market research and market intelligence. We understand the importance of market intelligence and its need in todays competitive world.

Our professional team works hard to fetch the most authentic research reports backed with impeccable data figures which guarantee outstanding results every time for you.

So, whether it is the latest report from the researchers or a custom requirement, our team is here to help you in the best possible way.

Contact Us:

Sales@reportsintellect.comPH + 1-706-996-2927US Address:225 Peachtree Street NE,Suite 400,Atlanta, GA 30303

More here:
Nanorobotic Market 2019 Technological Perspective, Latest Trends and key manufacturers:: Bruker, Jeol, Thermo Fisher Scientific, Ginkgo Bioworks -...

Posted in Nano medicine | Comments Off on Nanorobotic Market 2019 Technological Perspective, Latest Trends and key manufacturers:: Bruker, Jeol, Thermo Fisher Scientific, Ginkgo Bioworks -…

Qrons and Dartmouth researchers to develop 3D printable implants for Traumatic Brain Injuries – 3D Printing Industry

Posted: October 21, 2019 at 7:51 pm

Qrons, a New York-based biotechnology start-up, has announced an Intellectual Property (IP) License Agreement with Dartmouth College, New Hampshire, to develop 3D printable implants to treat penetrating or traumatic brain injuries (TBI).

TBI is caused by sudden damage to the brain from an external force. As stated by the World Health Organization (WHO), TBI has resulted in a large number of deaths and impairments leading to permanent disabilities. Such injuries require long-term care and incur approximately $76 billion in medical costs annually.

As a result of this agreement, Qrons has received an exclusive worldwide license of IP associated with 3D printable materials in the fields of human and animal health. Ido Merfeld, Co-founder and Head of Product, Qrons, stated:

The intellectual property covered by this license has been instrumental in helping us advance our research on the treatment of penetrating brain injuries. We believe combining Qrons proprietary hydrogel with customizable 3D printing capabilities is an innovative approach to treating traumatic brain injuries, for which there are limited treatments.

Traumatic brain injuries

According to Qrons, treating patients with TBI can be difficult as each injury is different in size, shape, spread, and location. While penetrating injuries cause mechanical damage to brain tissue, non-penetrating injuries inflict widespread neuronal disruption.

In an effort to repair TBIs, researchers from the company, which was founded in 2016, have identified thateach injured site must receive a continuous flow of neuro-protective and neuro-regenerative agents. This prevents further neuronal damage and stimulates neurons to migrate to the injury site, regrow axonal processes and regenerate brain tissue.

Thus, genetically modified mesenchymal stem cells (MSCs) are being developed to secrete these agents to continuously and safely drive TBI repair mechanisms. Qrons is using the patented process Mechanically interlocked molecules-based materials for 3D printing to create injury-specific3D printable implants for TBIs.

Jonah Meer, Co-founder and CEO, added, There is a great need for our promising treatments, and this technology is an integral part of our work to develop innovative 3D printable, biocompatible advanced materials.

Cell-synthetic hydrogel-based 3D printing

Working with advanced stem cell-synthetic hydrogel-based solutions, the Qrons research team is collaborating with Chenfeng Ke, Associate Professor of Chemistry, Dartmouth College, a member of Qrons Scientific Advisory Board and Qianming Lin, Ph.D. candidate an inventor of the licensed 3D process.

The new agreement provides for the payment by Qrons of initial and annual license fees and royalty payments based upon Qrons product sales.Professor Ke, stated, We are excited to partner with Qrons and continue the development of smart hydrogels with 3D printing capability for the treatment of traumatic brain injuries.

For all the latest 3D printing news,subscribe to our free newsletter hereandfollow our active social media accounts.

Looking for a career in additive manufacturing? Visit3D Printing Jobsfor a selection of roles in the industry.

Featured image shows aCT brain scan of a cranium with TBI. Image via Qrons.

Continue reading here:
Qrons and Dartmouth researchers to develop 3D printable implants for Traumatic Brain Injuries - 3D Printing Industry

Posted in New Hampshire Stem Cells | Comments Off on Qrons and Dartmouth researchers to develop 3D printable implants for Traumatic Brain Injuries – 3D Printing Industry

Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – GlobeNewswire

Posted: October 21, 2019 at 7:49 pm

CALGARY, Alberta, Oct. 21, 2019 (GLOBE NEWSWIRE) -- Hemostemix Inc. (Hemostemix or the Company) (TSX VENTURE: HEM; OTCQB: HMTXF), a biotechnology company developing and commercializing blood-derived stem cell therapies for unmet medical conditions, is pleased to provide a summary of the presentation entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup. Lead investigator Dr. York Hsiang, Professor of Vascular Surgery, University of British Columbia gave this update at the 41st Annual Canadian Society for Vascular Surgery Meeting on September 14, 2019.

Dr. Hsiang reported on the blinded results from the long-term follow-up of the first cohort of patients enrolled at two trial sites, Vancouver Coastal Health Research Institute (VCHRI) located in Vancouver, BC, led by principal investigator, Dr. York N. Hsiang, MB, ChB, MHSc, FRCSC and University Health Network, Peter Monk Cardiac Centre located in Toronto, Ontario, led by principal investigator Dr. Thomas Lindsay, MDCM, MSc, FRCSC, FACS.

Following is a summary of the results and conclusion:

In addition, the Companys Data Safety Monitoring Board (DSMB) recently met to review patient safety data in the ongoing Phase II clinical trial for CLI. The DSMB did not find safety concerns with ACP-01 and recommended continuing to enroll patients in the trial. The clinical trial is ongoing at 13 clinical sites in the US and Canada, with several additional sites in the process of being initiated. To date, 46 of the planned 95 patients have been enrolled and treated in the study.

We are very pleased with these blinded long term follow up results, and the recommendation of the DSMB, which are consistent with the findings reported in our two previous published studies of ACP-01 in CLI patients, said Dr. Alan Jacobs, President and Chief Medical Officer of Hemostemix. Patients with critical limb ischemia face a high rate of amputation when revascularization treatment options are exhausted, so seeing this level of improvement, and outcomes maintained for up to 4.5 years after treatment, is extremely encouraging.

ABOUT HEMOSTEMIX INC.

Hemostemix is a publicly traded clinical-stage biotechnology company that develops and commercializes innovative blood-derived cell therapies for medical conditions not adequately addressed by current treatments. It is one of the first clinical-stage biotech companies to test a stem-cell therapy in an international, multicenter, Phase II clinical trial for patients with critical limb ischemia (CLI), a severe form of peripheral artery disease (PAD) caused by reduced blood flow to the legs. The Phase II trial targets a participants diseased tissue with proprietary cells grown from his or her blood that can support the formation of new blood vessels. The Companys intellectual property portfolio includes over 50 patents issued or pending throughout the world. Hemostemix has a manufacturing contract with Aspire Health Science, LLC (Aspire), for the production of ACP-01 and for research and development purposes at Aspires Orlando, Florida, facility. Building towards commercialization, Hemostemix has also licensed the use, sale and import of ACP-01 for certain indications to Aspire in certain jurisdictions. The Company is continuing research and development of its lead product, ACP-01 with other applications, including cardiovascular, neurological and vascular indications.

For more information, please visit http://www.hemostemix.comor email office@hemostemix.com.

Contact:

Kyle Makofka, CEOSuite 2150, 300 5th Avenue S.W.Calgary, Alberta T2P 3C4Phone: (403) 506-3373E-Mail: kmakofka@hemostemix.com

Neither the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined under the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This release may contain forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words expects, plans, anticipates, believes, intends, estimates, projects, potential, and similar expressions, or that events or conditions will, would, may, could, or should occur. Although Hemostemix believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in forward-looking statements. Forward-looking statements are based on the beliefs, estimates, and opinions of Hemostemix management on the date such statements were made. By their nature forward-looking statements are subject to known and unknown risks, uncertainties, and other factors which may cause actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements. Such factors include, but are not limited to, the Companys stage of development, future clinical trial results, long-term capital requirements and future ability to fund operations, future developments in the Companys markets and the markets in which it expects to compete, risks associated with its strategic alliances and the impact of entering new markets on the Companys operations. Each factor should be considered carefully and readers are cautioned not to place undue reliance on such forward-looking statements. Hemostemix expressly disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise.

Originally posted here:
Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract - GlobeNewswire

Posted in Stem Cell Therapy | Comments Off on Hemostemix Announces Positive Results and Conclusions Reported in Phase II CLI Trial Abstract – GlobeNewswire

The global regenerative medicine market size is expected to reach USD 5.60 billion by 2025, expanding at a CAGR of 11.6% over the forecast period -…

Posted: October 21, 2019 at 7:49 pm

NEW YORK, Oct. 21, 2019 /PRNewswire/ --

Regenerative Medicine Market Size, Share & Trends Analysis By Product (Primary Cell-based, Stem & Progenitor Cell-based), By Therapeutic Category (Dermatology, Oncology) And Segment Forecasts, 2019 - 2025

Read the full report: https://www.reportlinker.com/p05807250/?utm_source=PRN

The global regenerative medicine market size is expected to reach USD 5.60 billion by 2025, expanding at a CAGR of 11.6% over the forecast period. Regenerative medicines are expected to have a significant impact in healthcare to treat specific indications and chronic conditions. Therefore, high prevalence of cancer, neurodegenerative, orthopedic, and other aging-associated disorders coupled with increasing global geriatric population is driving the market growth. Moreover, rising prevalence of inheritable genetic diseases is anticipated to fuel the demand in the field of biotechnology field.

Market players are engaged in implementing novel protocols for the release of novel therapeutics. For instance, in July 2018, Convelo Therapeutics launched regenerative medicines for the treatment of various neurological diseases, such as multiple sclerosis.Agreements models initiated by the companies coupled with commercialization in emerging countries fuels the growth. For instance, in March 2018, Hitachi Chemical signed an agreement with the Daiichi Sankyo and SanBio Group to conduct clinical manufacturing of regenerative medicines developed by respective companies for Japanese and U.S. markets.

Regenerative medicine is anticipated to witness great attention in healthcare sector due to its wide range of applications and significant advancements tissue engineering, stem cells, gene therapy, drug discovery, and nanotechnology. For example, 3D printing is preferred over scaffold with stem cells to restore structure and functional characteristics of biological specimens.

Dermatology is estimated to hold the largest market share in terms of revenue in 2018, owing to the availability of various products and their application in simple and chronic wound healing. Oncology therapeutic category on the other hand, is projected to expand at the fastest CAGR during the forecast period owing to the presence of strong pipeline of regenerative medicines for cancer treatment.

North America held the largest regenerative medicine market share in terms of revenue in 2018 and is projected to continue its dominance in near future. A significant number of universities and research organizations investigating various stem cell-based approaches for regenerative apposition in U.S. is anticipated to propel the growth.

Further key findings from the report suggest: Therapeutics emerged dominant among product segments in 2018 due to high usage of primary cell-based therapies along with advances in stem cell and progenitor cell therapies Implementation of primary cell-based therapies in dermatological, musculoskeletal, and dental application results in highest share of this segment Stem cell and progenitor cell-based therapies are anticipated to witness rapid growth due to high investments in stem cell research and increasing number of stem cell banks With rise in R&D and clinical trials, key players are offering consulting services leading to lucrative growth of the services segment Asia Pacific is projected to witness the fastest CAGR during the forecast period due to rapid adoption of cell-based approaches in healthcare and emergence of key players Key players operating in the regenerative medicine market including AstraZeneca; F Hoffmann-La Roche Ltd.; Pfizer Inc.; Merck & Co., Inc.; Integra LifeSciences Corporation; and Eli Lilly and Company

Read the full report: https://www.reportlinker.com/p05807250/?utm_source=PRN

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001

View original content:http://www.prnewswire.com/news-releases/the-global-regenerative-medicine-market-size-is-expected-to-reach-usd-5-60-billion-by-2025--expanding-at-a-cagr-of-11-6-over-the-forecast-period-300941885.html

Original post:
The global regenerative medicine market size is expected to reach USD 5.60 billion by 2025, expanding at a CAGR of 11.6% over the forecast period -...

Posted in Stem Cell Therapy | Comments Off on The global regenerative medicine market size is expected to reach USD 5.60 billion by 2025, expanding at a CAGR of 11.6% over the forecast period -…

ISCT forms cell and gene therapy sector-wide coalition to combat the rise of unproven commercial cell banking services – PharmiWeb.com

Posted: October 21, 2019 at 7:49 pm

Vancouver, Canada, October 21, 2019 ISCT, the International Society for Cell and Gene Therapy, the global professional society of clinicians, researchers, regulatory specialists, technologists and industry partners in the cell and gene therapy sector, today announces it has formed a global consortium of a wide range of leading professional and education societies to combat the rise in the number of unproven commercial cell banking services. Full details of the statement can be foundhere.

The consortium partners include the International Society for Stem Cell Research (ISSCR), Society for Immunotherapy of Cancer (SITC), American Society for Transplantation and Cellular Therapy (ASTCT),American Society of Gene & Cell Therapy (ASGCT), European Society for Blood and Marrow Transplantation (EBMT), Foundation for the Accreditation of Cellular Therapy (FACT), Joint Accreditation Committee ISCT-EBMT (JACIE) and the Forum for Innovative Regenerative Medicine (FIRM).

The consortium has been formed following ISCT issuingpatient advice and concern on unproven T-cell preservation services on August 7, 2019. These services include the banking of T-cells, dental cells and cells for the derivation of induced pluripotent stem cells for potential therapeutic uses.

The joint statement from ISCT and the consortium partners includes an agreement on a number of key points. Commercial cell banking services are not supported by current scientific evidence, as opposed to the range of cell therapies such as CAR-T therapies, that follow established approval processes. Additionally, cell banking services cannot claim to know that the cells they preserve today could ever be appropriate for clinical use, could be used by manufacturers, or meet the requirements of many national and international regulatory agencies. As a result, there is no clear pathway to legitimate clinical use. All parties agree offering these services commercially to patients is thus premature, misleading, and drives false hope.

In addition, the ISCT joint statement makes clear that patients, being misled by these services, are thus prevented from giving a full and valid informed consent. Cell banking companies mislead patients in a number of ways, including using tokens of scientific legitimacy that suggest a stronger scientific basis than currently exists. These tokens include endorsements from individuals or scientific advisory boards that might not fully endorse the specific products, links to scientific articles, and references to ongoing clinical trials.

ISCTs raison detre is to lead the industry in supporting scientifically validated cell and gene therapies. As a result, ISCT will continue to welcome all innovations, including cell banking approaches, that increase the number of patients who can benefit from these therapies, said Bruce Levine,President-Elect, ISCT and one of the inventors of CAR-T therapies.However, ISCT also leads industry action on unproven cell therapies and services in the cell and gene sector. This is why ISCT has forged a consortium throughout the industry against the marketing of speculative cell banking services that do not have appropriate pre-clinical, and clinical evidence and a plausible pathway to the clinical use of banked cells. We collectively believe these banks have the potential to be detrimental to the future development of cell and gene therapies.

About ISCT

Established in 1992, ISCT, the International Society for Cell and Gene Therapy is a global society of clinicians, regulators, researchers, technologists and industry partners with a shared vision to translate cellular therapy into safe and effective therapies to improve patients lives worldwide.

ISCT is the global leader focused on pre-clinical and translational aspects of developing cell-based therapeutics, thereby advancing scientific research into innovative treatments for patients. ISCT offers a unique collaborative environment that addresses three key areas of translation: Academia, Regulatory and Commercialization. Through strong relationships with global regulatory agencies, academic institutions and industry partners, ISCT drives the advancement of research into standard of care.

Comprised of over 1,500 cell therapy experts across five geographic regions and representation from over 50 countries, ISCT members are part of a global community of peers, thought leaders and organizations invested in cell therapy translation. For more information about the society, key initiatives and upcoming meetings, please visit:

Continue reading here:
ISCT forms cell and gene therapy sector-wide coalition to combat the rise of unproven commercial cell banking services - PharmiWeb.com

Posted in Stem Cell Therapy | Comments Off on ISCT forms cell and gene therapy sector-wide coalition to combat the rise of unproven commercial cell banking services – PharmiWeb.com

When Added to Gene Therapy, Plant-Based Compound May Enable Faster, More Effective Treatments – Lab Manager Magazine

Posted: October 21, 2019 at 7:49 pm

Blood stem cells protect themselves against viruses with structures known as 'interferon-induced transmembrane proteins,' seen here in green. These normally useful proteins are problematic for gene therapy treatments, as they work to keep therapeutic lentiviral vectors from infiltrating cells. Scripps Research scientists found a natural compound that lets down this shield, boosting the success rate of gene delivery.Credit: Image courtesy of the Torbett lab at Scripps ResearchLA JOLLA, CA Gene therapy has broadened the treatment possibilities for those with immune system deficiencies and blood-based conditions, such as sickle cell anemia and leukemia. These diseases, which once would require a bone marrow transplant, can now be successfully treated by modifying patients' own blood stem cells to correct the underlying genetic problem.

But today's standard process for administering gene therapy is expensive and time-consuminga result of the many steps required to deliver the healthy genes into the patients' blood stem cells to correct a genetic problem.

In a discovery that appears in the journalBlood, scientists atScripps Researchbelieve they have found a way to sidestep some of the current difficulties, resulting in a more efficient gene delivery method that would save money and improve treatment outcomes.

"If you can repair blood stem cells with a single gene delivery treatment, rather than multiple treatments over the course of many days, you can reduce the clinical time and expense, which removes some of the limitations of this type of approach," says Bruce Torbett, PhD, associate professor in the Department of Immunology and Microbiology, who led the research.

The new finding centers on caraphenol A, a small molecule closely related to resveratrol, which is a natural compound produced by grapes and other plants and found in red wine. Resveratrol is widely known as an antioxidant and anti-inflammatory agent. Similar to resveratrol, caraphenol A is anti-inflammatory, but in this study, it served a different role.

Torbett and his team became interested in the unique chemical properties of resveratrol and similar types of molecules and wondered if they could enable viral vectors, used in gene therapy to deliver genes, to enter blood stem cells more easily. This would be momentous because stem cellsand in particular, self-renewing hemopoietic stem cellshave many barriers of protection against viruses, making them challenging for gene therapy to infiltrate.

Related Article:Solution to 50-Year-Old Mystery Could Lead to Gene Therapy for Common Blood Disorders

"This is why gene therapy of hemopoietic stem cells has been hit-or-miss," Torbett says. "We saw a way to potentially make the treatment process significantly more efficient."

The gene therapy treatment process currently requires isolating a very small population of hemopoietic stem cells from the blood of patients; these young cells can self-renew and give rise to all other types of blood cells. Therapeutic genes are then delivered to these cells via specially engineered viruses, called "lentiviral vectors," which leverage viruses' natural knack for inserting new genetic information into living cells.

However, hemopoietic stem cells are highly resilient to viral attacks. They protect themselves with structures known as interferon-induced transmembrane (IFITM) proteins, which intercept lentiviral vectors. Because of this, it can take many attemptsand a large quantity of expensive gene therapy vectorsto successfully delivery genes into hemopoietic stem cells, Torbett says.

Torbett and his team found that by adding the resveratrol-like compound, caraphenol A, to human hemopoietic stem cells, along with the lentiviral vector mix, the cells let down their natural defenses and allowed vectors to enter more easily. Once the treated stem cells were placed into mice, they divided and produced blood cells containing the new genetic information.

Another key benefit of the approach is time: If gene delivery treatment of blood stem cells can be accomplished in less time, the cells can be re-administered to the patient sooner. This not only makes treatment more convenient for the patient, but it helps to ensure the stem cells don't lose their self-renewing properties, Torbett says. The longer stem cells exist outside of the body and are manipulated, the more likely it is they will lose their ability to self-generate and ultimately correct disease.

Torbett and his team are continuing to study the underlying reasons for stem cells' inherent resistance to genetic modification, with the goal of further improving treatment efficiency and reducing cost. Because many of the diseases treatable with gene therapy affect children, Torbett says he feels a special urgency to advance this discovery from the lab into the clinic.

Like this article? Click here to subscribe to free newsletters from Lab Manager

See original here:
When Added to Gene Therapy, Plant-Based Compound May Enable Faster, More Effective Treatments - Lab Manager Magazine

Posted in Stem Cell Therapy | Comments Off on When Added to Gene Therapy, Plant-Based Compound May Enable Faster, More Effective Treatments – Lab Manager Magazine

Homology Medicines Presents Data from Investigational PKU and MLD Gene Therapy Programs that Demonstrate Preclinical Proof-of-Concept for Potential…

Posted: October 21, 2019 at 7:49 pm

BEDFORD, Mass., Oct. 21, 2019 (GLOBE NEWSWIRE) -- Homology Medicines Inc. (Nasdaq: FIXX), a genetic medicines company, announced today the presentation of preclinical data that support its investigational gene therapy programs for the treatment of metachromatic leukodystrophy (MLD) and phenylketonuria (PKU) at the American Society of Human Genetics (ASHG) 2019 Meeting.

For the first time, Homology presented preclinical data from the murine model and non-human primates that demonstrated that the HMI-202 gene therapy candidate crossed the blood-brain-barrier and the blood-nerve-barrier and increased levels of arylsulfatase a (ARSA) protein to therapeutic levels. In addition, preclinical data on gene therapy candidate HMI-102 showed that a single administration resulted in sustained Phe reduction and increased tyrosine and other important downstream biochemical metabolites in the PKU murine model.

The MLD presentation is part of a growing foundation of HMI-202 data to support a future IND filing, and the PKU preclinical data supported the initiation of our Phase 1/2 trial, which is ongoing and expected to report initial data by the end of this year, said Albert Seymour, Ph.D., Chief Scientific Officer of Homology Medicines. Taken together, these presentations demonstrate the potential of our genetic medicines platform, investigational PKU and MLD gene therapies and our continued focus on advancing these treatments to help patients and their families.

Highlights from the posters include:

HMI-202 gene therapy in development for MLD

HMI-102 investigational gene therapy for PKU

This poster received a Reviewers Choice Abstract award during the ASHG Meeting.

A 5-year retrospective study of individuals with PKU treated at two specialized U.S. clinics

For more information, please visit http://www.homologymedicines.com/publications.

About Phenylketonuria (PKU)PKU is a rare, inherited inborn error of metabolism caused by mutations in the PAH gene. The current standard of care is a highly restrictive diet, but it is not always effective, and there are currently no treatments available that address the genetic defect in PKU. If left untreated, PKU can result in progressive and severe neurological impairment. PKU affects approximately 16,500 people in the U.S., and an estimated 350 newborns are diagnosed each year.

About Metachromatic Leukodystrophy (MLD)MLD is a rare lysosomal storage disorder caused by mutations in the ARSA gene. ARSA is responsible for the creation of the arylsulfatase A (ARSA) protein, which is required for the breakdown of cellular components. In MLD, these cellular components accumulate and destroy myelin-producing cells in the peripheral and central nervous system leading to progressive and serious neurological deterioration. The late infantile form of the disorder is estimated to affect 1 in 40,000 people, and it is fatal within five to ten years after onset.

About Homology Medicines, Inc.Homology Medicines, Inc. is a genetic medicines company dedicated to transforming the lives of patients suffering from rare genetic diseases with significant unmet medical needs by curing the underlying cause of the disease. Homologys proprietary platform is designed to utilize its human hematopoietic stem cell-derived adeno-associated virus vectors (AAVHSCs) to precisely and efficiently deliver genetic medicinesin vivoeither through a gene therapy or nuclease-free gene editing modality across a broad range of genetic disorders. Homology has a management team with a successful track record of discovering, developing and commercializing therapeutics with a particular focus on rare diseases, and intellectual property covering its suite of 15 AAVHSCs. Homology believes that its compelling preclinical data, scientific expertise, product development strategy, manufacturing capabilities and intellectual property position it as a leader in the development of genetic medicines. For more information, please visitwww.homologymedicines.com.

Forward-Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation statements regarding our expectations surrounding the potential, safety, efficacy, and regulatory and clinical progress of our product candidates; plans and timing for the release of clinical data; our beliefs regarding our manufacturing capabilities; the potential of and related advancement of our novel platform and pipeline; our goal of delivering potential cures to patients; beliefs about preclinical data; our position as a leader in the development of genetic medicines; and the sufficiency of our cash, cash equivalents and short-term investments. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: we have and expect to continue to incur significant losses; our need for additional funding, which may not be available; failure to identify additional product candidates and develop or commercialize marketable products; the early stage of our development efforts; potential unforeseen events during clinical trials could cause delays or other adverse consequences; risks relating to the capabilities and potential expansion of our manufacturing facility; risks relating to the regulatory approval process; our product candidates may cause serious adverse side effects; inability to maintain our collaborations, or the failure of these collaborations; our reliance on third parties; failure to obtain U.S. or international marketing approval; ongoing regulatory obligations; effects of significant competition; unfavorable pricing regulations, third-party reimbursement practices or healthcare reform initiatives; product liability lawsuits; failure to attract, retain and motivate qualified personnel; the possibility of system failures or security breaches; risks relating to intellectual property and significant costs as a result of operating as a public company. These and other important factors discussed under the caption Risk Factors in our Quarterly Report on Form 10-Q for the quarter ended June 30, 2019 and our other filings with the SEC could cause actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent managements estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.

Go here to read the rest:
Homology Medicines Presents Data from Investigational PKU and MLD Gene Therapy Programs that Demonstrate Preclinical Proof-of-Concept for Potential...

Posted in Stem Cell Therapy | Comments Off on Homology Medicines Presents Data from Investigational PKU and MLD Gene Therapy Programs that Demonstrate Preclinical Proof-of-Concept for Potential…

Page 1,306«..1020..1,3051,3061,3071,308..1,3201,330..»